Files
86Box/src/chipset/headland.c
David Hrdlička a505894a10 Move all include files to src/include
- 86Box's own headers go to /86box
- munt's public interface goes to /mt32emu
- all slirp headers go to /slirp (might want to consider using only its public inteface)
- single file headers from other projects go in include root
2020-03-29 19:53:29 +02:00

636 lines
16 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Implementation of the HEADLAND AT286 chipset.
*
*
*
* Authors: Sarah Walker, <http://pcem-emulator.co.uk/>
* Fred N. van Kempen, <decwiz@yahoo.com>
* Original by GreatPsycho for PCem.
* Miran Grca, <mgrca8@gmail.com>
*
* Copyright 2010-2019 Sarah Walker.
* Copyright 2017-2019 Fred N. van Kempen.
* Copyright 2017-2019 Miran Grca.
* Copyright 2017-2019 GreatPsycho.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <86box/86box.h>
#include "cpu.h"
#include "x86.h"
#include <86box/timer.h>
#include <86box/io.h>
#include <86box/mem.h>
#include <86box/rom.h>
#include <86box/device.h>
#include <86box/keyboard.h>
#include <86box/fdd.h>
#include <86box/fdc.h>
#include <86box/port_92.h>
#include <86box/chipset.h>
typedef struct {
uint8_t valid, pad;
uint16_t mr;
struct headland_t * headland;
} headland_mr_t;
typedef struct headland_t {
uint8_t type;
uint8_t cri;
uint8_t cr[8];
uint8_t indx;
uint8_t regs[256];
uint8_t ems_mar;
headland_mr_t null_mr,
ems_mr[64];
rom_t vid_bios;
mem_mapping_t low_mapping;
mem_mapping_t ems_mapping[64];
mem_mapping_t mid_mapping;
mem_mapping_t high_mapping;
mem_mapping_t upper_mapping[24];
} headland_t;
/* TODO - Headland chipset's memory address mapping emulation isn't fully implemented yet,
so memory configuration is hardcoded now. */
static const int mem_conf_cr0[41] = {
0x00, 0x00, 0x20, 0x40, 0x60, 0xA0, 0x40, 0xE0,
0xA0, 0xC0, 0xE0, 0xE0, 0xC0, 0xE0, 0xE0, 0xE0,
0xE0, 0x20, 0x40, 0x40, 0xA0, 0xC0, 0xE0, 0xE0,
0xC0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0,
0x20, 0x40, 0x60, 0x60, 0xC0, 0xE0, 0xE0, 0xE0,
0xE0
};
static const int mem_conf_cr1[41] = {
0x00, 0x40, 0x00, 0x00, 0x00, 0x40, 0x40, 0x40,
0x00, 0x40, 0x40, 0x40, 0x00, 0x00, 0x00, 0x00,
0x00, 0x40, 0x40, 0x40, 0x00, 0x00, 0x00, 0x00,
0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,
0x00, 0x00, 0x40, 0x40, 0x00, 0x00, 0x00, 0x00,
0x40
};
static uint32_t
get_addr(headland_t *dev, uint32_t addr, headland_mr_t *mr)
{
if (mr && mr->valid && (dev->cr[0] & 2) && (mr->mr & 0x200)) {
addr = (addr & 0x3fff) | ((mr->mr & 0x1F) << 14);
if (dev->cr[1] & 0x40) {
if ((dev->cr[4] & 0x80) && (dev->cr[6] & 1)) {
if (dev->cr[0] & 0x80) {
addr |= (mr->mr & 0x60) << 14;
if (mr->mr & 0x100)
addr += ((mr->mr & 0xC00) << 13) + (((mr->mr & 0x80) + 0x80) << 15);
else
addr += (mr->mr & 0x80) << 14;
} else if (mr->mr & 0x100)
addr += ((mr->mr & 0xC00) << 13) + (((mr->mr & 0x80) + 0x20) << 15);
else
addr += (mr->mr & 0x80) << 12;
