Files
86Box/src/chipset/scamp.c
David Hrdlička a505894a10 Move all include files to src/include
- 86Box's own headers go to /86box
- munt's public interface goes to /mt32emu
- all slirp headers go to /slirp (might want to consider using only its public inteface)
- single file headers from other projects go in include root
2020-03-29 19:53:29 +02:00

775 lines
26 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Emulation of VLSI 82C311 ("SCAMP") chipset.
*
* Note: The datasheet mentions that the chipset supports up to 8MB
* of DRAM. This is intepreted as 'being able to refresh up to
* 8MB of DRAM chips', because it works fine with bus-based
* memory expansion.
*
*
*
* Authors: Sarah Walker, <http://pcem-emulator.co.uk/>
*
* Copyright 2020 Sarah Walker.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <86box/86box.h>
#include "cpu.h"
#include <86box/timer.h>
#include <86box/device.h>
#include <86box/io.h>
#include <86box/mem.h>
#include <86box/nmi.h>
#include <86box/port_92.h>
#include <86box/chipset.h>
typedef struct {
void *parent;
int bank;
} ram_struct_t;
typedef struct {
int cfg_index;
uint8_t cfg_regs[256];
int cfg_enable;
int ram_config;
mem_mapping_t ram_mapping[2];
ram_struct_t ram_struct[3];
uint32_t ram_virt_base[2], ram_phys_base[2];
uint32_t ram_mask[2];
int row_virt_shift[2], row_phys_shift[2];
int ram_interleaved[2];
int ibank_shift[2];
} scamp_t;
#define CFG_ID 0x00
#define CFG_SLTPTR 0x02
#define CFG_RAMMAP 0x03
#define CFG_EMSEN1 0x0b
#define CFG_EMSEN2 0x0c
#define CFG_ABAXS 0x0e
#define CFG_CAXS 0x0f
#define CFG_DAXS 0x10
#define CFG_FEAXS 0x11
#define ID_VL82C311 0xd6
#define RAMMAP_REMP386 (1 << 4)
/*Commodore SL386SX requires proper memory slot decoding to detect memory size.
Therefore we emulate the SCAMP memory address decoding, and therefore are
limited to the DRAM combinations supported by the actual chip*/
enum
{
BANK_NONE,
BANK_256K,
BANK_256K_INTERLEAVED,
BANK_1M,
BANK_1M_INTERLEAVED,
BANK_4M,
BANK_4M_INTERLEAVED
};
static const struct
{
int size_kb;
int rammap;
int bank[2];
} ram_configs[] =
{
{512, 0x0, {BANK_256K, BANK_NONE}},
{1024, 0x1, {BANK_256K_INTERLEAVED, BANK_NONE}},
{1536, 0x2, {BANK_256K_INTERLEAVED, BANK_256K}},
{2048, 0x3, {BANK_256K_INTERLEAVED, BANK_256K_INTERLEAVED}},
{3072, 0xc, {BANK_256K_INTERLEAVED, BANK_1M}},
{4096, 0x5, {BANK_1M_INTERLEAVED, BANK_NONE}},
{5120, 0xd, {BANK_256K_INTERLEAVED, BANK_1M_INTERLEAVED}},
{6144, 0x6, {BANK_1M_INTERLEAVED, BANK_1M}},
{8192, 0x7, {BANK_1M_INTERLEAVED, BANK_1M_INTERLEAVED}},
{12288, 0xe, {BANK_1M_INTERLEAVED, BANK_4M}},
{16384, 0x9, {BANK_4M_INTERLEAVED, BANK_NONE}},
};
static const struct
{
int bank[2];
int remapped;
} rammap[16] =
{
{{BANK_256K, BANK_NONE}, 0},
{{BANK_256K_INTERLEAVED, BANK_NONE}, 0},
{{BANK_256K_INTERLEAVED, BANK_256K}, 0},
{{BANK_256K_INTERLEAVED, BANK_256K_INTERLEAVED}, 0},
{{BANK_1M, BANK_NONE}, 0},
{{BANK_1M_INTERLEAVED, BANK_NONE}, 0},
{{BANK_1M_INTERLEAVED, BANK_1M}, 0},
{{BANK_1M_INTERLEAVED, BANK_1M_INTERLEAVED}, 0},
{{BANK_4M, BANK_NONE}, 0},
{{BANK_4M_INTERLEAVED, BANK_NONE}, 0},
{{BANK_NONE, BANK_4M}, 1}, /*Bank 2 remapped to 0*/
{{BANK_NONE, BANK_4M_INTERLEAVED}, 1}, /*Banks 2/3 remapped to 0/1*/
{{BANK_256K_INTERLEAVED, BANK_1M}, 0},
{{BANK_256K_INTERLEAVED, BANK_1M_INTERLEAVED}, 0},
{{BANK_1M_INTERLEAVED, BANK_4M}, 0},
{{BANK_1M_INTERLEAVED, BANK_4M_INTERLEAVED}, 0}, /*Undocumented - probably wrong!*/
};
/*The column bits masked when using 256kbit DRAMs in 4Mbit mode aren't contiguous,
so we use separate routines for that special case*/
static uint8_t
