Files
86Box/src/video/vid_tgui9440.c
OBattler 48f7519495 Applied all applicable PCem commits (this includes adding the TGUI9400CXi);
Reverted the ATi 28800's emulation to PCem's.
2018-02-12 00:48:41 +01:00

1818 lines
61 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Trident TGUI9400CXi and TGUI9440 emulation.
*
* TGUI9400CXi has extended write modes, controlled by extended
* GDC registers :
*
* GDC[0x10] - Control
* bit 0 - pixel width (1 = 16 bit, 0 = 8 bit)
* bit 1 - mono->colour expansion (1 = enabled,
* 0 = disabled)
* bit 2 - mono->colour expansion transparency
* (1 = transparent, 0 = opaque)
* bit 3 - extended latch copy
* GDC[0x11] - Background colour (low byte)
* GDC[0x12] - Background colour (high byte)
* GDC[0x14] - Foreground colour (low byte)
* GDC[0x15] - Foreground colour (high byte)
* GDC[0x17] - Write mask (low byte)
* GDC[0x18] - Write mask (high byte)
*
* Mono->colour expansion will expand written data 8:1 to 8/16
* consecutive bytes.
* MSB is processed first. On word writes, low byte is processed
* first. 1 bits write foreground colour, 0 bits write background
* colour unless transparency is enabled.
* If the relevant bit is clear in the write mask then the data
* is not written.
*
* With 16-bit pixel width, each bit still expands to one byte,
* so the TGUI driver doubles up monochrome data.
*
* While there is room in the register map for three byte colours,
* I don't believe 24-bit colour is supported. The TGUI9440
* blitter has the same limitation.
*
* I don't think double word writes are supported.
*
* Extended latch copy uses an internal 16 byte latch. Reads load
* the latch, writing writes out 16 bytes. I don't think the
* access size or host data has any affect, but the Windows 3.1
* driver always reads bytes and write words of 0xffff.
*
* Version: @(#)vid_tgui9440.c 1.0.4 2018/02/12
*
* Authors: Sarah Walker, <http://pcem-emulator.co.uk/>
* Miran Grca, <mgrca8@gmail.com>
*
* Copyright 2008-2018 Sarah Walker.
* Copyright 2016-2018 Miran Grca.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <wchar.h>
#include "../86box.h"
#include "../io.h"
#include "../mem.h"
#include "../pci.h"
#include "../rom.h"
#include "../device.h"
#include "../cpu/cpu.h"
#include "../plat.h"
#include "video.h"
#include "vid_svga.h"
#include "vid_svga_render.h"
#include "vid_tkd8001_ramdac.h"
#include "vid_tgui9440.h"
/*TGUI9400CXi has extended write modes, controlled by extended GDC registers :
GDC[0x10] - Control
bit 0 - pixel width (1 = 16 bit, 0 = 8 bit)
bit 1 - mono->colour expansion (1 = enabled, 0 = disabled)
bit 2 - mono->colour expansion transparency (1 = tranparent, 0 = opaque)
bit 3 - extended latch copy
GDC[0x11] - Background colour (low byte)
GDC[0x12] - Background colour (high byte)
GDC[0x14] - Foreground colour (low byte)
GDC[0x15] - Foreground colour (high byte)
GDC[0x17] - Write mask (low byte)
GDC[0x18] - Write mask (high byte)
Mono->colour expansion will expand written data 8:1 to 8/16 consecutive bytes.
MSB is processed first. On word writes, low byte is processed first. 1 bits write
foreground colour, 0 bits write background colour unless transparency is enabled.
If the relevant bit is clear in the write mask then the data is not written.
With 16-bit pixel width, each bit still expands to one byte, so the TGUI driver
doubles up monochrome data.
While there is room in the register map for three byte colours, I don't believe
24-bit colour is supported. The TGUI9440 blitter has the same limitation.
I don't think double word writes are supported.
Extended latch copy uses an internal 16 byte latch. Reads load the latch, writing
writes out 16 bytes. I don't think the access size or host data has any affect,
but the Windows 3.1 driver always reads bytes and write words of 0xffff.*/
#define EXT_CTRL_16BIT 0x01
#define EXT_CTRL_MONO_EXPANSION 0x02
#define EXT_CTRL_MONO_TRANSPARENT 0x04
#define EXT_CTRL_LATCH_COPY 0x08
#define FIFO_SIZE 65536
#define FIFO_MASK (FIFO_SIZE - 1)
#define FIFO_ENTRY_SIZE (1 << 31)
#define FIFO_ENTRIES (tgui->fifo_write_idx - tgui->fifo_read_idx)
#define FIFO_FULL ((tgui->fifo_write_idx - tgui->fifo_read_idx) >= FIFO_SIZE)
#define FIFO_EMPTY (tgui->fifo_read_idx == tgui->fifo_write_idx)
#define FIFO_TYPE 0xff000000
#define FIFO_ADDR 0x00ffffff
enum
{
TGUI_9400CXI = 0,
TGUI_9440
};
enum
{
FIFO_INVALID = (0x00 << 24),
FIFO_WRITE_BYTE = (0x01 << 24),
FIFO_WRITE_FB_BYTE = (0x04 << 24),
FIFO_WRITE_FB_WORD = (0x05 << 24),
FIFO_WRITE_FB_LONG = (0x06 << 24)
};
typedef struct
{
uint32_t addr_type;
uint32_t val;
} fifo_entry_t;
typedef struct tgui_t
{
mem_mapping_t linear_mapping;
mem_mapping_t accel_mapping;
rom_t bios_rom;
svga_t svga;
int pci;
tkd8001_ramdac_t ramdac; /*TGUI9400CXi*/
int type;
struct
{
uint16_t src_x, src_y;
uint16_t dst_x, dst_y;
uint16_t size_x, size_y;
uint16_t fg_col, bg_col;
uint8_t rop;
uint16_t flags;
uint8_t pattern[0x80];
int command;
int offset;
uint8_t ger22;
int x, y;
uint32_t src, dst, src_old, dst_old;
int pat_x, pat_y;
int use_src;
int pitch, bpp;
uint16_t tgui_pattern[8][8];
} accel;
uint8_t ext_gdc_regs[16]; /*TGUI9400CXi only*/
uint8_t copy_latch[16];
uint8_t tgui_3d8, tgui_3d9;
int oldmode;
uint8_t oldctrl1;
uint8_t oldctrl2,newctrl2;
uint32_t linear_base, linear_size;
int ramdac_state;
uint8_t ramdac_ctrl;
int clock_m, clock_n, clock_k;
uint32_t vram_size, vram_mask;
fifo_entry_t fifo[FIFO_SIZE];
volatile int fifo_read_idx, fifo_write_idx;
thread_t *fifo_thread;
