659 lines
14 KiB
C
659 lines
14 KiB
C
/*
|
|
* 86Box A hypervisor and IBM PC system emulator that specializes in
|
|
* running old operating systems and software designed for IBM
|
|
* PC systems and compatibles from 1981 through fairly recent
|
|
* system designs based on the PCI bus.
|
|
*
|
|
* This file is part of the 86Box distribution.
|
|
*
|
|
* Implementation of NS8250-series UART devices.
|
|
*
|
|
* The original IBM-PC design did not have any serial ports of
|
|
* any kind. Rather, these were offered as add-on devices, most
|
|
* likely because a) most people did not need one at the time,
|
|
* and, b) this way, IBM could make more money off them.
|
|
*
|
|
* So, for the PC, the offerings were for an IBM Asynchronous
|
|
* Communications Adapter, and, later, a model for synchronous
|
|
* communications.
|
|
*
|
|
* The "Async Adapter" was based on the NS8250 UART chip, and
|
|
* is what we now call the "serial" or "com" port of the PC.
|
|
*
|
|
* Of course, many system builders came up with similar boards,
|
|
* and even more boards were designed where several I/O functions
|
|
* were combined into a single board: the Multi-I/O adapters.
|
|
* Initially, these had all the chips as-is, but later many of
|
|
* these functions were integrated into a single MIO chip.
|
|
*
|
|
* This file implements the standard NS8250 series of chips, with
|
|
* support for the later (16450 and 16550) FIFO additions. On the
|
|
* lower half of the driver, we interface to the host system's
|
|
* serial ports for real-world access.
|
|
*
|
|
* Based on the 86Box serial port driver as a framework.
|
|
*
|
|
* Version: @(#)serial.c 1.0.7 2017/06/04
|
|
*
|
|
* Author: Fred N. van Kempen, <decwiz@yahoo.com>
|
|
* Copyright 2017 Fred N. van Kempen.
|
|
*/
|
|
#include <stdarg.h>
|
|
#include "ibm.h"
|
|
#include "io.h"
|
|
#include "pic.h"
|
|
#include "timer.h"
|
|
#include "serial.h"
|
|
#include "plat_serial.h"
|
|
|
|
|
|
#define NUM_SERIAL 2 /* we support 2 ports */
|
|
|
|
|
|
enum {
|
|
SERINT_LSR = 1,
|
|
SERINT_RECEIVE = 2,
|
|
SERINT_TRANSMIT = 4,
|
|
SERINT_MSR = 8
|
|
};
|
|
|
|
|
|
/* IER register bits. */
|
|
#define IER_RDAIE (0x01)
|
|
#define IER_THREIE (0x02)
|
|
#define IER_RXLSIE (0x04)
|
|
#define IER_MSIE (0x08)
|
|
#define IER_SLEEP (0x10) /* NS16750 */
|
|
#define IER_LOWPOWER (0x20) /* NS16750 */
|
|
#define IER_MASK (0x0f) /* not including SLEEP|LOWP */
|
|
|
|
/* IIR register bits. */
|
|
#define IIR_IP (0x01)
|
|
#define IIR_IID (0x0e)
|
|
# define IID_IDMDM (0x00)
|
|
# define IID_IDTX (0x02)
|
|
# define IID_IDRX (0x04)
|
|
# define IID_IDERR (0x06)
|
|
# define IID_IDTMO (0x0c)
|
|
#define IIR_IIRFE (0xc0)
|
|
# define IIR_FIFO64 (0x20)
|
|
# define IIR_FIFOBAD (0x80) /* 16550 */
|
|
# define IIR_FIFOENB (0xc0)
|
|
|
|
/* FCR register bits. */
|
|
#define FCR_FCRFE (0x01)
|
|
#define FCR_RFR (0x02)
|
|
#define FCR_TFR (0x04)
|
|
#define FCR_SELDMA1 (0x08)
|
|
#define FCR_FENB64 (0x20) /* 16750 */
|
|
#define FCR_RTLS (0xc0)
|
|