ram_mirrored_256k_in_4mi_read(uint32_t addr, void *priv)
{
ram_struct_t *rs = (ram_struct_t *) priv;
scamp_t *dev = rs->parent;
int bank = rs->bank;
int row, column, byte;
addr -= dev->ram_virt_base[bank];
byte = addr & 1;
if (!dev->ram_interleaved[bank]) {
if (addr & 0x400)
return 0xff;
addr = (addr & 0x3ff) | ((addr & ~0x7ff) >> 1);
column = (addr >> 1) & dev->ram_mask[bank];
row = ((addr & 0xff000) >> 13) | (((addr & 0x200000) >> 22) << 9);
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
} else {
column = (addr >> 1) & ((dev->ram_mask[bank] << 1) | 1);
row = ((addr & 0x1fe000) >> 13) | (((addr & 0x400000) >> 22) << 9);
addr = byte | (column << 1) | (row << (dev->row_phys_shift[bank]+1));
}
return ram[addr + dev->ram_phys_base[bank]];
}
static void
ram_mirrored_256k_in_4mi_write(uint32_t addr, uint8_t val, void *priv)
{
ram_struct_t *rs = (ram_struct_t *) priv;
scamp_t *dev = rs->parent;
int bank = rs->bank;
int row, column, byte;
addr -= dev->ram_virt_base[bank];
byte = addr & 1;
if (!dev->ram_interleaved[bank]) {
if (addr & 0x400)
return;
addr = (addr & 0x3ff) | ((addr & ~0x7ff) >> 1);
column = (addr >> 1) & dev->ram_mask[bank];
row = ((addr & 0xff000) >> 13) | (((addr & 0x200000) >> 22) << 9);
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
} else {
column = (addr >> 1) & ((dev->ram_mask[bank] << 1) | 1);
row = ((addr & 0x1fe000) >> 13) | (((addr & 0x400000) >> 22) << 9);
addr = byte | (column << 1) | (row << (dev->row_phys_shift[bank]+1));
}
ram[addr + dev->ram_phys_base[bank]] = val;
}
/*Read/write handlers for interleaved memory banks. We must keep CPU and ram array
mapping linear, otherwise we won't be able to execute code from interleaved banks*/
static uint8_t
ram_mirrored_interleaved_read(uint32_t addr, void *priv)
{
ram_struct_t *rs = (ram_struct_t *) priv;
scamp_t *dev = rs->parent;
int bank = rs->bank;
int row, column, byte;
addr -= dev->ram_virt_base[bank];
byte = addr & 1;
if (!dev->ram_interleaved[bank]) {
if (addr & 0x400)
return 0xff;
addr = (addr & 0x3ff) | ((addr & ~0x7ff) >> 1);
column = (addr >> 1) & dev->ram_mask[bank];
row = (addr >> dev->row_virt_shift[bank]) & dev->ram_mask[bank];
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
} else {
column = (addr >> 1) & ((dev->ram_mask[bank] << 1) | 1);
row = (addr >> (dev->row_virt_shift[bank]+1)) & dev->ram_mask[bank];
addr = byte | (column << 1) | (row << (dev->row_phys_shift[bank]+1));
}
return ram[addr + dev->ram_phys_base[bank]];
}
static void
ram_mirrored_interleaved_write(uint32_t addr, uint8_t val, void *priv)
{
ram_struct_t *rs = (ram_struct_t *) priv;
scamp_t *dev = rs->parent;
int bank = rs->bank;
int row, column, byte;
addr -= dev->ram_virt_base[bank];
byte = addr & 1;
if (!dev->ram_interleaved[bank]) {
if (addr & 0x400)
return;
addr = (addr & 0x3ff) | ((addr & ~0x7ff) >> 1);
column = (addr >> 1) & dev->ram_mask[bank];
row = (addr >> dev->row_virt_shift[bank]) & dev->ram_mask[bank];
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
}
else {
column = (addr >> 1) & ((dev->ram_mask[bank] << 1) | 1);
row = (addr >> (dev->row_virt_shift[bank]+1)) & dev->ram_mask[bank];
addr = byte | (column << 1) | (row << (dev->row_phys_shift[bank]+1));
}
ram[addr + dev->ram_phys_base[bank]] = val;
}
static uint8_t
ram_mirrored_read(uint32_t addr, void *priv)
{
ram_struct_t *rs = (ram_struct_t *) priv;
scamp_t *dev = rs->parent;
int bank = rs->bank;
int row, column, byte;
addr -= dev->ram_virt_base[bank];
byte = addr & 1;
column = (addr >> 1) & dev->ram_mask[bank];
row = (addr >> dev->row_virt_shift[bank]) & dev->ram_mask[bank];