event_t *wake_fifo_thread;
event_t *fifo_not_full_event;
int blitter_busy;
uint64_t blitter_time;
uint64_t status_time;
volatile int write_blitter;
} tgui_t;
void tgui_recalcmapping(tgui_t *tgui);
static void fifo_thread(void *param);
uint8_t tgui_accel_read(uint32_t addr, void *priv);
uint16_t tgui_accel_read_w(uint32_t addr, void *priv);
uint32_t tgui_accel_read_l(uint32_t addr, void *priv);
void tgui_accel_write(uint32_t addr, uint8_t val, void *priv);
void tgui_accel_write_w(uint32_t addr, uint16_t val, void *priv);
void tgui_accel_write_l(uint32_t addr, uint32_t val, void *priv);
void tgui_accel_write_fb_b(uint32_t addr, uint8_t val, void *priv);
void tgui_accel_write_fb_w(uint32_t addr, uint16_t val, void *priv);
void tgui_accel_write_fb_l(uint32_t addr, uint32_t val, void *priv);
static uint8_t tgui_ext_linear_read(uint32_t addr, void *p);
static void tgui_ext_linear_write(uint32_t addr, uint8_t val, void *p);
static void tgui_ext_linear_writew(uint32_t addr, uint16_t val, void *p);
static void tgui_ext_linear_writel(uint32_t addr, uint32_t val, void *p);
static uint8_t tgui_ext_read(uint32_t addr, void *p);
static void tgui_ext_write(uint32_t addr, uint8_t val, void *p);
static void tgui_ext_writew(uint32_t addr, uint16_t val, void *p);
static void tgui_ext_writel(uint32_t addr, uint32_t val, void *p);
void tgui_out(uint16_t addr, uint8_t val, void *p)
{
tgui_t *tgui = (tgui_t *)p;
svga_t *svga = &tgui->svga;
uint8_t old;
if (((addr&0xFFF0) == 0x3D0 || (addr&0xFFF0) == 0x3B0) && !(svga->miscout & 1)) addr ^= 0x60;
switch (addr)
{
case 0x3C5:
switch (svga->seqaddr & 0xf)
{
case 0xB:
tgui->oldmode=1;
break;
case 0xC:
if (svga->seqregs[0xe] & 0x80)
svga->seqregs[0xc] = val;
break;
case 0xd:
if (tgui->oldmode)
tgui->oldctrl2 = val;
else
tgui->newctrl2=val;
break;
case 0xE:
if (tgui->oldmode)
tgui->oldctrl1 = val;
else
{
svga->seqregs[0xe] = val ^ 2;
svga->write_bank = (svga->seqregs[0xe] & 0xf) * 65536;
if (!(svga->gdcreg[0xf] & 1))
svga->read_bank = svga->write_bank;
}
return;
}
break;
case 0x3C6:
if (tgui->type == TGUI_9400CXI)
{
tkd8001_ramdac_out(addr, val, &tgui->ramdac, svga);
return;
}
if (tgui->ramdac_state == 4)
{
tgui->ramdac_state = 0;
tgui->ramdac_ctrl = val;
switch (tgui->ramdac_ctrl & 0xf0)
{
case 0x10:
svga->bpp = 15;
break;
case 0x30:
svga->bpp = 16;
break;
case 0xd0:
svga->bpp = 24;
break;
default:
svga->bpp = 8;
break;
}
return;
}
case 0x3C7: case 0x3C8: case 0x3C9:
if (tgui->type == TGUI_9400CXI)
{
tkd8001_ramdac_out(addr, val, &tgui->ramdac, svga);
return;
}
tgui->ramdac_state = 0;
break;
case 0x3CF:
if (tgui->type == TGUI_9400CXI && svga->gdcaddr >= 16 && svga->gdcaddr < 32)
{
old = tgui->ext_gdc_regs[svga->gdcaddr & 15];
tgui->ext_gdc_regs[svga->gdcaddr & 15] = val;
if (svga->gdcaddr == 16)
tgui_recalcmapping(tgui);
return;
}
switch (svga->gdcaddr & 15)
{
case 0x6:
if (svga->gdcreg[6] != val)
{
svga->gdcreg[6] = val;
tgui_recalcmapping(tgui);
}
return;
case 0xE:
svga->gdcreg[0xe] = val ^ 2;
if ((svga->gdcreg[0xf] & 1) == 1)
svga->read_bank = (svga->gdcreg[0xe] & 0xf) * 65536;
break;
case 0xF:
if (val & 1) svga->read_bank = (svga->gdcreg[0xe] & 0xf) *65536;
else svga->read_bank = (svga->seqregs[0xe] & 0xf) *65536;
svga->write_bank = (svga->seqregs[0xe] & 0xf) * 65536;
break;
}
break;
case 0x3D4:
svga->crtcreg = val & 0x7f;
return;
case 0x3D5:
if ((svga->crtcreg < 7) && (svga->crtc[0x11] & 0x80))
return;
if ((svga->crtcreg == 7) && (svga->crtc[0x11] & 0x80))
val = (svga->crtc[7] & ~0x10) | (val & 0x10);
old = svga->crtc[svga->crtcreg];
svga->crtc[svga->crtcreg] = val;
if (old != val)
{
if (svga->crtcreg < 0xE || svga->crtcreg > 0x10)
{
svga->fullchange = changeframecount;
svga_recalctimings(svga);
}
}
switch (svga->crtcreg)
{
case 0x21:
if (old != val)
{
if (!tgui->pci)
{
tgui->linear_base = ((val & 0xf) | ((val >> 2) & 0x30)) << 20;
tgui->linear_size = (val & 0x10) ? 0x200000 : 0x100000;
tgui->svga.decode_mask = (val & 0x10) ? 0x1fffff : 0xfffff;
}
tgui_recalcmapping(tgui);
}
break;
case 0x40: case 0x41: case 0x42: case 0x43:
case 0x44: case 0x45: case 0x46: case 0x47:
if (tgui->type >= TGUI_9440)
{
svga->hwcursor.x = (svga->crtc[0x40] | (svga->crtc[0x41] << 8)) & 0x7ff;
svga->hwcursor.y = (svga->crtc[0x42] | (svga->crtc[0x43] << 8)) & 0x7ff;
svga->hwcursor.xoff = svga->crtc[0x46] & 0x3f;
svga->hwcursor.yoff = svga->crtc[0x47] & 0x3f;
svga->hwcursor.addr = (svga->crtc[0x44] << 10) | ((svga->crtc[0x45] & 0x7) << 18) | (svga->hwcursor.yoff * 8);
}
break;
case 0x50:
if (tgui->type >= TGUI_9440)
{
svga->hwcursor.ena = val & 0x80;
svga->hwcursor.xsize = (val & 1) ? 64 : 32;
svga->hwcursor.ysize = (val & 1) ? 64 : 32;
}
break;
}
return;
case 0x3D8:
tgui->tgui_3d8 = val;
if (svga->gdcreg[0xf] & 4)
{
svga->write_bank = (val & 0x1f) * 65536;
if (!(svga->gdcreg[0xf] & 1))
svga->read_bank = (val & 0x1f) * 65536;
}
return;
case 0x3D9:
tgui->tgui_3d9 = val;
if ((svga->gdcreg[0xf] & 5) == 5)
svga->read_bank = (val & 0x1F) * 65536;
return;
case 0x43c8:
tgui->clock_n = val & 0x7f;
tgui->clock_m = (tgui->clock_m & ~1) | (val >> 7);
break;
case 0x43c9:
tgui->clock_m = (tgui->clock_m & ~0x1e) | ((val << 1) & 0x1e);
tgui->clock_k = (val & 0x10) >> 4;
break;
}
svga_out(addr, val, svga);
}
uint8_t tgui_in(uint16_t addr, void *p)
{
tgui_t *tgui = (tgui_t *)p;
svga_t *svga = &tgui->svga;
if (((addr&0xFFF0) == 0x3D0 || (addr&0xFFF0) == 0x3B0) && !(svga->miscout & 1)) addr ^= 0x60;
switch (addr)
{
case 0x3C5:
if ((svga->seqaddr & 0xf) == 0xb)
