Files
86Box/src/cpu_common/x86_ops_pmode.h
nerd73 51bbebbfa3 Changes to the IBM 386/486 and RapidCAD CPUs
- Disabled the 'is486' flag and moved them to 386 timings
- Disabled cache on startup, enable-able later
- RapidCAD fixes (permanently disable L1, correct EDX reset)
2020-03-25 18:02:25 -06:00

457 lines
24 KiB
C

static int opARPL_a16(uint32_t fetchdat)
{
uint16_t temp_seg;
NOTRM
fetch_ea_16(fetchdat);
if (cpu_mod != 3)
SEG_CHECK_WRITE(cpu_state.ea_seg);
temp_seg = geteaw(); if (cpu_state.abrt) return 1;
flags_rebuild();
if ((temp_seg & 3) < (cpu_state.regs[cpu_reg].w & 3))
{
temp_seg = (temp_seg & 0xfffc) | (cpu_state.regs[cpu_reg].w & 3);
seteaw(temp_seg); if (cpu_state.abrt) return 1;
cpu_state.flags |= Z_FLAG;
}
else
cpu_state.flags &= ~Z_FLAG;
CLOCK_CYCLES(is486 ? 9 : 20);
PREFETCH_RUN(is486 ? 9 : 20, 2, rmdat, 1,0,1,0, 0);
return 0;
}
static int opARPL_a32(uint32_t fetchdat)
{
uint16_t temp_seg;
NOTRM
fetch_ea_32(fetchdat);
if (cpu_mod != 3)
SEG_CHECK_WRITE(cpu_state.ea_seg);
temp_seg = geteaw(); if (cpu_state.abrt) return 1;
flags_rebuild();
if ((temp_seg & 3) < (cpu_state.regs[cpu_reg].w & 3))
{
temp_seg = (temp_seg & 0xfffc) | (cpu_state.regs[cpu_reg].w & 3);
seteaw(temp_seg); if (cpu_state.abrt) return 1;
cpu_state.flags |= Z_FLAG;
}
else
cpu_state.flags &= ~Z_FLAG;
CLOCK_CYCLES(is486 ? 9 : 20);
PREFETCH_RUN(is486 ? 9 : 20, 2, rmdat, 1,0,1,0, 1);
return 0;
}
#define opLAR(name, fetch_ea, is32, ea32) \
static int opLAR_ ## name(uint32_t fetchdat) \
{ \
int valid; \
uint16_t sel, desc = 0; \
\
NOTRM \
fetch_ea(fetchdat); \
if (cpu_mod != 3) \
SEG_CHECK_READ(cpu_state.ea_seg); \
\
sel = geteaw(); if (cpu_state.abrt) return 1; \
\
flags_rebuild(); \
if (!(sel & 0xfffc)) { cpu_state.flags &= ~Z_FLAG; return 0; } /*Null selector*/ \
valid = (sel & ~7) < ((sel & 4) ? ldt.limit : gdt.limit); \
if (valid) \
{ \
cpl_override = 1; \
desc = readmemw(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7) + 4); \
cpl_override = 0; if (cpu_state.abrt) return 1; \
} \
cpu_state.flags &= ~Z_FLAG; \
if ((desc & 0x1f00) == 0x000) valid = 0; \
if ((desc & 0x1f00) == 0x800) valid = 0; \
if ((desc & 0x1f00) == 0xa00) valid = 0; \
if ((desc & 0x1f00) == 0xd00) valid = 0; \
if ((desc & 0x1c00) < 0x1c00) /*Exclude conforming code segments*/ \
{ \
int dpl = (desc >> 13) & 3; \
if (dpl < CPL || dpl < (sel & 3)) valid = 0; \
} \
if (valid) \
{ \
cpu_state.flags |= Z_FLAG; \
cpl_override = 1; \
if (is32) \
cpu_state.regs[cpu_reg].l = readmeml(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7) + 4) & 0xffff00; \
else \
cpu_state.regs[cpu_reg].w = readmemw(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7) + 4) & 0xff00; \
cpl_override = 0; \
} \
CLOCK_CYCLES(11); \
PREFETCH_RUN(11, 2, rmdat, 2,0,0,0, ea32); \
return cpu_state.abrt; \
}
opLAR(w_a16, fetch_ea_16, 0, 0)
opLAR(w_a32, fetch_ea_32, 0, 1)
opLAR(l_a16, fetch_ea_16, 1, 0)
opLAR(l_a32, fetch_ea_32, 1, 1)