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
return ram[addr + dev->ram_phys_base[bank]];
}
static void
ram_mirrored_write(uint32_t addr, uint8_t val, void *priv)
{
ram_struct_t *rs = (ram_struct_t *) priv;
scamp_t *dev = rs->parent;
int bank = rs->bank;
int row, column, byte;
addr -= dev->ram_virt_base[bank];
byte = addr & 1;
column = (addr >> 1) & dev->ram_mask[bank];
row = (addr >> dev->row_virt_shift[bank]) & dev->ram_mask[bank];
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
ram[addr + dev->ram_phys_base[bank]] = val;
}
static void
recalc_mappings(void *priv)
{
scamp_t *dev = (scamp_t *) priv;
int c;
uint32_t virt_base = 0;
uint8_t cur_rammap = dev->cfg_regs[CFG_RAMMAP] & 0xf;
int bank_nr = 0;
for (c = 0; c < 2; c++)
mem_mapping_disable(&dev->ram_mapping[c]);
/*Once the BIOS programs the correct DRAM configuration, switch to regular
linear memory mapping*/
if (cur_rammap == ram_configs[dev->ram_config].rammap) {
mem_mapping_set_handler(&ram_low_mapping,
mem_read_ram, mem_read_ramw, mem_read_raml,
mem_write_ram, mem_write_ramw, mem_write_raml);
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
mem_mapping_enable(&ram_high_mapping);
return;
} else {
mem_mapping_set_handler(&ram_low_mapping,
ram_mirrored_read, NULL, NULL,
ram_mirrored_write, NULL, NULL);
mem_mapping_disable(&ram_low_mapping);
}
if (rammap[cur_rammap].bank[0] == BANK_NONE)
bank_nr = 1;
/* pclog("Bank remap, cur_rammap=%x\n", cur_rammap); */
for (; bank_nr < 2; bank_nr++) {
uint32_t old_virt_base = virt_base;
int phys_bank = ram_configs[dev->ram_config].bank[bank_nr];
/* pclog(" Bank %i: phys_bank=%i rammap_bank=%i virt_base=%08x phys_base=%08x\n", bank_nr, phys_bank, rammap[cur_rammap].bank[bank_nr], virt_base, dev->ram_phys_base[bank_nr]); */
dev->ram_virt_base[bank_nr] = virt_base;
if (virt_base == 0) {
switch (rammap[cur_rammap].bank[bank_nr]) {
case BANK_NONE:
fatal("Bank 0 is empty!\n");
break;
case BANK_256K:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&ram_low_mapping, 0, 0x80000);
mem_mapping_set_p(&ram_low_mapping, (void *)bank_nr);
}
virt_base += 512*1024;
dev->row_virt_shift[bank_nr] = 10;
break;
case BANK_256K_INTERLEAVED:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
mem_mapping_set_p(&ram_low_mapping, (void *)bank_nr);
}
virt_base += 512*1024*2;
dev->row_virt_shift[bank_nr] = 10;
break;
case BANK_1M:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
mem_mapping_set_p(&ram_low_mapping, (void *)bank_nr);
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], 0x100000, 0x100000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr] + 0x100000]);
}
virt_base += 2048*1024;
dev->row_virt_shift[bank_nr] = 11;
break;
case BANK_1M_INTERLEAVED:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
mem_mapping_set_p(&ram_low_mapping, (void *)bank_nr);
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], 0x100000, 0x300000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr] + 0x100000]);
}
virt_base += 2048*1024*2;
dev->row_virt_shift[bank_nr] = 11;
break;
case BANK_4M:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
mem_mapping_set_p(&ram_low_mapping, (void *)bank_nr);
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], 0x100000, 0x700000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr] + 0x100000]);
}
virt_base += 8192*1024;
dev->row_virt_shift[bank_nr] = 12;
break;
case BANK_4M_INTERLEAVED:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
mem_mapping_set_p(&ram_low_mapping, (void *)bank_nr);