{
tgui->oldmode = 0;
switch (tgui->type)
{
case TGUI_9400CXI:
return 0x93; /*TGUI9400CXi*/
case TGUI_9440:
return 0xe3; /*TGUI9440AGi*/
}
}
if ((svga->seqaddr & 0xf) == 0xd)
{
if (tgui->oldmode)
return tgui->oldctrl2;
return tgui->newctrl2;
}
if ((svga->seqaddr & 0xf) == 0xe)
{
if (tgui->oldmode)
return tgui->oldctrl1;
}
break;
case 0x3C6:
if (tgui->type == TGUI_9400CXI)
return tkd8001_ramdac_in(addr, &tgui->ramdac, svga);
if (tgui->ramdac_state == 4)
return tgui->ramdac_ctrl;
tgui->ramdac_state++;
break;
case 0x3C7: case 0x3C8: case 0x3C9:
if (tgui->type == TGUI_9400CXI)
return tkd8001_ramdac_in(addr, &tgui->ramdac, svga);
tgui->ramdac_state = 0;
break;
case 0x3CF:
if (tgui->type == TGUI_9400CXI && svga->gdcaddr >= 16 && svga->gdcaddr < 32)
return tgui->ext_gdc_regs[svga->gdcaddr & 15];
break;
case 0x3D4:
return svga->crtcreg;
case 0x3D5:
return svga->crtc[svga->crtcreg];
case 0x3d8:
return tgui->tgui_3d8;
case 0x3d9:
return tgui->tgui_3d9;
}
return svga_in(addr, svga);
}
void tgui_recalctimings(svga_t *svga)
{
tgui_t *tgui = (tgui_t *)svga->p;
if (svga->crtc[0x29] & 0x10)
svga->rowoffset += 0x100;
if (tgui->type >= TGUI_9440 && svga->bpp == 24)
svga->hdisp = (svga->crtc[1] + 1) * 8;
if ((svga->crtc[0x1e] & 0xA0) == 0xA0) svga->ma_latch |= 0x10000;
if ((svga->crtc[0x27] & 0x01) == 0x01) svga->ma_latch |= 0x20000;
if ((svga->crtc[0x27] & 0x02) == 0x02) svga->ma_latch |= 0x40000;
if (tgui->oldctrl2 & 0x10)
svga->rowoffset <<= 1;
if ((tgui->oldctrl2 & 0x10) || (svga->crtc[0x2a] & 0x40))
svga->ma_latch <<= 1;
if (tgui->oldctrl2 & 0x10) /*I'm not convinced this is the right register for this function*/
svga->lowres=0;
svga->lowres = !(svga->crtc[0x2a] & 0x40);
svga->interlace = svga->crtc[0x1e] & 4;
if (svga->interlace && tgui->type < TGUI_9440)
svga->rowoffset >>= 1;
if (svga->crtc[0x17] & 4)
{
svga->vtotal *= 2;
svga->dispend *= 2;
svga->vsyncstart *= 2;
svga->split *= 2;
svga->vblankstart *= 2;
}
if (tgui->type >= TGUI_9440)
{
if (svga->miscout & 8)
svga->clock = cpuclock / (((tgui->clock_n + 8) * 14318180.0) / ((tgui->clock_m + 2) * (1 << tgui->clock_k)));
if (svga->gdcreg[0xf] & 0x08)
svga->clock *= 2;
else if (svga->gdcreg[0xf] & 0x40)
svga->clock *= 3;
}
else
{
switch (((svga->miscout >> 2) & 3) | ((tgui->newctrl2 << 2) & 4) | ((tgui->newctrl2 >> 3) & 8))
{
case 0x02: svga->clock = cpuclock/ 44900000.0; break;
case 0x03: svga->clock = cpuclock/ 36000000.0; break;
case 0x04: svga->clock = cpuclock/ 57272000.0; break;
case 0x05: svga->clock = cpuclock/ 65000000.0; break;
case 0x06: svga->clock = cpuclock/ 50350000.0; break;
case 0x07: svga->clock = cpuclock/ 40000000.0; break;
case 0x08: svga->clock = cpuclock/ 88000000.0; break;
case 0x09: svga->clock = cpuclock/ 98000000.0; break;
case 0x0a: svga->clock = cpuclock/118800000.0; break;
case 0x0b: svga->clock = cpuclock/108000000.0; break;
case 0x0c: svga->clock = cpuclock/ 72000000.0; break;
case 0x0d: svga->clock = cpuclock/ 77000000.0; break;
case 0x0e: svga->clock = cpuclock/ 80000000.0; break;
case 0x0f: svga->clock = cpuclock/ 75000000.0; break;
}
if (svga->gdcreg[0xf] & 0x08)
{
svga->htotal *= 2;
svga->hdisp *= 2;
svga->hdisp_time *= 2;
}
}
if ((tgui->oldctrl2 & 0x10) || (svga->crtc[0x2a] & 0x40))
{
switch (svga->bpp)
{
case 8:
svga->render = svga_render_8bpp_highres;
break;
case 15:
svga->render = svga_render_15bpp_highres;
if (tgui->type < TGUI_9440)
svga->hdisp /= 2;
break;
case 16:
svga->render = svga_render_16bpp_highres;
if (tgui->type < TGUI_9440)
svga->hdisp /= 2;
break;
case 24:
svga->render = svga_render_24bpp_highres;
if (tgui->type < TGUI_9440)
svga->hdisp = (svga->hdisp * 2) / 3;
break;
}
}
}
void tgui_recalcmapping(tgui_t *tgui)
{
svga_t *svga = &tgui->svga;
if (tgui->type == TGUI_9400CXI)
{
if (tgui->ext_gdc_regs[0] & EXT_CTRL_LATCH_COPY)
{
mem_mapping_set_handler(&tgui->linear_mapping,
tgui_ext_linear_read, NULL, NULL,
tgui_ext_linear_write, tgui_ext_linear_writew, tgui_ext_linear_writel);
mem_mapping_set_handler(&svga->mapping,
tgui_ext_read, NULL, NULL,
tgui_ext_write, tgui_ext_writew, tgui_ext_writel);
}
else if (tgui->ext_gdc_regs[0] & EXT_CTRL_MONO_EXPANSION)
{
mem_mapping_set_handler(&tgui->linear_mapping,
svga_read_linear, svga_readw_linear, svga_readl_linear,
tgui_ext_linear_write, tgui_ext_linear_writew, tgui_ext_linear_writel);
mem_mapping_set_handler(&svga->mapping,
svga_read, svga_readw, svga_readl,
tgui_ext_write, tgui_ext_writew, tgui_ext_writel);
}
else
{
mem_mapping_set_handler(&tgui->linear_mapping,
svga_read_linear, svga_readw_linear, svga_readl_linear,
svga_write_linear, svga_writew_linear, svga_writel_linear);
mem_mapping_set_handler(&svga->mapping,
svga_read, svga_readw, svga_readl,
svga_write, svga_writew, svga_writel);
}
}
if (svga->crtc[0x21] & 0x20)
{
mem_mapping_disable(&svga->mapping);
mem_mapping_set_addr(&tgui->linear_mapping, tgui->linear_base, tgui->linear_size);
if (tgui->type >= TGUI_9440)
{
mem_mapping_enable(&tgui->accel_mapping);
mem_mapping_disable(&svga->mapping);
}
else
{
switch (svga->gdcreg[6] & 0xC)
{
case 0x0: /*128k at A0000*/
mem_mapping_set_addr(&svga->mapping, 0xa0000, 0x20000);
svga->banked_mask = 0xffff;
break;
case 0x4: /*64k at A0000*/
mem_mapping_set_addr(&svga->mapping, 0xa0000, 0x10000);
svga->banked_mask = 0xffff;
break;
case 0x8: /*32k at B0000*/
mem_mapping_set_addr(&svga->mapping, 0xb0000, 0x08000);
svga->banked_mask = 0x7fff;
break;
case 0xC: /*32k at B8000*/
mem_mapping_set_addr(&svga->mapping, 0xb8000, 0x08000);