#define opLSL(name, fetch_ea, is32, ea32) \
static int opLSL_ ## name(uint32_t fetchdat) \
{ \
int valid; \
uint16_t sel, desc = 0; \
\
NOTRM \
fetch_ea(fetchdat); \
if (cpu_mod != 3) \
SEG_CHECK_READ(cpu_state.ea_seg); \
\
sel = geteaw(); if (cpu_state.abrt) return 1; \
flags_rebuild(); \
cpu_state.flags &= ~Z_FLAG; \
if (!(sel & 0xfffc)) return 0; /*Null selector*/ \
valid = (sel & ~7) < ((sel & 4) ? ldt.limit : gdt.limit); \
if (valid) \
{ \
cpl_override = 1; \
desc = readmemw(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7) + 4); \
cpl_override = 0; if (cpu_state.abrt) return 1; \
} \
if ((desc & 0x1400) == 0x400) valid = 0; /*Interrupt or trap or call gate*/ \
if ((desc & 0x1f00) == 0x000) valid = 0; /*Invalid*/ \
if ((desc & 0x1f00) == 0xa00) valid = 0; /*Invalid*/ \
if ((desc & 0x1c00) != 0x1c00) /*Exclude conforming code segments*/ \
{ \
int rpl = (desc >> 13) & 3; \
if (rpl < CPL || rpl < (sel & 3)) valid = 0; \
} \
if (valid) \
{ \
cpu_state.flags |= Z_FLAG; \
cpl_override = 1; \
if (is32) \
{ \
cpu_state.regs[cpu_reg].l = readmemw(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7)); \
cpu_state.regs[cpu_reg].l |= (readmemb(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7) + 6) & 0xF) << 16; \
if (readmemb(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7) + 6) & 0x80) \
{ \
cpu_state.regs[cpu_reg].l <<= 12; \
cpu_state.regs[cpu_reg].l |= 0xFFF; \
} \
} \
else \
cpu_state.regs[cpu_reg].w = readmemw(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7)); \
cpl_override = 0; \
} \
CLOCK_CYCLES(10); \
PREFETCH_RUN(10, 2, rmdat, 4,0,0,0, ea32); \
return cpu_state.abrt; \
}
opLSL(w_a16, fetch_ea_16, 0, 0)
opLSL(w_a32, fetch_ea_32, 0, 1)
opLSL(l_a16, fetch_ea_16, 1, 0)
opLSL(l_a32, fetch_ea_32, 1, 1)
static int op0F00_common(uint32_t fetchdat, int ea32)
{
int dpl, valid, granularity;
uint32_t addr, base, limit;
uint16_t desc, sel;
uint8_t access;
switch (rmdat & 0x38)
{
case 0x00: /*SLDT*/
if (cpu_mod != 3)
SEG_CHECK_WRITE(cpu_state.ea_seg);
seteaw(ldt.seg);
CLOCK_CYCLES(4);
PREFETCH_RUN(4, 2, rmdat, 0,0,(cpu_mod == 3) ? 0:1,0, ea32);
break;
case 0x08: /*STR*/
if (cpu_mod != 3)
SEG_CHECK_WRITE(cpu_state.ea_seg);
seteaw(tr.seg);
CLOCK_CYCLES(4);
PREFETCH_RUN(4, 2, rmdat, 0,0,(cpu_mod == 3) ? 0:1,0, ea32);
break;
case 0x10: /*LLDT*/
if ((CPL || cpu_state.eflags&VM_FLAG) && (cr0&1))
{
x86gpf(NULL,0);
return 1;
}
if (cpu_mod != 3)
SEG_CHECK_READ(cpu_state.ea_seg);
sel = geteaw(); if (cpu_state.abrt) return 1;
addr = (sel & ~7) + gdt.base;
limit = readmemw(0, addr) + ((readmemb(0, addr + 6) & 0xf) << 16);
base = (readmemw(0, addr + 2)) | (readmemb(0, addr + 4) << 16) | (readmemb(0, addr + 7) << 24);
access = readmemb(0, addr + 5);
granularity = readmemb(0, addr + 6) & 0x80;
if (cpu_state.abrt) return 1;
ldt.limit = limit;
ldt.access = access;
if (granularity)
{
ldt.limit <<= 12;
ldt.limit |= 0xfff;
}
ldt.base = base;