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], 0x100000, 0xf00000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr] + 0x100000]);
}
virt_base += 8192*1024*2;
dev->row_virt_shift[bank_nr] = 12;
break;
}
} else {
switch (rammap[cur_rammap].bank[bank_nr]) {
case BANK_NONE:
break;
case BANK_256K:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x80000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
}
virt_base += 512*1024;
dev->row_virt_shift[bank_nr] = 10;
break;
case BANK_256K_INTERLEAVED:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x100000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
}
virt_base += 512*1024*2;
dev->row_virt_shift[bank_nr] = 10;
break;
case BANK_1M:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x200000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
}
virt_base += 2048*1024;
dev->row_virt_shift[bank_nr] = 11;
break;
case BANK_1M_INTERLEAVED:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x400000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
}
virt_base += 2048*1024*2;
dev->row_virt_shift[bank_nr] = 11;
break;
case BANK_4M:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x800000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
}
virt_base += 8192*1024;
dev->row_virt_shift[bank_nr] = 12;
break;
case BANK_4M_INTERLEAVED:
if (phys_bank != BANK_NONE) {
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x1000000);
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
}
virt_base += 8192*1024*2;
dev->row_virt_shift[bank_nr] = 12;
break;
}
}
switch (rammap[cur_rammap].bank[bank_nr]) {
case BANK_256K: case BANK_1M: case BANK_4M:
mem_mapping_set_handler(&dev->ram_mapping[bank_nr],
ram_mirrored_read, NULL, NULL,
ram_mirrored_write, NULL, NULL);
if (!old_virt_base)
mem_mapping_set_handler(&ram_low_mapping,
ram_mirrored_read, NULL, NULL,
ram_mirrored_write, NULL, NULL);
/*pclog(" not interleaved\n");*/
break;
case BANK_256K_INTERLEAVED: case BANK_1M_INTERLEAVED:
mem_mapping_set_handler(&dev->ram_mapping[bank_nr],
ram_mirrored_interleaved_read, NULL, NULL,
ram_mirrored_interleaved_write, NULL, NULL);
if (!old_virt_base)
mem_mapping_set_handler(&ram_low_mapping,
ram_mirrored_interleaved_read, NULL, NULL,
ram_mirrored_interleaved_write, NULL, NULL);
/*pclog(" interleaved\n");*/
break;
case BANK_4M_INTERLEAVED:
if (phys_bank == BANK_256K || phys_bank == BANK_256K_INTERLEAVED) {
mem_mapping_set_handler(&dev->ram_mapping[bank_nr],
ram_mirrored_256k_in_4mi_read, NULL, NULL,
ram_mirrored_256k_in_4mi_write, NULL, NULL);
if (!old_virt_base)
mem_mapping_set_handler(&ram_low_mapping,
ram_mirrored_256k_in_4mi_read, NULL, NULL,
ram_mirrored_256k_in_4mi_write, NULL, NULL);
/*pclog(" 256k in 4mi\n");*/
} else {
mem_mapping_set_handler(&dev->ram_mapping[bank_nr],
ram_mirrored_interleaved_read, NULL, NULL,
ram_mirrored_interleaved_write, NULL, NULL);
if (!old_virt_base)
mem_mapping_set_handler(&ram_low_mapping,
ram_mirrored_interleaved_read, NULL, NULL,
ram_mirrored_interleaved_write, NULL, NULL);
/*pclog(" interleaved\n");*/
}
break;
}
}
}
#define NR_ELEMS(x) (sizeof(x) / sizeof(x[0]))
static void
shadow_control(uint32_t addr, uint32_t size, int state)
{
/* pclog("shadow_control: addr=%08x size=%04x state=%i\n", addr, size, state); */
switch (state) {
case 0:
mem_set_mem_state(addr, size, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
break;
case 1:
mem_set_mem_state(addr, size, MEM_READ_EXTANY | MEM_WRITE_INTERNAL);
break;
case 2:
mem_set_mem_state(addr, size, MEM_READ_INTERNAL | MEM_WRITE_EXTANY);
break;
case 3:
mem_set_mem_state(addr, size, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