svga->banked_mask = 0x7fff;
break;
}
}
}
else
{
mem_mapping_disable(&tgui->linear_mapping);
mem_mapping_disable(&tgui->accel_mapping);
switch (svga->gdcreg[6] & 0xC)
{
case 0x0: /*128k at A0000*/
mem_mapping_set_addr(&svga->mapping, 0xa0000, 0x20000);
svga->banked_mask = 0xffff;
break;
case 0x4: /*64k at A0000*/
mem_mapping_set_addr(&svga->mapping, 0xa0000, 0x10000);
mem_mapping_enable(&tgui->accel_mapping);
svga->banked_mask = 0xffff;
break;
case 0x8: /*32k at B0000*/
mem_mapping_set_addr(&svga->mapping, 0xb0000, 0x08000);
svga->banked_mask = 0x7fff;
break;
case 0xC: /*32k at B8000*/
mem_mapping_set_addr(&svga->mapping, 0xb8000, 0x08000);
svga->banked_mask = 0x7fff;
break;
}
}
}
void tgui_hwcursor_draw(svga_t *svga, int displine)
{
uint32_t dat[2];
int xx;
int offset = svga->hwcursor_latch.x - svga->hwcursor_latch.xoff;
if (svga->interlace && svga->hwcursor_oddeven)
svga->hwcursor_latch.addr += 8;
dat[0] = (svga->vram[svga->hwcursor_latch.addr] << 24) | (svga->vram[svga->hwcursor_latch.addr + 1] << 16) | (svga->vram[svga->hwcursor_latch.addr + 2] << 8) | svga->vram[svga->hwcursor_latch.addr + 3];
dat[1] = (svga->vram[svga->hwcursor_latch.addr + 4] << 24) | (svga->vram[svga->hwcursor_latch.addr + 5] << 16) | (svga->vram[svga->hwcursor_latch.addr + 6] << 8) | svga->vram[svga->hwcursor_latch.addr + 7];
for (xx = 0; xx < 32; xx++)
{
if (offset >= svga->hwcursor_latch.x)
{
if (!(dat[0] & 0x80000000))
((uint32_t *)buffer32->line[displine])[offset + 32] = (dat[1] & 0x80000000) ? 0xffffff : 0;
else if (dat[1] & 0x80000000)
((uint32_t *)buffer32->line[displine])[offset + 32] ^= 0xffffff;
}
offset++;
dat[0] <<= 1;
dat[1] <<= 1;
}
svga->hwcursor_latch.addr += 8;
if (svga->interlace && !svga->hwcursor_oddeven)
svga->hwcursor_latch.addr += 8;
}
uint8_t tgui_pci_read(int func, int addr, void *p)
{
tgui_t *tgui = (tgui_t *)p;
switch (addr)
{
case 0x00: return 0x23; /*Trident*/
case 0x01: return 0x10;
case 0x02: return 0x40; /*TGUI9440 (9682)*/
case 0x03: return 0x94;
case 0x04: return 0x03; /*Respond to IO and memory accesses*/
case 0x07: return 1 << 1; /*Medium DEVSEL timing*/
case 0x08: return 0; /*Revision ID*/
case 0x09: return 0; /*Programming interface*/
case 0x0a: return 0x01; /*Supports VGA interface, XGA compatible*/
case 0x0b: return 0x03;
case 0x10: return 0x00; /*Linear frame buffer address*/
case 0x11: return 0x00;
case 0x12: return tgui->linear_base >> 16;
case 0x13: return tgui->linear_base >> 24;
case 0x30: return 0x01; /*BIOS ROM address*/
case 0x31: return 0x00;
case 0x32: return 0x0C;
case 0x33: return 0x00;
}
return 0;
}
void tgui_pci_write(int func, int addr, uint8_t val, void *p)
{
tgui_t *tgui = (tgui_t *)p;
svga_t *svga = &tgui->svga;
switch (addr)
{
case 0x12:
tgui->linear_base = (tgui->linear_base & 0xff000000) | ((val & 0xe0) << 16);
tgui->linear_size = 2 << 20;
tgui->svga.decode_mask = 0x1fffff;
svga->crtc[0x21] = (svga->crtc[0x21] & ~0xf) | (val >> 4);
tgui_recalcmapping(tgui);
break;
case 0x13:
tgui->linear_base = (tgui->linear_base & 0xe00000) | (val << 24);
tgui->linear_size = 2 << 20;
tgui->svga.decode_mask = 0x1fffff;
svga->crtc[0x21] = (svga->crtc[0x21] & ~0xc0) | (val >> 6);
tgui_recalcmapping(tgui);
break;
}
}
static void *tgui_init(device_t *info, wchar_t *bios_fn, int type)
{
tgui_t *tgui = malloc(sizeof(tgui_t));
memset(tgui, 0, sizeof(tgui_t));
tgui->vram_size = device_get_config_int("memory") << 20;
tgui->vram_mask = tgui->vram_size - 1;
tgui->type = type;
tgui->pci = !!(info->flags & DEVICE_PCI);
rom_init(&tgui->bios_rom, bios_fn, 0xc0000, 0x8000, 0x7fff, 0, MEM_MAPPING_EXTERNAL);
svga_init(&tgui->svga, tgui, tgui->vram_size,
tgui_recalctimings,
tgui_in, tgui_out,
tgui_hwcursor_draw,
NULL);
mem_mapping_add(&tgui->linear_mapping, 0, 0, svga_read_linear, svga_readw_linear, svga_readl_linear, tgui_accel_write_fb_b, tgui_accel_write_fb_w, tgui_accel_write_fb_l, NULL, 0, &tgui->svga);
mem_mapping_add(&tgui->accel_mapping, 0xbc000, 0x4000, tgui_accel_read, tgui_accel_read_w, tgui_accel_read_l, tgui_accel_write, tgui_accel_write_w, tgui_accel_write_l, NULL, 0, tgui);
mem_mapping_disable(&tgui->accel_mapping);
io_sethandler(0x03c0, 0x0020, tgui_in, NULL, NULL, tgui_out, NULL, NULL, tgui);
if (tgui->type >= TGUI_9440)
io_sethandler(0x43c8, 0x0002, tgui_in, NULL, NULL, tgui_out, NULL, NULL, tgui);
if ((info->flags & DEVICE_PCI) && (tgui->type >= TGUI_9440))
pci_add_card(PCI_ADD_VIDEO, tgui_pci_read, tgui_pci_write, tgui);
tgui->wake_fifo_thread = thread_create_event();
tgui->fifo_not_full_event = thread_create_event();
tgui->fifo_thread = thread_create(fifo_thread, tgui);
return tgui;
}
static void *tgui9400cxi_init(device_t *info)
{
return tgui_init(info, L"roms/video/tgui9440/9400CXI.vbi", TGUI_9400CXI);
}
static void *tgui9440_init(device_t *info)
{
return tgui_init(info, L"roms/video/tgui9440/9440.vbi", TGUI_9440);
}
static int tgui9400cxi_available()
{
return rom_present(L"roms/video/tgui9440/9400CXI.vbi");
}
static int tgui9440_available()
{
return rom_present(L"roms/video/tgui9440/9440.vbi");
}
void tgui_close(void *p)
{
tgui_t *tgui = (tgui_t *)p;
svga_close(&tgui->svga);
thread_kill(tgui->fifo_thread);
thread_destroy_event(tgui->wake_fifo_thread);
thread_destroy_event(tgui->fifo_not_full_event);
free(tgui);
}
void tgui_speed_changed(void *p)
{
tgui_t *tgui = (tgui_t *)p;
svga_recalctimings(&tgui->svga);
}
void tgui_force_redraw(void *p)
{
tgui_t *tgui = (tgui_t *)p;
tgui->svga.fullchange = changeframecount;
