Files
86Box/src/sound/snd_opl_ymfm.cpp
2022-07-28 03:49:35 +02:00

375 lines
9.3 KiB
C++

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Interface to the YMFM emulator.
*
*
* Authors: Adrien Moulin, <adrien@elyosh.org>
*
* Copyright 2022 Adrien Moulin.
*/
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "ymfm/ymfm_opl.h"
extern "C" {
#include <86box/86box.h>
#include <86box/timer.h>
#include <86box/device.h>
#include <86box/sound.h>
#include <86box/snd_opl.h>
}
#define RSM_FRAC 10
enum {
FLAG_CYCLES = (1 << 0)
};
class YMFMChipBase
{
public:
YMFMChipBase(uint32_t clock, fm_type type, uint32_t samplerate)
: m_buf_pos(0), m_flags(0), m_type(type)
{
memset(m_buffer, 0, sizeof(m_buffer));
}
virtual ~YMFMChipBase()
{
}
fm_type type() const { return m_type; }
int8_t flags() const { return m_flags; }
void set_do_cycles(int8_t do_cycles) { do_cycles ? m_flags |= FLAG_CYCLES : m_flags &= ~FLAG_CYCLES; }
int32_t *buffer() const { return (int32_t *)m_buffer; }
void reset_buffer() { m_buf_pos = 0; }
virtual uint32_t sample_rate() const = 0;
virtual void write(uint16_t addr, uint8_t data) = 0;
virtual void generate(int32_t *data, uint32_t num_samples) = 0;
virtual void generate_resampled(int32_t *data, uint32_t num_samples) = 0;
virtual int32_t * update() = 0;
virtual uint8_t read(uint16_t addr) = 0;
protected:
int32_t m_buffer[SOUNDBUFLEN * 2];
int m_buf_pos;
int8_t m_flags;
fm_type m_type;
};
template <typename ChipType>
class YMFMChip : public YMFMChipBase, public ymfm::ymfm_interface
{
public:
YMFMChip(uint32_t clock, fm_type type, uint32_t samplerate)
: YMFMChipBase(clock, type, samplerate)
, m_chip(*this)
, m_clock(clock)
, m_samplecnt(0)
{
memset(m_samples, 0, sizeof(m_samples));
memset(m_oldsamples, 0, sizeof(m_oldsamples));
m_rateratio = (samplerate << RSM_FRAC) / m_chip.sample_rate(m_clock);
m_clock_us = 1000000 / (double) m_clock;
m_subtract[0] = 80.0;
m_subtract[1] = 320.0;
m_type = type;
timer_add(&m_timers[0], YMFMChip::timer1, this, 0);
timer_add(&m_timers[1], YMFMChip::timer2, this, 0);
}
virtual uint32_t sample_rate() const override
{
return m_chip.sample_rate(m_clock);
}
virtual void ymfm_set_timer(uint32_t tnum, int32_t duration_in_clocks) override
{
if (tnum > 1)
return;
pc_timer_t *timer = &m_timers[tnum];
if (duration_in_clocks < 0)
timer_stop(timer);
else {
double period = m_clock_us * duration_in_clocks;
if (period < m_subtract[tnum])
m_engine->engine_timer_expired(tnum);
else
timer_on_auto(timer, period);
}
}
virtual void generate(int32_t *data, uint32_t num_samples) override
{
for (uint32_t i = 0; i < num_samples; i++) {
m_chip.generate(&m_output);
if (ChipType::OUTPUTS == 1) {
*data++ = m_output.data[0];
*data++ = m_output.data[0];
} else {
*data++ = m_output.data[0];
*data++ = m_output.data[1 % ChipType::OUTPUTS];
}
}
}
virtual void generate_resampled(int32_t *data, uint32_t num_samples) override
{
for (uint32_t i = 0; i < num_samples; i++) {
while (m_samplecnt >= m_rateratio) {
m_oldsamples[0] = m_samples[0];
m_oldsamples[1] = m_samples[1];
m_chip.generate(&m_output);
if (ChipType::OUTPUTS == 1) {
m_samples[0] = m_output.data[0];
m_samples[1] = m_output.data[0];
} else {
m_samples[0] = m_output.data[0];
m_samples[1] = m_output.data[1 % ChipType::OUTPUTS];
}
m_samplecnt -= m_rateratio;
}
*data++ = ((int32_t) ((m_oldsamples[0] * (m_rateratio - m_samplecnt)
+ m_samples[0] * m_samplecnt)
/ m_rateratio));
*data++ = ((int32_t) ((m_oldsamples[1] * (m_rateratio - m_samplecnt)
+ m_samples[1] * m_samplecnt)
/ m_rateratio));
m_samplecnt += 1 << RSM_FRAC;
}
}
virtual int32_t *update() override
{
if (m_buf_pos >= sound_pos_global)
return m_buffer;