} else if (dev->cr[0] & 0x80)
addr |= (mr->mr & 0x100) ? ((mr->mr & 0x80) + 0x400) << 12 : (mr->mr & 0xE0) << 14;
else
addr |= (mr->mr & 0x100) ? ((mr->mr & 0xE0) + 0x40) << 14 : (mr->mr & 0x80) << 12;
} else {
if ((dev->cr[4] & 0x80) && (dev->cr[6] & 1)) {
if (dev->cr[0] & 0x80) {
addr |= ((mr->mr & 0x60) << 14);
if (mr->mr & 0x180)
addr += ((mr->mr & 0xC00) << 13) + (((mr->mr & 0x180) - 0x60) << 16);
} else
addr |= ((mr->mr & 0x60) << 14) | ((mr->mr & 0x180) << 16) | ((mr->mr & 0xC00) << 13);
} else if (dev->cr[0] & 0x80)
addr |= (mr->mr & 0x1E0) << 14;
else
addr |= (mr->mr & 0x180) << 12;
}
} else if ((mr == NULL) && ((dev->cr[0] & 4) == 0) && (mem_size >= 1024) && (addr >= 0x100000))
addr -= 0x60000;
return addr;
}
static void
set_global_EMS_state(headland_t *dev, int state)
{
uint32_t base_addr, virt_addr;
int i;
for (i = 0; i < 32; i++) {
base_addr = (i + 16) << 14;
if (i >= 24)
base_addr += 0x20000;
if ((state & 2) && (dev->ems_mr[((state & 1) << 5) | i].mr & 0x200)) {
virt_addr = get_addr(dev, base_addr, &dev->ems_mr[((state & 1) << 5) | i]);
if (i < 24)
mem_mapping_disable(&dev->upper_mapping[i]);
mem_mapping_disable(&dev->ems_mapping[(((state ^ 1) & 1) << 5) | i]);
mem_mapping_enable(&dev->ems_mapping[((state & 1) << 5) | i]);
if (virt_addr < ((uint32_t)mem_size << 10))
mem_mapping_set_exec(&dev->ems_mapping[((state & 1) << 5) | i], ram + virt_addr);
else
mem_mapping_set_exec(&dev->ems_mapping[((state & 1) << 5) | i], NULL);
} else {
mem_mapping_set_exec(&dev->ems_mapping[((state & 1) << 5) | i], ram + base_addr);
mem_mapping_disable(&dev->ems_mapping[(((state ^ 1) & 1) << 5) | i]);
mem_mapping_disable(&dev->ems_mapping[((state & 1) << 5) | i]);
if (i < 24)
mem_mapping_enable(&dev->upper_mapping[i]);
}
}
flushmmucache();
}
static void
memmap_state_update(headland_t *dev)
{
uint32_t addr;
int i;
for (i = 0; i < 24; i++) {
addr = get_addr(dev, 0x40000 + (i << 14), NULL);
mem_mapping_set_exec(&dev->upper_mapping[i], addr < ((uint32_t)mem_size << 10) ? ram + addr : NULL);
}
mem_set_mem_state(0xA0000, 0x40000, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
if (mem_size > 640) {
if ((dev->cr[0] & 4) == 0) {
mem_mapping_set_addr(&dev->mid_mapping, 0x100000, mem_size > 1024 ? 0x60000 : (mem_size - 640) << 10);
mem_mapping_set_exec(&dev->mid_mapping, ram + 0xA0000);
if (mem_size > 1024) {
mem_mapping_set_addr(&dev->high_mapping, 0x160000, (mem_size - 1024) << 10);
mem_mapping_set_exec(&dev->high_mapping, ram + 0x100000);
}
} else {
mem_mapping_set_addr(&dev->mid_mapping, 0xA0000, mem_size > 1024 ? 0x60000 : (mem_size - 640) << 10);
mem_mapping_set_exec(&dev->mid_mapping, ram + 0xA0000);
if (mem_size > 1024) {
mem_mapping_set_addr(&dev->high_mapping, 0x100000, (mem_size - 1024) << 10);
mem_mapping_set_exec(&dev->high_mapping, ram + 0x100000);
}
}
}
set_global_EMS_state(dev, dev->cr[0] & 3);
}
static void