ldt.seg = sel;
CLOCK_CYCLES(20);
PREFETCH_RUN(20, 2, rmdat, (cpu_mod == 3) ? 0:1,2,0,0, ea32);
break;
case 0x18: /*LTR*/
if ((CPL || cpu_state.eflags&VM_FLAG) && (cr0&1))
{
x86gpf(NULL,0);
break;
}
if (cpu_mod != 3)
SEG_CHECK_READ(cpu_state.ea_seg);
sel = geteaw(); if (cpu_state.abrt) return 1;
addr = (sel & ~7) + gdt.base;
limit = readmemw(0, addr) + ((readmemb(0, addr + 6) & 0xf) << 16);
base = (readmemw(0, addr + 2)) | (readmemb(0, addr + 4) << 16) | (readmemb(0, addr + 7) << 24);
access = readmemb(0, addr + 5);
granularity = readmemb(0, addr + 6) & 0x80;
if (cpu_state.abrt) return 1;
access |= 2;
writememb(0, addr + 5, access);
if (cpu_state.abrt) return 1;
tr.seg = sel;
tr.limit = limit;
tr.access = access;
if (granularity)
{
tr.limit <<= 12;
tr.limit |= 0xFFF;
}
tr.base = base;
CLOCK_CYCLES(20);
PREFETCH_RUN(20, 2, rmdat, (cpu_mod == 3) ? 0:1,2,0,0, ea32);
break;
case 0x20: /*VERR*/
if (cpu_mod != 3)
SEG_CHECK_READ(cpu_state.ea_seg);
sel = geteaw(); if (cpu_state.abrt) return 1;
flags_rebuild();
cpu_state.flags &= ~Z_FLAG;
if (!(sel & 0xfffc)) return 0; /*Null selector*/
cpl_override = 1;
valid = (sel & ~7) < ((sel & 4) ? ldt.limit : gdt.limit);
desc = readmemw(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7) + 4);
cpl_override = 0; if (cpu_state.abrt) return 1;
if (!(desc & 0x1000)) valid = 0;
if ((desc & 0xC00) != 0xC00) /*Exclude conforming code segments*/
{
dpl = (desc >> 13) & 3; /*Check permissions*/
if (dpl < CPL || dpl < (sel & 3)) valid = 0;
}
if ((desc & 0x0800) && !(desc & 0x0200)) valid = 0; /*Non-readable code*/
if (valid) cpu_state.flags |= Z_FLAG;
CLOCK_CYCLES(20);
PREFETCH_RUN(20, 2, rmdat, (cpu_mod == 3) ? 1:2,0,0,0, ea32);
break;
case 0x28: /*VERW*/
if (cpu_mod != 3)
SEG_CHECK_READ(cpu_state.ea_seg);
sel = geteaw(); if (cpu_state.abrt) return 1;
flags_rebuild();
cpu_state.flags &= ~Z_FLAG;
if (!(sel & 0xfffc)) return 0; /*Null selector*/
cpl_override = 1;
valid = (sel & ~7) < ((sel & 4) ? ldt.limit : gdt.limit);
desc = readmemw(0, ((sel & 4) ? ldt.base : gdt.base) + (sel & ~7) + 4);
cpl_override = 0; if (cpu_state.abrt) return 1;
if (!(desc & 0x1000)) valid = 0;
dpl = (desc >> 13) & 3; /*Check permissions*/
if (dpl < CPL || dpl < (sel & 3)) valid = 0;
if (desc & 0x0800) valid = 0; /*Code*/
if (!(desc & 0x0200)) valid = 0; /*Read-only data*/
if (valid) cpu_state.flags |= Z_FLAG;
CLOCK_CYCLES(20);
PREFETCH_RUN(20, 2, rmdat, (cpu_mod == 3) ? 1:2,0,0,0, ea32);
break;
default:
cpu_state.pc -= 3;
x86illegal();
break;
}
return cpu_state.abrt;
}
static int op0F00_a16(uint32_t fetchdat)
{
NOTRM
fetch_ea_16(fetchdat);
return op0F00_common(fetchdat, 0);
}
static int op0F00_a32(uint32_t fetchdat)
{
NOTRM
fetch_ea_32(fetchdat);
return op0F00_common(fetchdat, 1);
}
static int op0F01_common(uint32_t fetchdat, int is32, int is286, int ea32)
{
uint32_t base;
uint16_t limit, tempw;
switch (rmdat & 0x38)
{
case 0x00: /*SGDT*/
if (cpu_mod != 3)