}
static uint8_t tgui_ext_linear_read(uint32_t addr, void *p)
{
svga_t *svga = (svga_t *)p;
tgui_t *tgui = (tgui_t *)svga->p;
int c;
cycles -= video_timing_read_b;
cycles_lost += video_timing_read_b;
addr &= svga->decode_mask;
if (addr >= svga->vram_max)
return 0xff;
addr &= ~0xf;
for (c = 0; c < 16; c++)
tgui->copy_latch[c] = svga->vram[addr+c];
return svga->vram[addr & svga->vram_mask];
}
static uint8_t tgui_ext_read(uint32_t addr, void *p)
{
svga_t *svga = (svga_t *)p;
addr = (addr & svga->banked_mask) + svga->read_bank;
return tgui_ext_linear_read(addr, svga);
}
static void tgui_ext_linear_write(uint32_t addr, uint8_t val, void *p)
{
svga_t *svga = (svga_t *)p;
tgui_t *tgui = (tgui_t *)svga->p;
int c;
uint8_t fg[2] = {tgui->ext_gdc_regs[4], tgui->ext_gdc_regs[5]};
uint8_t bg[2] = {tgui->ext_gdc_regs[1], tgui->ext_gdc_regs[2]};
uint8_t mask = tgui->ext_gdc_regs[7];
cycles -= video_timing_write_b;
cycles_lost += video_timing_write_b;
addr &= svga->decode_mask;
if (addr >= svga->vram_max)
return;
addr &= svga->vram_mask;
addr &= ~0x7;
svga->changedvram[addr >> 12] = changeframecount;
switch (tgui->ext_gdc_regs[0] & 0xf)
{
/*8-bit mono->colour expansion, unmasked*/
case 2:
for (c = 7; c >= 0; c--)
{
if (mask & (1 << c))
*(uint8_t *)&svga->vram[addr] = (val & (1 << c)) ? fg[0] : bg[0];
addr++;
}
break;
/*16-bit mono->colour expansion, unmasked*/
case 3:
for (c = 7; c >= 0; c--)
{
if (mask & (1 << c))
*(uint8_t *)&svga->vram[addr] = (val & (1 << c)) ? fg[(c & 1) ^ 1] : bg[(c & 1) ^ 1];
addr++;
}
break;
/*8-bit mono->colour expansion, masked*/
case 6:
for (c = 7; c >= 0; c--)
{
if ((val & mask) & (1 << c))
*(uint8_t *)&svga->vram[addr] = fg[0];
addr++;
}
break;
/*16-bit mono->colour expansion, masked*/
case 7:
for (c = 7; c >= 0; c--)
{
if ((val & mask) & (1 << c))
*(uint8_t *)&svga->vram[addr] = fg[(c & 1) ^ 1];
addr++;
}
break;
case 0x8: case 0x9: case 0xa: case 0xb:
case 0xc: case 0xd: case 0xe: case 0xf:
addr &= ~0xf;
for (c = 0; c < 16; c++)
*(uint8_t *)&svga->vram[addr+c] = tgui->copy_latch[c];
break;
}
}
static void tgui_ext_linear_writew(uint32_t addr, uint16_t val, void *p)
{
svga_t *svga = (svga_t *)p;
tgui_t *tgui = (tgui_t *)svga->p;
int c;
uint8_t fg[2] = {tgui->ext_gdc_regs[4], tgui->ext_gdc_regs[5]};
uint8_t bg[2] = {tgui->ext_gdc_regs[1], tgui->ext_gdc_regs[2]};
uint16_t mask = (tgui->ext_gdc_regs[7] << 8) | tgui->ext_gdc_regs[8];
cycles -= video_timing_write_w;
cycles_lost += video_timing_write_w;
addr &= svga->decode_mask;
if (addr >= svga->vram_max)
return;
addr &= svga->vram_mask;
addr &= ~0xf;
svga->changedvram[addr >> 12] = changeframecount;
val = (val >> 8) | (val << 8);
switch (tgui->ext_gdc_regs[0] & 0xf)
{
/*8-bit mono->colour expansion, unmasked*/
case 2:
for (c = 15; c >= 0; c--)
{
if (mask & (1 << c))
*(uint8_t *)&svga->vram[addr] = (val & (1 << c)) ? fg[0] : bg[0];
addr++;
}
break;
/*16-bit mono->colour expansion, unmasked*/
case 3:
for (c = 15; c >= 0; c--)
{
if (mask & (1 << c))
*(uint8_t *)&svga->vram[addr] = (val & (1 << c)) ? fg[(c & 1) ^ 1] : bg[(c & 1) ^ 1];
addr++;
}
break;
/*8-bit mono->colour expansion, masked*/
case 6:
for (c = 15; c >= 0; c--)
{
if ((val & mask) & (1 << c))
*(uint8_t *)&svga->vram[addr] = fg[0];
addr++;
}
break;
/*16-bit mono->colour expansion, masked*/
case 7:
for (c = 15; c >= 0; c--)
{
if ((val & mask) & (1 << c))
*(uint8_t *)&svga->vram[addr] = fg[(c & 1) ^ 1];
addr++;
}
break;
case 0x8: case 0x9: case 0xa: case 0xb:
case 0xc: case 0xd: case 0xe: case 0xf:
for (c = 0; c < 16; c++)
*(uint8_t *)&svga->vram[addr+c] = tgui->copy_latch[c];
break;
}
}
static void tgui_ext_linear_writel(uint32_t addr, uint32_t val, void *p)
{
tgui_ext_linear_writew(addr, val, p);
}
static void tgui_ext_write(uint32_t addr, uint8_t val, void *p)
{
svga_t *svga = (svga_t *)p;
addr = (addr & svga->banked_mask) + svga->read_bank;
tgui_ext_linear_write(addr, val, svga);
}
static void tgui_ext_writew(uint32_t addr, uint16_t val, void *p)
{
svga_t *svga = (svga_t *)p;
addr = (addr & svga->banked_mask) + svga->read_bank;
tgui_ext_linear_writew(addr, val, svga);
}
static void tgui_ext_writel(uint32_t addr, uint32_t val, void *p)
{
svga_t *svga = (svga_t *)p;
addr = (addr & svga->banked_mask) + svga->read_bank;
tgui_ext_linear_writel(addr, val, svga);
}
enum
{
TGUI_BITBLT = 1
};
enum
{
TGUI_SRCCPU = 0,
TGUI_SRCDISP = 0x04, /*Source is from display*/
TGUI_PATMONO = 0x20, /*Pattern is monochrome and needs expansion*/
TGUI_SRCMONO = 0x40, /*Source is monochrome from CPU and needs expansion*/
TGUI_TRANSENA = 0x1000, /*Transparent (no draw when source == bg col)*/
TGUI_TRANSREV = 0x2000, /*Reverse fg/bg for transparent*/
TGUI_SOLIDFILL = 0x4000 /*Pattern all zero?*/
};
#define READ(addr, dat) if (tgui->accel.bpp == 0) dat = svga->vram[addr & 0x1fffff]; \
else dat = vram_w[addr & 0xfffff];
#define MIX() do \
{ \
out = 0; \
for (c=0;c<16;c++) \
{ \
d=(dst_dat & (1<<c)) ? 1:0; \
if (src_dat & (1<<c)) d|=2; \
if (pat_dat & (1<<c)) d|=4; \
if (tgui->accel.rop & (1<<d)) out|=(1<<c); \
} \
} while (0)
#define WRITE(addr, dat) if (tgui->accel.bpp == 0) \
{ \
svga->vram[addr & 0x1fffff] = dat; \
svga->changedvram[((addr) & 0x1fffff) >> 12] = changeframecount; \
} \
else \
{ \
vram_w[addr & 0xfffff] = dat; \
svga->changedvram[((addr) & 0xfffff) >> 11] = changeframecount; \
}
void tgui_accel_command(int count, uint32_t cpu_dat, tgui_t *tgui)
{
svga_t *svga = &tgui->svga;
int x, y;
int c, d;
uint16_t src_dat, dst_dat, pat_dat;