# define FCR_RTLS1 (0x00)
|
|
# define FCR_RTLS4 (0x40)
|
|
# define FCR_RTLS8 (0x80)
|
|
# define FCR_RTLS14 (0xc0)
|
|
|
|
/* LCR register bits. */
|
|
#define LCR_WLS (0x03)
|
|
# define WLS_BITS5 (0x00)
|
|
# define WLS_BITS6 (0x01)
|
|
# define WLS_BITS7 (0x02)
|
|
# define WLS_BITS8 (0x03)
|
|
#define LCR_SBS (0x04)
|
|
#define LCR_PE (0x08)
|
|
#define LCR_EP (0x10)
|
|
#define LCR_PS (0x20)
|
|
# define PAR_NONE (0x00)
|
|
# define PAR_EVEN (LCR_PE | LCR_EP)
|
|
# define PAR_ODD (LCR_PE)
|
|
# define PAR_MARK (LCR_PE | LCR_PS)
|
|
# define PAR_SPACE (LCR_PE | LCR_PS | LCR_EP)
|
|
#define LCR_BC (0x40)
|
|
#define LCR_DLAB (0x80)
|
|
|
|
/* MCR register bits. */
|
|
#define MCR_DTR (0x01)
|
|
#define MCR_RTS (0x02)
|
|
#define MCR_OUT1 (0x04) /* 8250 */
|
|
#define MCR_OUT2 (0x08) /* 8250, INTEN on IBM-PC */
|
|
#define MCR_LMS (0x10)
|
|
#define MCR_AUTOFLOW (0x20) /* 16750 */
|
|
|
|
/* LSR register bits. */
|
|
#define LSR_DR (0x01)
|
|
#define LSR_OE (0x02)
|
|
#define LSR_PE (0x04)
|
|
#define LSR_FE (0x08)
|
|
#define LSR_BI (0x10)
|
|
#define LSR_THRE (0x20)
|
|
#define LSR_TEMT (0x40)
|
|
#define LSR_RXFE (0x80)
|
|
|
|
/* MSR register bits. */
|
|
#define MSR_DCTS (0x01)
|
|
#define MSR_DDSR (0x02)
|
|
#define MSR_TERI (0x04)
|
|
#define MSR_DDCD (0x08)
|
|
#define MSR_CTS (0x10)
|
|
#define MSR_DSR (0x20)
|
|
#define MSR_RI (0x40)
|
|
#define MSR_DCD (0x80)
|
|
#define MSR_MASK (0x0f)
|
|
|
|
|
|
static SERIAL ports[NUM_SERIAL]; /* serial port data */
|
|
int serial_do_log;
|
|
|
|
|
|
static void
|
|
serial_log(int lvl, const char *fmt, ...)
|
|
{
|
|
#ifdef ENABLE_SERIAL_LOG
|
|
va_list ap;
|
|
|
|
if (serial_do_log >= lvl) {
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
fflush(stdout);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
static void
|
|
update_ints(SERIAL *sp)
|
|
{
|
|
int stat = 0;
|
|
|
|
sp->iir = IIR_IP;
|
|
if ((sp->ier & IER_RXLSIE) && (sp->int_status & SERINT_LSR)) {
|
|
/* Line Status interrupt. */
|
|
stat = 1;
|
|
sp->iir = IID_IDERR;
|
|
} else if ((sp->ier & IER_RDAIE) && (sp->int_status & SERINT_RECEIVE)) {
|
|
/* Received Data available. */
|
|
stat = 1;
|
|
sp->iir = IID_IDRX;
|
|
} else if ((sp->ier & IER_THREIE) && (sp->int_status & SERINT_TRANSMIT)) {
|
|
/* Transmit Data empty. */
|
|
stat = 1;
|
|
sp->iir = IID_IDTX;
|
|
} else if ((sp->ier & IER_MSIE) && (sp->int_status & SERINT_MSR)) {
|
|
/* Modem Status interrupt. */
|
|
stat = 1;
|
|
sp->iir = IID_IDMDM;
|
|
}
|
|
|
|
/* Raise or clear the level-based IRQ. */
|
|
if (stat && ((sp->mctrl & MCR_OUT2) || PCJR))
|
|
picintlevel(1 << sp->irq);
|
|
else
|
|
picintc(1 << sp->irq);
|
|
}
|
|
|
|
|
|
/* Fake interrupt generator, needed for Serial Mouse. */
|
|
static void
|
|
serial_timer(void *priv)
|
|
{
|
|
SERIAL *sp = (SERIAL *)priv;
|
|
|
|
sp->receive_delay = 0;
|
|
|
|
if (sp->fifo_read != sp->fifo_write) {
|
|
sp->lsr |= LSR_DR;
|
|
sp->int_status |= SERINT_RECEIVE;
|
|
update_ints(sp);
|
|
}
|
|
}
|
|
|
|
|
|