SEG_CHECK_WRITE(cpu_state.ea_seg);
seteaw(gdt.limit);
base = gdt.base; //is32 ? gdt.base : (gdt.base & 0xffffff);
if (is286)
base |= 0xff000000;
writememl(easeg, cpu_state.eaaddr + 2, base);
CLOCK_CYCLES(7);
PREFETCH_RUN(7, 2, rmdat, 0,0,1,1, ea32);
break;
case 0x08: /*SIDT*/
if (cpu_mod != 3)
SEG_CHECK_WRITE(cpu_state.ea_seg);
seteaw(idt.limit);
base = idt.base;
if (is286)
base |= 0xff000000;
writememl(easeg, cpu_state.eaaddr + 2, base);
CLOCK_CYCLES(7);
PREFETCH_RUN(7, 2, rmdat, 0,0,1,1, ea32);
break;
case 0x10: /*LGDT*/
if ((CPL || cpu_state.eflags&VM_FLAG) && (cr0&1))
{
x86gpf(NULL,0);
break;
}
if (cpu_mod != 3)
SEG_CHECK_READ(cpu_state.ea_seg);
limit = geteaw();
base = readmeml(0, easeg + cpu_state.eaaddr + 2); if (cpu_state.abrt) return 1;
gdt.limit = limit;
gdt.base = base;
if (!is32) gdt.base &= 0xffffff;
CLOCK_CYCLES(11);
PREFETCH_RUN(11, 2, rmdat, 1,1,0,0, ea32);
break;
case 0x18: /*LIDT*/
if ((CPL || cpu_state.eflags&VM_FLAG) && (cr0&1))
{
x86gpf(NULL,0);
break;
}
if (cpu_mod != 3)
SEG_CHECK_READ(cpu_state.ea_seg);
limit = geteaw();
base = readmeml(0, easeg + cpu_state.eaaddr + 2); if (cpu_state.abrt) return 1;
idt.limit = limit;
idt.base = base;
if (!is32) idt.base &= 0xffffff;
CLOCK_CYCLES(11);
PREFETCH_RUN(11, 2, rmdat, 1,1,0,0, ea32);
break;
case 0x20: /*SMSW*/
if (cpu_mod != 3)
SEG_CHECK_WRITE(cpu_state.ea_seg);
if (is486 || isibm486) seteaw(msw);
else if (is386) seteaw(msw | 0xFF00);
else seteaw(msw | 0xFFF0);
CLOCK_CYCLES(2);
PREFETCH_RUN(2, 2, rmdat, 0,0,(cpu_mod == 3) ? 0:1,0, ea32);
break;
case 0x30: /*LMSW*/
if ((CPL || cpu_state.eflags&VM_FLAG) && (msw&1))
{
x86gpf(NULL, 0);
break;
}
if (cpu_mod != 3)
SEG_CHECK_READ(cpu_state.ea_seg);
tempw = geteaw(); if (cpu_state.abrt) return 1;
if (msw & 1) tempw |= 1;
if (is386)
{
tempw &= ~0x10;
tempw |= (msw & 0x10);
}
else tempw &= 0xF;
msw = tempw;
if (msw & 1)
cpu_cur_status |= CPU_STATUS_PMODE;
else
cpu_cur_status &= ~CPU_STATUS_PMODE;
PREFETCH_RUN(2, 2, rmdat, 0,0,(cpu_mod == 3) ? 0:1,0, ea32);
break;
case 0x38: /*INVLPG*/
if (is486 || isibm486)
{
if ((CPL || cpu_state.eflags&VM_FLAG) && (cr0&1))
{
x86gpf(NULL, 0);
break;
}
SEG_CHECK_READ(cpu_state.ea_seg);
mmu_invalidate(ds + cpu_state.eaaddr);
CLOCK_CYCLES(12);
PREFETCH_RUN(12, 2, rmdat, 0,0,0,0, ea32);
break;
}
default:
cpu_state.pc -= 3;
x86illegal();
break;
}
return cpu_state.abrt;
}
static int op0F01_w_a16(uint32_t fetchdat)
{
fetch_ea_16(fetchdat);
return op0F01_common(fetchdat, 0, 0, 0);
}
static int op0F01_w_a32(uint32_t fetchdat)
{
fetch_ea_32(fetchdat);
return op0F01_common(fetchdat, 0, 0, 1);
}
static int op0F01_l_a16(uint32_t fetchdat)
{
fetch_ea_16(fetchdat);
return op0F01_common(fetchdat, 1, 0, 0);
}
static int op0F01_l_a32(uint32_t fetchdat)
{
fetch_ea_32(fetchdat);
return op0F01_common(fetchdat, 1, 0, 1);
}
static int op0F01_286(uint32_t fetchdat)
{
fetch_ea_16(fetchdat);
return op0F01_common(fetchdat, 0, 1, 0);
}