hl_write(uint16_t addr, uint8_t val, void *priv)
{
headland_t *dev = (headland_t *)priv;
uint32_t base_addr, virt_addr;
uint8_t old_val, indx;
switch(addr) {
case 0x0022:
dev->indx = val;
break;
case 0x0023:
old_val = dev->regs[dev->indx];
if ((dev->indx == 0xc1) && !is486)
val = 0;
dev->regs[dev->indx] = val;
if (dev->indx == 0x82) {
shadowbios = val & 0x10;
shadowbios_write = !(val & 0x10);
if (shadowbios)
mem_set_mem_state(0xf0000, 0x10000, MEM_READ_INTERNAL | MEM_WRITE_DISABLED);
else
mem_set_mem_state(0xf0000, 0x10000, MEM_READ_EXTANY | MEM_WRITE_INTERNAL);
} else if (dev->indx == 0x87) {
if ((val & 1) && !(old_val & 1))
softresetx86();
}
break;
case 0x01ec:
dev->ems_mr[dev->ems_mar & 0x3f].mr = val | 0xff00;
indx = dev->ems_mar & 0x1f;
base_addr = (indx + 16) << 14;
if (indx >= 24)
base_addr += 0x20000;
if ((dev->cr[0] & 2) && ((dev->cr[0] & 1) == ((dev->ems_mar & 0x20) >> 5))) {
virt_addr = get_addr(dev, base_addr, &dev->ems_mr[dev->ems_mar & 0x3F]);
if (indx < 24)
mem_mapping_disable(&dev->upper_mapping[indx]);
if (virt_addr < ((uint32_t)mem_size << 10))
mem_mapping_set_exec(&dev->ems_mapping[dev->ems_mar & 0x3f], ram + virt_addr);
else
mem_mapping_set_exec(&dev->ems_mapping[dev->ems_mar & 0x3f], NULL);
mem_mapping_enable(&dev->ems_mapping[dev->ems_mar & 0x3f]);
flushmmucache();
}
if (dev->ems_mar & 0x80)
dev->ems_mar++;
break;
case 0x01ed:
dev->cri = val;
break;
case 0x01ee:
dev->ems_mar = val;
break;
case 0x01ef:
old_val = dev->cr[dev->cri];
switch(dev->cri) {
case 0:
dev->cr[0] = (val & 0x1f) | mem_conf_cr0[(mem_size > 640 ? mem_size : mem_size - 128) >> 9];
mem_set_mem_state(0xe0000, 0x10000, (val & 8 ? MEM_READ_INTERNAL : MEM_READ_EXTANY) | MEM_WRITE_DISABLED);
mem_set_mem_state(0xf0000, 0x10000, (val & 0x10 ? MEM_READ_INTERNAL: MEM_READ_EXTANY) | MEM_WRITE_DISABLED);
memmap_state_update(dev);
break;
case 1:
dev->cr[1] = (val & 0xbf) | mem_conf_cr1[(mem_size > 640 ? mem_size : mem_size - 128) >> 9];
memmap_state_update(dev);
break;
case 2:
case 3:
case 5:
dev->cr[dev->cri] = val;
memmap_state_update(dev);
break;
case 4:
dev->cr[4] = (dev->cr[4] & 0xf0) | (val & 0x0f);
if (val & 1) {
mem_mapping_set_addr(&bios_mapping, 0x000f0000, 0x10000);
mem_mapping_set_exec(&bios_mapping, &(rom[0x10000]));
} else {
mem_mapping_set_addr(&bios_mapping, 0x000e0000, 0x20000);
mem_mapping_set_exec(&bios_mapping, rom);
}
break;
case 6:
if (dev->cr[4] & 0x80) {
dev->cr[dev->cri] = (val & 0xfe) | (mem_size > 8192 ? 1 : 0);
memmap_state_update(dev);
}
break;
default:
break;
}
break;
default:
break;
}
}
static void
hl_writew(uint16_t addr, uint16_t val, void *priv)
{
headland_t *dev = (headland_t *)priv;
uint32_t base_addr, virt_addr;
uint8_t indx;
switch(addr) {
case 0x01ec:
dev->ems_mr[dev->ems_mar & 0x3f].mr = val;
indx = dev->ems_mar & 0x1f;
base_addr = (indx + 16) << 14;
if (indx >= 24)
base_addr += 0x20000;
if ((dev->cr[0] & 2) && (dev->cr[0] & 1) == ((dev->ems_mar & 0x20) >> 5)) {