uint16_t out;
int xdir = (tgui->accel.flags & 0x200) ? -1 : 1;
int ydir = (tgui->accel.flags & 0x100) ? -1 : 1;
uint16_t trans_col = (tgui->accel.flags & TGUI_TRANSREV) ? tgui->accel.fg_col : tgui->accel.bg_col;
uint16_t *vram_w = (uint16_t *)svga->vram;
if (tgui->accel.bpp == 0)
trans_col &= 0xff;
if (count != -1 && !tgui->accel.x && (tgui->accel.flags & TGUI_SRCMONO))
{
count -= tgui->accel.offset;
cpu_dat <<= tgui->accel.offset;
}
if (count == -1)
{
tgui->accel.x = tgui->accel.y = 0;
}
if (tgui->accel.flags & TGUI_SOLIDFILL)
{
for (y = 0; y < 8; y++)
{
for (x = 0; x < 8; x++)
{
tgui->accel.tgui_pattern[y][x] = tgui->accel.fg_col;
}
}
}
else if (tgui->accel.flags & TGUI_PATMONO)
{
for (y = 0; y < 8; y++)
{
for (x = 0; x < 8; x++)
{
tgui->accel.tgui_pattern[y][x] = (tgui->accel.pattern[y] & (1 << x)) ? tgui->accel.fg_col : tgui->accel.bg_col;
}
}
}
else
{
if (tgui->accel.bpp == 0)
{
for (y = 0; y < 8; y++)
{
for (x = 0; x < 8; x++)
{
tgui->accel.tgui_pattern[y][x] = tgui->accel.pattern[x + y*8];
}
}
}
else
{
for (y = 0; y < 8; y++)
{
for (x = 0; x < 8; x++)
{
tgui->accel.tgui_pattern[y][x] = tgui->accel.pattern[x*2 + y*16] | (tgui->accel.pattern[x*2 + y*16 + 1] << 8);
}
}
}
}
switch (tgui->accel.command)
{
case TGUI_BITBLT:
if (count == -1)
{
tgui->accel.src = tgui->accel.src_old = tgui->accel.src_x + (tgui->accel.src_y * tgui->accel.pitch);
tgui->accel.dst = tgui->accel.dst_old = tgui->accel.dst_x + (tgui->accel.dst_y * tgui->accel.pitch);
tgui->accel.pat_x = tgui->accel.dst_x;
tgui->accel.pat_y = tgui->accel.dst_y;
}
switch (tgui->accel.flags & (TGUI_SRCMONO|TGUI_SRCDISP))
{
case TGUI_SRCCPU:
if (count == -1)
{
if (svga->crtc[0x21] & 0x20)
{
tgui->write_blitter = 1;
}
if (tgui->accel.use_src)
return;
}
else
count >>= 3;
while (count)
{
if (tgui->accel.bpp == 0)
{
src_dat = cpu_dat >> 24;
cpu_dat <<= 8;
}
else
{
src_dat = (cpu_dat >> 24) | ((cpu_dat >> 8) & 0xff00);
cpu_dat <<= 16;
count--;
}
READ(tgui->accel.dst, dst_dat);
pat_dat = tgui->accel.tgui_pattern[tgui->accel.pat_y & 7][tgui->accel.pat_x & 7];
if (!(tgui->accel.flags & TGUI_TRANSENA) || src_dat != trans_col)
{
MIX();
WRITE(tgui->accel.dst, out);
}
tgui->accel.src += xdir;
tgui->accel.dst += xdir;
tgui->accel.pat_x += xdir;
tgui->accel.x++;
if (tgui->accel.x > tgui->accel.size_x)
{
tgui->accel.x = 0;
tgui->accel.y++;
tgui->accel.pat_x = tgui->accel.dst_x;
tgui->accel.src = tgui->accel.src_old = tgui->accel.src_old + (ydir * tgui->accel.pitch);
tgui->accel.dst = tgui->accel.dst_old = tgui->accel.dst_old + (ydir * tgui->accel.pitch);
tgui->accel.pat_y += ydir;
if (tgui->accel.y > tgui->accel.size_y)
{
if (svga->crtc[0x21] & 0x20)
{
tgui->write_blitter = 0;
}
return;
}
if (tgui->accel.use_src)
return;
}
count--;
}
break;
case TGUI_SRCMONO | TGUI_SRCCPU:
if (count == -1)
{
if (svga->crtc[0x21] & 0x20)
tgui->write_blitter = 1;
if (tgui->accel.use_src)
return;
}
while (count)
{
src_dat = ((cpu_dat >> 31) ? tgui->accel.fg_col : tgui->accel.bg_col);
if (tgui->accel.bpp == 0)
src_dat &= 0xff;
READ(tgui->accel.dst, dst_dat);
pat_dat = tgui->accel.tgui_pattern[tgui->accel.pat_y & 7][tgui->accel.pat_x & 7];
if (!(tgui->accel.flags & TGUI_TRANSENA) || src_dat != trans_col)
{
MIX();
WRITE(tgui->accel.dst, out);
}
cpu_dat <<= 1;
tgui->accel.src += xdir;
tgui->accel.dst += xdir;
tgui->accel.pat_x += xdir;
tgui->accel.x++;
if (tgui->accel.x > tgui->accel.size_x)
{
tgui->accel.x = 0;
tgui->accel.y++;
tgui->accel.pat_x = tgui->accel.dst_x;
tgui->accel.src = tgui->accel.src_old = tgui->accel.src_old + (ydir * tgui->accel.pitch);
tgui->accel.dst = tgui->accel.dst_old = tgui->accel.dst_old + (ydir * tgui->accel.pitch);
tgui->accel.pat_y += ydir;
if (tgui->accel.y > tgui->accel.size_y)
{
if (svga->crtc[0x21] & 0x20)
{
tgui->write_blitter = 0;
}
return;
}
if (tgui->accel.use_src)
return;
}
count--;
}
break;
default:
while (count)
{
READ(tgui->accel.src, src_dat);
READ(tgui->accel.dst, dst_dat);
pat_dat = tgui->accel.tgui_pattern[tgui->accel.pat_y & 7][tgui->accel.pat_x & 7];
if (!(tgui->accel.flags & TGUI_TRANSENA) || src_dat != trans_col)
{
MIX();
WRITE(tgui->accel.dst, out);
}
tgui->accel.src += xdir;
tgui->accel.dst += xdir;
tgui->accel.pat_x += xdir;
tgui->accel.x++;
if (tgui->accel.x > tgui->accel.size_x)
{
tgui->accel.x = 0;
tgui->accel.y++;
tgui->accel.pat_x = tgui->accel.dst_x;
tgui->accel.src = tgui->accel.src_old = tgui->accel.src_old + (ydir * tgui->accel.pitch);
tgui->accel.dst = tgui->accel.dst_old = tgui->accel.dst_old + (ydir * tgui->accel.pitch);
tgui->accel.pat_y += ydir;
if (tgui->accel.y > tgui->accel.size_y)
return;
}
count--;
}
break;
}
break;
}
}
static void tgui_accel_write_fifo(tgui_t *tgui, uint32_t addr, uint8_t val)
{
switch (addr & 0xff)
{
case 0x22:
tgui->accel.ger22 = val;
tgui->accel.pitch = 512 << ((val >> 2) & 3);
tgui->accel.bpp = (val & 3) ? 1 : 0;
tgui->accel.pitch >>= tgui->accel.bpp;
break;
case 0x24: /*Command*/
tgui->accel.command = val;
tgui_accel_command(-1, 0, tgui);
break;
case 0x27: /*ROP*/
tgui->accel.rop = val;
tgui->accel.use_src = (val & 0x33) ^ ((val >> 2) & 0x33);
break;
case 0x28: /*Flags*/
tgui->accel.flags = (tgui->accel.flags & 0xff00) | val;
break;
case 0x29: /*Flags*/
tgui->accel.flags = (tgui->accel.flags & 0xff) | (val << 8);
break;
case 0x2b:
tgui->accel.offset = val & 7;
break;
case 0x2c: /*Foreground colour*/
tgui->accel.fg_col = (tgui->accel.fg_col & 0xff00) | val;
break;
case 0x2d: /*Foreground colour*/
tgui->accel.fg_col = (tgui->accel.fg_col & 0xff) | (val << 8);