/* Write data to the (input) FIFO. Used by MOUSE driver. */
|
|
void
|
|
serial_write_fifo(SERIAL *sp, uint8_t dat, int flag)
|
|
{
|
|
/* Stuff data into FIFO. */
|
|
sp->fifo[sp->fifo_write] = dat;
|
|
sp->fifo_write = (sp->fifo_write + 1) & 0xFF;
|
|
|
|
if (! (sp->lsr & LSR_DR)) {
|
|
sp->lsr |= LSR_DR;
|
|
sp->int_status |= SERINT_RECEIVE;
|
|
update_ints(sp);
|
|
}
|
|
}
|
|
|
|
|
|
static uint8_t
|
|
read_fifo(SERIAL *sp)
|
|
{
|
|
if (sp->fifo_read != sp->fifo_write) {
|
|
sp->dat = sp->fifo[sp->fifo_read];
|
|
sp->fifo_read = (sp->fifo_read + 1) & 0xFF;
|
|
}
|
|
|
|
return(sp->dat);
|
|
}
|
|
|
|
|
|
/* Handle a WRITE operation to one of our registers. */
|
|
static void
|
|
serial_write(uint16_t addr, uint8_t val, void *priv)
|
|
{
|
|
SERIAL *sp = (SERIAL *)priv;
|
|
uint8_t wl, sb, pa;
|
|
uint16_t baud;
|
|
long speed;
|
|
|
|
#if ENABLE_SERIAL_LOG
|
|
serial_log(2, "Serial%d: write(%04x, %02x)\n", sp->port, addr, val);
|
|
#endif
|
|
switch (addr & 0x07) {
|
|
case 0: /* DATA / DLAB1 */
|
|
if (sp->lcr & LCR_DLAB) {
|
|
sp->dlab1 = val;
|
|
return;
|
|
}
|
|
sp->thr = val;
|
|
if (sp->bh != NULL) {
|
|
/* We are linked, so send to BH layer. */
|
|
bhtty_write((BHTTY *)sp->bh, sp->thr);
|
|
|
|
/* The WRITE completed, we are ready for more. */
|
|
sp->lsr |= LSR_THRE;
|
|
sp->int_status |= SERINT_TRANSMIT;
|
|
update_ints(sp);
|
|
} else {
|
|
/* Not linked. Just fake LOOPBACK mode. */
|
|
if (! (sp->mctrl & MCR_LMS))
|
|
serial_write_fifo(sp, val, 1);
|
|
}
|
|
|
|
if (sp->mctrl & MCR_LMS) {
|
|
/* Echo data back to RX. */
|
|
serial_write_fifo(sp, val, 1);
|
|
}
|
|
break;
|
|
|
|
case 1: /* IER / DLAB2 */
|
|
if (sp->lcr & LCR_DLAB) {
|
|
sp->dlab2 = val;
|
|
return;
|
|
}
|
|
sp->ier = (val & IER_MASK);
|
|
update_ints(sp);
|
|
break;
|
|
|
|
case 2: /* FCR */
|
|
sp->fcr = val;
|
|
break;
|
|
|
|
case 3: /* LCR */
|
|
if ((sp->lcr & LCR_DLAB) && !(val & LCR_DLAB)) {
|
|
/* We dropped DLAB, so handle baudrate. */
|
|
baud = ((sp->dlab2<<8) | sp->dlab1);
|
|
if (baud > 0) {
|
|
speed = 115200UL/baud;
|
|
#ifdef ENABLE_SERIAL_LOG
|
|
serial_log(2, "Serial%d: divisor %u, baudrate %ld\n",
|
|
sp->port, baud, speed);
|
|
#endif
|
|
if ((sp->bh != NULL) && (speed > 0))
|
|
bhtty_speed((BHTTY *)sp->bh, speed);
|
|
} else {
|
|
#ifdef ENABLE_SERIAL_LOG
|
|
serial_log(1, "Serial%d: divisor %u invalid!\n",
|
|
sp->port, baud);
|
|
#endif
|
|
}
|
|
}
|
|
wl = (val & LCR_WLS) + 5; /* databits */
|
|
sb = (val & LCR_SBS) ? 2 : 1; /* stopbits */
|
|
pa = (val & (LCR_PE|LCR_EP|LCR_PS)) >> 3;
|
|
#ifdef ENABLE_SERIAL_LOG
|
|
serial_log(2, "Serial%d: WL=%d SB=%d PA=%d\n", sp->port, wl, sb, pa);
|
|
#endif
|
|
if (sp->bh != NULL)
|
|
bhtty_params((BHTTY *)sp->bh, wl, pa, sb);
|
|
sp->lcr = val;
|
|
break;
|
|
|
|
case 4:
|
|
if ((val & MCR_RTS) && !(sp->mctrl & MCR_RTS)) {
|
|
/*
|
|
* This is old code for use by the Serial Mouse
|
|
* driver. If the user toggles RTS, serial mice
|
|
* are expected to send an ID, to inform any
|
|
* enumerator there 'is' something.