if (val & 0x200) {
virt_addr = get_addr(dev, base_addr, &dev->ems_mr[dev->ems_mar & 0x3f]);
if (indx < 24)
mem_mapping_disable(&dev->upper_mapping[indx]);
if (virt_addr < ((uint32_t)mem_size << 10))
mem_mapping_set_exec(&dev->ems_mapping[dev->ems_mar & 0x3f], ram + virt_addr);
else
mem_mapping_set_exec(&dev->ems_mapping[dev->ems_mar & 0x3f], NULL);
mem_mapping_enable(&dev->ems_mapping[dev->ems_mar & 0x3f]);
} else {
mem_mapping_set_exec(&dev->ems_mapping[dev->ems_mar & 0x3f], ram + base_addr);
mem_mapping_disable(&dev->ems_mapping[dev->ems_mar & 0x3f]);
if (indx < 24)
mem_mapping_enable(&dev->upper_mapping[indx]);
}
flushmmucache();
}
if (dev->ems_mar & 0x80)
dev->ems_mar++;
break;
default:
break;
}
}
static uint8_t
hl_read(uint16_t addr, void *priv)
{
headland_t *dev = (headland_t *)priv;
uint8_t ret = 0xff;
switch(addr) {
case 0x0022:
ret = dev->indx;
break;
case 0x0023:
if ((dev->indx >= 0xc0 || dev->indx == 0x20) && cpu_iscyrix)
ret = 0xff; /*Don't conflict with Cyrix config registers*/
else
ret = dev->regs[dev->indx];
break;
case 0x01ec:
ret = (uint8_t)dev->ems_mr[dev->ems_mar & 0x3f].mr;
if (dev->ems_mar & 0x80)
dev->ems_mar++;
break;
case 0x01ed:
ret = dev->cri;
break;
case 0x01ee:
ret = dev->ems_mar;
break;
case 0x01ef:
switch(dev->cri) {
case 0:
ret = (dev->cr[0] & 0x1f) | mem_conf_cr0[(mem_size > 640 ? mem_size : mem_size - 128) >> 9];
break;
case 1:
ret = (dev->cr[1] & 0xbf) | mem_conf_cr1[(mem_size > 640 ? mem_size : mem_size - 128) >> 9];
break;
case 6:
if (dev->cr[4] & 0x80)
ret = (dev->cr[6] & 0xfe) | (mem_size > 8192 ? 1 : 0);
else
ret = 0;
break;
default:
ret = dev->cr[dev->cri];
break;
}
break;
default:
break;
}
return ret;
}
static uint16_t
hl_readw(uint16_t addr, void *priv)
{
headland_t *dev = (headland_t *)priv;
uint16_t ret = 0xffff;
switch(addr) {
case 0x01ec:
ret = dev->ems_mr[dev->ems_mar & 0x3f].mr | ((dev->cr[4] & 0x80) ? 0xf000 : 0xfc00);
if (dev->ems_mar & 0x80)
dev->ems_mar++;
break;
default:
break;
}
return ret;
}
static uint8_t
mem_read_b(uint32_t addr, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
uint8_t ret = 0xff;
addr = get_addr(dev, addr, mr);
if (addr < ((uint32_t)mem_size << 10))
ret = ram[addr];
return ret;
}
static uint16_t
mem_read_w(uint32_t addr, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
uint16_t ret = 0xffff;
addr = get_addr(dev, addr, mr);
if (addr < ((uint32_t)mem_size << 10))
ret = *(uint16_t *)&ram[addr];
return ret;
}
static uint32_t
mem_read_l(uint32_t addr, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
uint32_t ret = 0xffffffff;
addr = get_addr(dev, addr, mr);
if (addr < ((uint32_t)mem_size << 10))
ret = *(uint32_t *)&ram[addr];
return ret;
}
static void
mem_write_b(uint32_t addr, uint8_t val, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
addr = get_addr(dev, addr, mr);
if (addr < ((uint32_t)mem_size << 10))