break;
case 0x30: /*Background colour*/
tgui->accel.bg_col = (tgui->accel.bg_col & 0xff00) | val;
break;
case 0x31: /*Background colour*/
tgui->accel.bg_col = (tgui->accel.bg_col & 0xff) | (val << 8);
break;
case 0x38: /*Dest X*/
tgui->accel.dst_x = (tgui->accel.dst_x & 0xff00) | val;
break;
case 0x39: /*Dest X*/
tgui->accel.dst_x = (tgui->accel.dst_x & 0xff) | (val << 8);
break;
case 0x3a: /*Dest Y*/
tgui->accel.dst_y = (tgui->accel.dst_y & 0xff00) | val;
break;
case 0x3b: /*Dest Y*/
tgui->accel.dst_y = (tgui->accel.dst_y & 0xff) | (val << 8);
break;
case 0x3c: /*Src X*/
tgui->accel.src_x = (tgui->accel.src_x & 0xff00) | val;
break;
case 0x3d: /*Src X*/
tgui->accel.src_x = (tgui->accel.src_x & 0xff) | (val << 8);
break;
case 0x3e: /*Src Y*/
tgui->accel.src_y = (tgui->accel.src_y & 0xff00) | val;
break;
case 0x3f: /*Src Y*/
tgui->accel.src_y = (tgui->accel.src_y & 0xff) | (val << 8);
break;
case 0x40: /*Size X*/
tgui->accel.size_x = (tgui->accel.size_x & 0xff00) | val;
break;
case 0x41: /*Size X*/
tgui->accel.size_x = (tgui->accel.size_x & 0xff) | (val << 8);
break;
case 0x42: /*Size Y*/
tgui->accel.size_y = (tgui->accel.size_y & 0xff00) | val;
break;
case 0x43: /*Size Y*/
tgui->accel.size_y = (tgui->accel.size_y & 0xff) | (val << 8);
break;
case 0x80: case 0x81: case 0x82: case 0x83:
case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b:
case 0x8c: case 0x8d: case 0x8e: case 0x8f:
case 0x90: case 0x91: case 0x92: case 0x93:
case 0x94: case 0x95: case 0x96: case 0x97:
case 0x98: case 0x99: case 0x9a: case 0x9b:
case 0x9c: case 0x9d: case 0x9e: case 0x9f:
case 0xa0: case 0xa1: case 0xa2: case 0xa3:
case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab:
case 0xac: case 0xad: case 0xae: case 0xaf:
case 0xb0: case 0xb1: case 0xb2: case 0xb3:
case 0xb4: case 0xb5: case 0xb6: case 0xb7:
case 0xb8: case 0xb9: case 0xba: case 0xbb:
case 0xbc: case 0xbd: case 0xbe: case 0xbf:
case 0xc0: case 0xc1: case 0xc2: case 0xc3:
case 0xc4: case 0xc5: case 0xc6: case 0xc7:
case 0xc8: case 0xc9: case 0xca: case 0xcb:
case 0xcc: case 0xcd: case 0xce: case 0xcf:
case 0xd0: case 0xd1: case 0xd2: case 0xd3:
case 0xd4: case 0xd5: case 0xd6: case 0xd7:
case 0xd8: case 0xd9: case 0xda: case 0xdb:
case 0xdc: case 0xdd: case 0xde: case 0xdf:
case 0xe0: case 0xe1: case 0xe2: case 0xe3:
case 0xe4: case 0xe5: case 0xe6: case 0xe7:
case 0xe8: case 0xe9: case 0xea: case 0xeb:
case 0xec: case 0xed: case 0xee: case 0xef:
case 0xf0: case 0xf1: case 0xf2: case 0xf3:
case 0xf4: case 0xf5: case 0xf6: case 0xf7:
case 0xf8: case 0xf9: case 0xfa: case 0xfb:
case 0xfc: case 0xfd: case 0xfe: case 0xff:
tgui->accel.pattern[addr & 0x7f] = val;
break;
}
}
static void tgui_accel_write_fifo_fb_b(tgui_t *tgui, uint32_t addr, uint8_t val)
{
tgui_accel_command(8, val << 24, tgui);
}
static void tgui_accel_write_fifo_fb_w(tgui_t *tgui, uint32_t addr, uint16_t val)
{
tgui_accel_command(16, (((val & 0xff00) >> 8) | ((val & 0x00ff) << 8)) << 16, tgui);
}
static void tgui_accel_write_fifo_fb_l(tgui_t *tgui, uint32_t addr, uint32_t val)
{
tgui_accel_command(32, ((val & 0xff000000) >> 24) | ((val & 0x00ff0000) >> 8) | ((val & 0x0000ff00) << 8) | ((val & 0x000000ff) << 24), tgui);
}
static void fifo_thread(void *param)
{
tgui_t *tgui = (tgui_t *)param;
while (1)
{
thread_set_event(tgui->fifo_not_full_event);
thread_wait_event(tgui->wake_fifo_thread, -1);
thread_reset_event(tgui->wake_fifo_thread);
tgui->blitter_busy = 1;
while (!FIFO_EMPTY)
{
uint64_t start_time = plat_timer_read();
uint64_t end_time;
fifo_entry_t *fifo = &tgui->fifo[tgui->fifo_read_idx & FIFO_MASK];
switch (fifo->addr_type & FIFO_TYPE)
{
case FIFO_WRITE_BYTE:
tgui_accel_write_fifo(tgui, fifo->addr_type & FIFO_ADDR, fifo->val);
break;
case FIFO_WRITE_FB_BYTE:
tgui_accel_write_fifo_fb_b(tgui, fifo->addr_type & FIFO_ADDR, fifo->val);
break;
case FIFO_WRITE_FB_WORD:
tgui_accel_write_fifo_fb_w(tgui, fifo->addr_type & FIFO_ADDR, fifo->val);
break;
case FIFO_WRITE_FB_LONG:
tgui_accel_write_fifo_fb_l(tgui, fifo->addr_type & FIFO_ADDR, fifo->val);
break;
}
tgui->fifo_read_idx++;
fifo->addr_type = FIFO_INVALID;
if (FIFO_ENTRIES > 0xe000)
thread_set_event(tgui->fifo_not_full_event);
end_time = plat_timer_read();
tgui->blitter_time += end_time - start_time;
}
tgui->blitter_busy = 0;
}
}
static inline void wake_fifo_thread(tgui_t *tgui)
{
thread_set_event(tgui->wake_fifo_thread); /*Wake up FIFO thread if moving from idle*/
}
static void tgui_wait_fifo_idle(tgui_t *tgui)
{
while (!FIFO_EMPTY)
{
wake_fifo_thread(tgui);
thread_wait_event(tgui->fifo_not_full_event, 1);
}
}
static void tgui_queue(tgui_t *tgui, uint32_t addr, uint32_t val, uint32_t type)
{
fifo_entry_t *fifo = &tgui->fifo[tgui->fifo_write_idx & FIFO_MASK];
if (FIFO_FULL)
{
thread_reset_event(tgui->fifo_not_full_event);
if (FIFO_FULL)
{
thread_wait_event(tgui->fifo_not_full_event, -1); /*Wait for room in ringbuffer*/
}
}
fifo->val = val;
fifo->addr_type = (addr & FIFO_ADDR) | type;
tgui->fifo_write_idx++;
if (FIFO_ENTRIES > 0xe000 || FIFO_ENTRIES < 8)
wake_fifo_thread(tgui);
}
void tgui_accel_write(uint32_t addr, uint8_t val, void *p)
{
tgui_t *tgui = (tgui_t *)p;
if ((addr & ~0xff) != 0xbff00)
return;
tgui_queue(tgui, addr, val, FIFO_WRITE_BYTE);
}
void tgui_accel_write_w(uint32_t addr, uint16_t val, void *p)
{
tgui_t *tgui = (tgui_t *)p;
tgui_accel_write(addr, val, tgui);
tgui_accel_write(addr + 1, val >> 8, tgui);
}
void tgui_accel_write_l(uint32_t addr, uint32_t val, void *p)