generate_resampled(&m_buffer[m_buf_pos * 2], sound_pos_global - m_buf_pos);
for (; m_buf_pos < sound_pos_global; m_buf_pos++) {
m_buffer[m_buf_pos * 2] /= 2;
m_buffer[(m_buf_pos * 2) + 1] /= 2;
}
return m_buffer;
}
virtual void write(uint16_t addr, uint8_t data) override
{
m_chip.write(addr, data);
}
virtual uint8_t read(uint16_t addr) override
{
return m_chip.read(addr);
}
virtual uint32_t get_special_flags(void) override
{
return ((m_type == FM_YMF262) || (m_type == FM_YMF289B)) ? 0x8000 : 0x0000;
}
static void timer1(void *priv)
{
YMFMChip<ChipType> *drv = (YMFMChip<ChipType> *) priv;
drv->m_engine->engine_timer_expired(0);
}
static void timer2(void *priv)
{
YMFMChip<ChipType> *drv = (YMFMChip<ChipType> *) priv;
drv->m_engine->engine_timer_expired(1);
}
private:
ChipType m_chip;
uint32_t m_clock;
double m_clock_us, m_subtract[2];
typename ChipType::output_data m_output;
pc_timer_t m_timers[2];
// Resampling
int32_t m_rateratio;
int32_t m_samplecnt;
int32_t m_oldsamples[2];
int32_t m_samples[2];
};
extern "C"
{
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#define HAVE_STDARG_H
#include "cpu.h"
#include <86box/86box.h>
#include <86box/io.h>
#include <86box/snd_opl.h>
#ifdef ENABLE_OPL_LOG
static void
ymfm_log(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
pclog_ex(fmt, ap);
va_end(ap);
}
#else
# define ymfm_log(fmt, ...)
#endif
static void *
ymfm_drv_init(const device_t *info)
{
YMFMChipBase *fm;
switch (info->local) {
case FM_YM3812:
default:
fm = (YMFMChipBase *) new YMFMChip<ymfm::ym3812>(3579545, FM_YM3812, 48000);
break;
case FM_YMF262:
fm = (YMFMChipBase *) new YMFMChip<ymfm::ymf262>(14318181, FM_YMF262, 48000);
break;
case FM_YMF289B:
fm = (YMFMChipBase *) new YMFMChip<ymfm::ymf289b>(33868800, FM_YMF289B, 48000);
break;
}
fm->set_do_cycles(1);
return fm;
}
static void
ymfm_drv_close(void *priv)
{
YMFMChipBase *drv = (YMFMChipBase *) priv;
if (drv != NULL)
delete(drv);
}
static uint8_t
ymfm_drv_read(uint16_t port, void *priv)
{
YMFMChipBase *drv = (YMFMChipBase *) priv;
if (drv->flags() & FLAG_CYCLES) {
cycles -= ((int) (isa_timing * 8));
}
uint8_t ret = drv->read(port);
drv->update();
ymfm_log("YMFM read port %04x, status = %02x\n", port, ret);
return ret;
}
static void
ymfm_drv_write(uint16_t port, uint8_t val, void *priv)
{
YMFMChipBase *drv = (YMFMChipBase *) priv;
ymfm_log("YMFM write port %04x value = %02x\n", port, val);
drv->write(port, val);
drv->update();
}
static int32_t *
ymfm_drv_update(void *priv) {
YMFMChipBase *drv = (YMFMChipBase *) priv;
return drv->update();
}
static void
ymfm_drv_reset_buffer(void *priv) {
YMFMChipBase *drv = (YMFMChipBase *) priv;
drv->reset_buffer();
}
static void
ymfm_drv_set_do_cycles(void *priv, int8_t do_cycles)
{
YMFMChipBase *drv = (YMFMChipBase *) priv;
drv->set_do_cycles(do_cycles);
}
const device_t ym3812_ymfm_device = {
.name = "Yamaha YM3812 OPL2 (YMFM)",
.internal_name = "ym3812_ymfm",
.flags = 0,
.local = FM_YM3812,
.init = ymfm_drv_init,
.close = ymfm_drv_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t ymf262_ymfm_device = {
.name = "Yamaha YMF262 OPL3 (YMFM)",
.internal_name = "ymf262_ymfm",
.flags = 0,
.local = FM_YMF262,
.init = ymfm_drv_init,
.close = ymfm_drv_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t ymf289b_ymfm_device = {
.name = "Yamaha YMF289B OPL3-L (YMFM)",
.internal_name = "ymf289b_ymfm",
.flags = 0,
.local = FM_YMF289B,
.init = ymfm_drv_init,
.close = ymfm_drv_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const fm_drv_t ymfm_drv {
&ymfm_drv_read,
&ymfm_drv_write,
&ymfm_drv_update,
&ymfm_drv_reset_buffer,
&ymfm_drv_set_do_cycles,
NULL,
};
}