ram[addr] = val;
}
static void
mem_write_w(uint32_t addr, uint16_t val, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
addr = get_addr(dev, addr, mr);
if (addr < ((uint32_t)mem_size << 10))
*(uint16_t *)&ram[addr] = val;
}
static void
mem_write_l(uint32_t addr, uint32_t val, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
addr = get_addr(dev, addr, mr);
if (addr < ((uint32_t)mem_size << 10))
*(uint32_t *)&ram[addr] = val;
}
static void
headland_close(void *priv)
{
headland_t *dev = (headland_t *)priv;
free(dev);
}
static void *
headland_init(const device_t *info)
{
headland_t *dev;
int ht386;
uint32_t i;
dev = (headland_t *) malloc(sizeof(headland_t));
memset(dev, 0x00, sizeof(headland_t));
dev->type = info->local;
ht386 = (dev->type == 32) ? 1 : 0;
for (i = 0; i < 8; i++)
dev->cr[i] = 0x00;
dev->cr[0] = 0x04;
if (ht386) {
dev->cr[4] = 0x20;
device_add(&port_92_inv_device);
} else
dev->cr[4] = 0x00;
io_sethandler(0x01ec, 1,
hl_read,hl_readw,NULL, hl_write,hl_writew,NULL, dev);
io_sethandler(0x01ed, 3, hl_read,NULL,NULL, hl_write,NULL,NULL, dev);
dev->ems_mr[i].valid = 0;
dev->ems_mr[i].mr = 0xff;
dev->ems_mr[i].headland = dev;
for (i = 0; i < 64; i++) {
dev->ems_mr[i].valid = 1;
dev->ems_mr[i].mr = 0x00;
dev->ems_mr[i].headland = dev;
}
/* Turn off mem.c mappings. */
mem_mapping_disable(&ram_low_mapping);
mem_mapping_disable(&ram_mid_mapping);
mem_mapping_disable(&ram_high_mapping);
mem_mapping_add(&dev->low_mapping, 0, 0x40000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
ram, MEM_MAPPING_INTERNAL, &dev->null_mr);
if (mem_size > 640) {
mem_mapping_add(&dev->mid_mapping, 0xa0000, 0x60000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
ram + 0xa0000, MEM_MAPPING_INTERNAL, &dev->null_mr);
mem_mapping_enable(&dev->mid_mapping);
}
if (mem_size > 1024) {
mem_mapping_add(&dev->high_mapping, 0x100000, ((mem_size-1024)*1024),
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
ram + 0x100000, MEM_MAPPING_INTERNAL, &dev->null_mr);
mem_mapping_enable(&dev->high_mapping);
}
for (i = 0; i < 24; i++) {
mem_mapping_add(&dev->upper_mapping[i],
0x40000 + (i << 14), 0x4000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
mem_size > 256 + (i << 4) ? ram + 0x40000 + (i << 14) : NULL,
MEM_MAPPING_INTERNAL, &dev->null_mr);
mem_mapping_enable(&dev->upper_mapping[i]);
}
for (i = 0; i < 64; i++) {
dev->ems_mr[i].mr = 0x00;
mem_mapping_add(&dev->ems_mapping[i],
((i & 31) + ((i & 31) >= 24 ? 24 : 16)) << 14, 0x04000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
ram + (((i & 31) + ((i & 31) >= 24 ? 24 : 16)) << 14),
0, &dev->ems_mr[i]);
}
memmap_state_update(dev);
return(dev);
}
const device_t headland_device = {
"Headland 286",
0,
0,
headland_init, headland_close, NULL,
NULL, NULL, NULL,
NULL
};
const device_t headland_386_device = {
"Headland 386",
0,
32,
headland_init, headland_close, NULL,
NULL, NULL, NULL,
NULL
};