{
tgui_t *tgui = (tgui_t *)p;
tgui_accel_write(addr, val, tgui);
tgui_accel_write(addr + 1, val >> 8, tgui);
tgui_accel_write(addr + 2, val >> 16, tgui);
tgui_accel_write(addr + 3, val >> 24, tgui);
}
uint8_t tgui_accel_read(uint32_t addr, void *p)
{
tgui_t *tgui = (tgui_t *)p;
if ((addr & ~0xff) != 0xbff00)
return 0xff;
if ((addr & 0xff) != 0x20)
tgui_wait_fifo_idle(tgui);
switch (addr & 0xff)
{
case 0x20: /*Status*/
if (!FIFO_EMPTY)
return 1 << 5;
return 0;
case 0x27: /*ROP*/
return tgui->accel.rop;
case 0x28: /*Flags*/
return tgui->accel.flags & 0xff;
case 0x29: /*Flags*/
return tgui->accel.flags >> 8;
case 0x2b:
return tgui->accel.offset;
case 0x2c: /*Background colour*/
return tgui->accel.bg_col & 0xff;
case 0x2d: /*Background colour*/
return tgui->accel.bg_col >> 8;
case 0x30: /*Foreground colour*/
return tgui->accel.fg_col & 0xff;
case 0x31: /*Foreground colour*/
return tgui->accel.fg_col >> 8;
case 0x38: /*Dest X*/
return tgui->accel.dst_x & 0xff;
case 0x39: /*Dest X*/
return tgui->accel.dst_x >> 8;
case 0x3a: /*Dest Y*/
return tgui->accel.dst_y & 0xff;
case 0x3b: /*Dest Y*/
return tgui->accel.dst_y >> 8;
case 0x3c: /*Src X*/
return tgui->accel.src_x & 0xff;
case 0x3d: /*Src X*/
return tgui->accel.src_x >> 8;
case 0x3e: /*Src Y*/
return tgui->accel.src_y & 0xff;
case 0x3f: /*Src Y*/
return tgui->accel.src_y >> 8;
case 0x40: /*Size X*/
return tgui->accel.size_x & 0xff;
case 0x41: /*Size X*/
return tgui->accel.size_x >> 8;
case 0x42: /*Size Y*/
return tgui->accel.size_y & 0xff;
case 0x43: /*Size Y*/
return tgui->accel.size_y >> 8;
case 0x80: case 0x81: case 0x82: case 0x83:
case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b:
case 0x8c: case 0x8d: case 0x8e: case 0x8f:
case 0x90: case 0x91: case 0x92: case 0x93:
case 0x94: case 0x95: case 0x96: case 0x97:
case 0x98: case 0x99: case 0x9a: case 0x9b:
case 0x9c: case 0x9d: case 0x9e: case 0x9f:
case 0xa0: case 0xa1: case 0xa2: case 0xa3:
case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab:
case 0xac: case 0xad: case 0xae: case 0xaf:
case 0xb0: case 0xb1: case 0xb2: case 0xb3:
case 0xb4: case 0xb5: case 0xb6: case 0xb7:
case 0xb8: case 0xb9: case 0xba: case 0xbb:
case 0xbc: case 0xbd: case 0xbe: case 0xbf:
case 0xc0: case 0xc1: case 0xc2: case 0xc3:
case 0xc4: case 0xc5: case 0xc6: case 0xc7:
case 0xc8: case 0xc9: case 0xca: case 0xcb:
case 0xcc: case 0xcd: case 0xce: case 0xcf:
case 0xd0: case 0xd1: case 0xd2: case 0xd3:
case 0xd4: case 0xd5: case 0xd6: case 0xd7:
case 0xd8: case 0xd9: case 0xda: case 0xdb:
case 0xdc: case 0xdd: case 0xde: case 0xdf:
case 0xe0: case 0xe1: case 0xe2: case 0xe3:
case 0xe4: case 0xe5: case 0xe6: case 0xe7:
case 0xe8: case 0xe9: case 0xea: case 0xeb:
case 0xec: case 0xed: case 0xee: case 0xef:
case 0xf0: case 0xf1: case 0xf2: case 0xf3:
case 0xf4: case 0xf5: case 0xf6: case 0xf7:
case 0xf8: case 0xf9: case 0xfa: case 0xfb:
case 0xfc: case 0xfd: case 0xfe: case 0xff:
return tgui->accel.pattern[addr & 0x7f];
}
return 0xff;
}
uint16_t tgui_accel_read_w(uint32_t addr, void *p)
{
tgui_t *tgui = (tgui_t *)p;
return tgui_accel_read(addr, tgui) | (tgui_accel_read(addr + 1, tgui) << 8);
}
uint32_t tgui_accel_read_l(uint32_t addr, void *p)
{
tgui_t *tgui = (tgui_t *)p;
return tgui_accel_read_w(addr, tgui) | (tgui_accel_read_w(addr + 2, tgui) << 16);
}
void tgui_accel_write_fb_b(uint32_t addr, uint8_t val, void *p)
{
svga_t *svga = (svga_t *)p;
tgui_t *tgui = (tgui_t *)svga->p;
if (tgui->write_blitter)
tgui_queue(tgui, addr, val, FIFO_WRITE_FB_BYTE);
else
svga_write_linear(addr, val, svga);
}
void tgui_accel_write_fb_w(uint32_t addr, uint16_t val, void *p)
{
svga_t *svga = (svga_t *)p;
tgui_t *tgui = (tgui_t *)svga->p;
if (tgui->write_blitter)
tgui_queue(tgui, addr, val, FIFO_WRITE_FB_WORD);
else
svga_writew_linear(addr, val, svga);
}
void tgui_accel_write_fb_l(uint32_t addr, uint32_t val, void *p)
{
svga_t *svga = (svga_t *)p;
tgui_t *tgui = (tgui_t *)svga->p;
if (tgui->write_blitter)
tgui_queue(tgui, addr, val, FIFO_WRITE_FB_LONG);
else
svga_writel_linear(addr, val, svga);
}
void tgui_add_status_info(char *s, int max_len, void *p)
{
tgui_t *tgui = (tgui_t *)p;
char temps[256];
uint64_t new_time = plat_timer_read();
uint64_t status_diff = new_time - tgui->status_time;
tgui->status_time = new_time;
svga_add_status_info(s, max_len, &tgui->svga);
sprintf(temps, "%f%% CPU\n%f%% CPU (real)\n\n", ((double)tgui->blitter_time * 100.0) / timer_freq, ((double)tgui->blitter_time * 100.0) / status_diff);
strncat(s, temps, max_len);
tgui->blitter_time = 0;
}
static device_config_t tgui9440_config[] =
{
{
.name = "memory",
.description = "Memory size",
.type = CONFIG_SELECTION,
.selection =
{
{
.description = "1 MB",
.value = 1
},
{
.description = "2 MB",
.value = 2
},
{
.description = ""
}
},
.default_int = 2
},
{
.type = -1
}
};
device_t tgui9400cxi_device =
{
"Trident TGUI 9400CXi",
DEVICE_VLB,
0,
tgui9400cxi_init,
tgui_close,
NULL,
tgui9400cxi_available,
tgui_speed_changed,
tgui_force_redraw,
tgui_add_status_info,
tgui9440_config
};
device_t tgui9440_vlb_device =
{
"Trident TGUI 9440 VLB",
DEVICE_VLB,
0,
tgui9440_init,
tgui_close,
NULL,
tgui9440_available,
tgui_speed_changed,
tgui_force_redraw,
tgui_add_status_info,
tgui9440_config
};
device_t tgui9440_pci_device =
{
"Trident TGUI 9440 PCI",
DEVICE_PCI,
0,
tgui9440_init,
tgui_close,
NULL,
tgui9440_available,
tgui_speed_changed,
tgui_force_redraw,
tgui_add_status_info,
tgui9440_config
};