|
|
*/
|
|
if (sp->rts_callback) {
|
|
sp->rts_callback(sp->rts_callback_p);
|
|
#ifdef ENABLE_SERIAL_LOG
|
|
serial_log(1, "RTS raised; sending ID\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if ((val & MCR_OUT2) && !(sp->mctrl & MCR_OUT2)) {
|
|
if (sp->bh != NULL) {
|
|
/* Linked, start host port. */
|
|
(void)bhtty_active(sp->bh, 1);
|
|
} else {
|
|
/* Not linked, start RX timer. */
|
|
timer_add(serial_timer,
|
|
&sp->receive_delay,
|
|
&sp->receive_delay, sp);
|
|
|
|
/* Fake CTS, DSR and DCD (for now.) */
|
|
sp->msr = (MSR_CTS | MSR_DCTS |
|
|
MSR_DSR | MSR_DDSR |
|
|
MSR_DCD | MSR_DDCD);
|
|
sp->int_status |= SERINT_MSR;
|
|
update_ints(sp);
|
|
}
|
|
}
|
|
sp->mctrl = val;
|
|
if (val & MCR_LMS) { /* loopback mode */
|
|
uint8_t new_msr;
|
|
|
|
/*FIXME: WTF does this do?? --FvK */
|
|
new_msr = (val & 0x0c) << 4;
|
|
new_msr |= (val & MCR_RTS) ? MCR_LMS : 0;
|
|
new_msr |= (val & MCR_DTR) ? MCR_AUTOFLOW : 0;
|
|
|
|
if ((sp->msr ^ new_msr) & 0x10)
|
|
new_msr |= MCR_DTR;
|
|
if ((sp->msr ^ new_msr) & 0x20)
|
|
new_msr |= MCR_RTS;
|
|
if ((sp->msr ^ new_msr) & 0x80)
|
|
new_msr |= 0x08;
|
|
if ((sp->msr & 0x40) && !(new_msr & 0x40))
|
|
new_msr |= 0x04;
|
|
|
|
sp->msr = new_msr;
|
|
}
|
|
break;
|
|
|
|
case 5:
|
|
sp->lsr = val;
|
|
if (sp->lsr & LSR_DR)
|
|
sp->int_status |= SERINT_RECEIVE;
|
|
if (sp->lsr & 0x1e)
|
|
sp->int_status |= SERINT_LSR;
|
|
if (sp->lsr & LSR_THRE)
|
|
sp->int_status |= SERINT_TRANSMIT;
|
|
update_ints(sp);
|
|
break;
|
|
|
|
case 6:
|
|
sp->msr = val;
|
|
if (sp->msr & MSR_MASK)
|
|
sp->int_status |= SERINT_MSR;
|
|
update_ints(sp);
|
|
break;
|
|
|
|
case 7:
|
|
sp->scratch = val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* BHTTY READ COMPLETE handler. */
|
|
static void
|
|
serial_rd_done(void *arg, int num)
|
|
{
|
|
SERIAL *sp = (SERIAL *)arg;
|
|
|
|
/* We can do at least 'num' bytes.. */
|
|
while (num-- > 0) {
|
|
/* Get a byte from them. */
|
|
if (bhtty_read(sp->bh, &sp->hold, 1) < 0) break;
|
|
|
|
/* Stuff it into the FIFO and set intr. */
|
|
serial_write_fifo(sp, sp->hold, 1);
|
|
}
|
|
}
|
|
|
|
|
|
/* Handle a READ operation from one of our registers. */
|
|
static uint8_t
|
|
serial_read(uint16_t addr, void *priv)
|
|
{
|
|
SERIAL *sp = (SERIAL *)priv;
|
|
uint8_t ret = 0x00;
|
|
|
|
switch (addr&0x07) {
|
|
case 0: /* DATA / DLAB1 */
|
|
if (sp->lcr & LCR_DLAB) {
|
|
ret = sp->dlab1;
|
|
} else {
|
|
sp->lsr &= ~LSR_DR;
|
|
sp->int_status &= ~SERINT_RECEIVE;
|
|
update_ints(sp);
|
|
ret = read_fifo(sp);
|
|
if ((sp->bh == NULL) &&
|
|
(sp->fifo_read != sp->fifo_write))
|
|
sp->receive_delay = 1000 * TIMER_USEC;
|
|
}
|
|
break;
|
|
|
|
case 1: /* LCR / DLAB2 */
|
|
ret = (sp->lcr & LCR_DLAB) ? sp->dlab2 : sp->ier;
|
|
break;
|
|
|
|
case 2: /* IIR */
|
|
ret = sp->iir;
|
|
if ((ret & IIR_IID) == IID_IDTX) {
|
|
sp->int_status &= ~SERINT_TRANSMIT;
|
|
update_ints(sp);
|
|
}
|
|
if (sp->fcr & 0x01)
|
|
ret |= 0xc0;
|
|
break;
|
|
|
|
case 3: /* LCR */
|
|
ret = sp->lcr;
|
|
break;
|
|
|
|
case 4: /* MCR */
|
|
ret = sp->mctrl;
|
|
break;
|
|
|
|
case 5: /* LSR */
|
|
if (sp->lsr & LSR_THRE)
|
|
sp->lsr |= LSR_TEMT;
|
|
sp->lsr |= LSR_THRE;
|
|
ret = sp->lsr;
|
|
if (sp->lsr & 0x1f)
|
|
sp->lsr &= ~0x1e;
|
|
#if 0
|
|
sp->lsr |= (LSR_THRE | LSR_TEMT);
|
|
#endif
|
|
sp->int_status &= ~SERINT_LSR;
|
|
update_ints(sp);
|
|
break;
|
|
|
|
case 6:
|
|
ret = sp->msr;
|
|
sp->msr &= ~0x0f;
|
|
sp->int_status &= ~SERINT_MSR;
|
|
update_ints(sp);
|
|
break;
|
|
|
|
case 7:
|
|
ret = sp->scratch;
|
|
break;
|
|
}
|
|
|
|
return(ret);
|
|
}
|
|
|
|
|
|
/* Set up a serial port for use. */
|
|
void
|
|
serial_setup(int port, uint16_t addr, int irq)
|
|
{
|
|
SERIAL *sp;
|
|
|
|
#ifdef ENABLE_SERIAL_LOG
|
|
serial_log(0, "Serial%d: I/O=%04x, IRQ=%d\n", port, addr, irq);
|
|
#endif
|
|
|
|
/* Grab the desired port block. */
|
|
sp = &ports[port-1];
|
|
|
|
/* Set up the basic info. */
|
|
if (sp->addr != 0x0000) {
|
|
/* Unlink the previous handler. Just in case. */
|
|
io_removehandler(sp->addr, 8,
|
|
serial_read, NULL, NULL, serial_write, NULL, NULL, sp);
|
|
}
|
|
sp->addr = addr;
|
|
sp->irq = irq;
|
|
|
|
/* Request an I/O range. */
|
|
io_sethandler(sp->addr, 8,
|
|
serial_read, NULL, NULL, serial_write, NULL, NULL, sp);
|
|
}
|
|
|
|
|
|
/* Release all resources held by a serial port. */
|
|
void
|
|
serial_remove(int port)
|
|
{
|
|
SERIAL *sp;
|
|
|
|
/* Grab the desired port block. */
|
|
sp = &ports[port-1];
|
|
|
|
// FIXME: stop timer, if enabled!
|
|
|
|
/* Close the host device. */
|
|
if (sp->bh != NULL)
|
|
(void)serial_link(port, NULL);
|
|
|
|
/* Release our I/O range. */
|
|
if (sp->addr != 0x0000) {
|
|
io_removehandler(sp->addr, 8,
|
|
serial_read, NULL, NULL, serial_write, NULL, NULL, sp);
|
|
}
|
|
sp->addr = 0x0000;
|
|
sp->irq = 0;
|
|
}
|
|
|
|
|
|
/* Initialize the serial ports. */
|
|
void
|
|
serial_init(void)
|
|
{
|
|
SERIAL *sp;
|
|
int i;
|
|
|
|
#if ENABLE_SERIAL_LOG
|
|
serial_do_log = ENABLE_SERIAL_LOG;
|
|
#endif
|
|
|
|
/* FIXME: we should probably initialize the platform module here. */
|
|
|
|
/* Initialize each port. */
|
|
for (i=0; i<NUM_SERIAL; i++) {
|
|
sp = &ports[i];
|
|
memset(sp, 0x00, sizeof(SERIAL));
|
|
sp->port = (i+1);
|
|
|
|
if (i == 0)
|
|
serial_setup(sp->port, SERIAL1_ADDR, SERIAL1_IRQ);
|
|
else
|
|
serial_setup(sp->port, SERIAL2_ADDR, SERIAL2_IRQ);
|
|
}
|
|
|
|
#ifdef WALTJE
|
|
/* Link to host port. */
|
|
serial_link(1, "COM1");
|
|
serial_link(2, "COM2");
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* Reset the serial ports.
|
|
*
|
|
* This should be a per-port function.
|
|
*/
|
|
void
|
|
serial_reset(void)
|
|
{
|
|
SERIAL *sp;
|
|
int i;
|
|
|
|
for (i=0; i<NUM_SERIAL; i++) {
|
|
sp = &ports[i];
|
|
|
|
sp->iir = sp->ier = sp->lcr = sp->mctrl = 0x00;
|
|
sp->fifo_read = sp->fifo_write = 0x00;
|
|
}
|
|
}
|
|
|
|
|
|
/* Link a serial port to a host (serial) port. */
|
|
int
|
|
serial_link(int port, char *arg)
|
|
{
|
|
SERIAL *sp;
|
|
BHTTY *bh;
|
|
|
|
/* Grab the desired port block. */
|
|
sp = &ports[port-1];
|
|
|
|
if (arg != NULL) {
|
|
/* Make sure we're not already linked. */
|
|
if (sp->bh != NULL) {
|
|
#if ENABLE_SERIAL_LOG
|
|
serial_log(0, "Serial%d already linked!\n", port);
|
|
#endif
|
|
return(-1);
|
|
}
|
|
|
|
/* Request a port from the host system. */
|
|
bh = bhtty_open(arg, 0);
|
|
if (bh == NULL) {
|
|
#if ENABLE_SERIAL_LOG
|
|
serial_log(0, "Serial%d unable to link to '%s' !\n", port, arg);
|
|
#endif
|
|
return(-1);
|
|
}
|
|
sp->bh = bh;
|
|
|
|
/* Set up bottom-half I/O callback info. */
|
|
bh->rd_done = serial_rd_done;
|
|
bh->rd_arg = sp;
|
|
} else {
|
|
/* If we are linked, unlink it. */
|
|
if (sp->bh != NULL) {
|
|
bhtty_close((BHTTY *)sp->bh);
|
|
sp->bh = NULL;
|
|
}
|
|
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
/* Attach another device (MOUSE) to a serial port. */
|
|
SERIAL *
|
|
serial_attach(int port, void *func, void *arg)
|
|
{
|
|
SERIAL *sp;
|
|
|
|
/* Grab the desired port block. */
|
|
sp = &ports[port-1];
|
|
|
|
/* Set up callback info. */
|
|
sp->rts_callback = func;
|
|
sp->rts_callback_p = arg;
|
|
|
|
return(sp);
|
|
}
|