break;
}
flushmmucache_nopc();
}
static void
scamp_write(uint16_t addr, uint8_t val, void *priv)
{
scamp_t *dev = (scamp_t *) priv;
/* pclog("scamp_write: addr=%04x val=%02x\n", addr, val); */
switch (addr) {
case 0xec:
if (dev->cfg_enable)
dev->cfg_index = val;
break;
case 0xed:
if (dev->cfg_enable) {
if (dev->cfg_index >= 0x02 && dev->cfg_index <= 0x16) {
dev->cfg_regs[dev->cfg_index] = val;
/* pclog("SCAMP CFG[%02x]=%02x\n", dev->cfg_index, val); */
switch (dev->cfg_index) {
case CFG_SLTPTR:
break;
case CFG_RAMMAP:
recalc_mappings(dev);
mem_mapping_disable(&ram_remapped_mapping);
if (dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386) {
/*Enabling remapping will disable all shadowing*/
mem_remap_top(384);
shadow_control(0xa0000, 0x60000, 0);
} else {
shadow_control(0xa0000, 0x8000, dev->cfg_regs[CFG_ABAXS] & 3);
shadow_control(0xa8000, 0x8000, (dev->cfg_regs[CFG_ABAXS] >> 2) & 3);
shadow_control(0xb0000, 0x8000, (dev->cfg_regs[CFG_ABAXS] >> 4) & 3);
shadow_control(0xb8000, 0x8000, (dev->cfg_regs[CFG_ABAXS] >> 6) & 3);
shadow_control(0xc0000, 0x4000, dev->cfg_regs[CFG_CAXS] & 3);
shadow_control(0xc4000, 0x4000, (dev->cfg_regs[CFG_CAXS] >> 2) & 3);
shadow_control(0xc8000, 0x4000, (dev->cfg_regs[CFG_CAXS] >> 4) & 3);
shadow_control(0xcc000, 0x4000, (dev->cfg_regs[CFG_CAXS] >> 6) & 3);
shadow_control(0xd0000, 0x4000, dev->cfg_regs[CFG_DAXS] & 3);
shadow_control(0xd4000, 0x4000, (dev->cfg_regs[CFG_DAXS] >> 2) & 3);
shadow_control(0xd8000, 0x4000, (dev->cfg_regs[CFG_DAXS] >> 4) & 3);
shadow_control(0xdc000, 0x4000, (dev->cfg_regs[CFG_DAXS] >> 6) & 3);
shadow_control(0xe0000, 0x8000, dev->cfg_regs[CFG_FEAXS] & 3);
shadow_control(0xe8000, 0x8000, (dev->cfg_regs[CFG_FEAXS] >> 2) & 3);
shadow_control(0xf0000, 0x8000, (dev->cfg_regs[CFG_FEAXS] >> 4) & 3);
shadow_control(0xf8000, 0x8000, (dev->cfg_regs[CFG_FEAXS] >> 6) & 3);
}
break;
case CFG_ABAXS:
if (!(dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386)) {
shadow_control(0xa0000, 0x8000, val & 3);
shadow_control(0xa8000, 0x8000, (val >> 2) & 3);
shadow_control(0xb0000, 0x8000, (val >> 4) & 3);
shadow_control(0xb8000, 0x8000, (val >> 6) & 3);
}
break;
case CFG_CAXS:
if (!(dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386)) {
shadow_control(0xc0000, 0x4000, val & 3);
shadow_control(0xc4000, 0x4000, (val >> 2) & 3);
shadow_control(0xc8000, 0x4000, (val >> 4) & 3);
shadow_control(0xcc000, 0x4000, (val >> 6) & 3);
}
break;
case CFG_DAXS:
if (!(dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386)) {
shadow_control(0xd0000, 0x4000, val & 3);
shadow_control(0xd4000, 0x4000, (val >> 2) & 3);
shadow_control(0xd8000, 0x4000, (val >> 4) & 3);
shadow_control(0xdc000, 0x4000, (val >> 6) & 3);
}
break;
case CFG_FEAXS:
if (!(dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386)) {
shadow_control(0xe0000, 0x8000, val & 3);
shadow_control(0xe8000, 0x8000, (val >> 2) & 3);
shadow_control(0xf0000, 0x8000, (val >> 4) & 3);
shadow_control(0xf8000, 0x8000, (val >> 6) & 3);
}
break;
}
}
}
break;
case 0xee:
if (dev->cfg_enable && mem_a20_alt)
outb(0x92, inb(0x92) & ~2);
break;
}
}
static uint8_t
scamp_read(uint16_t addr, void *priv)
{
uint8_t ret = 0xff;
switch (addr) {
case 0xee:
if (!mem_a20_alt)
outb(0x92, inb(0x92) | 2);
break;
case 0xef:
softresetx86();
cpu_set_edx();
break;
}
/* pclog("scamp_read: addr=%04x ret=%02x\n", addr, ret); */
return ret;
}
static void
scamp_close(void *priv)
{
scamp_t *dev = (scamp_t *) priv;
free(dev);
}
static void *
scamp_init(const device_t *info)
{
uint32_t addr;
int c;
scamp_t *dev = (scamp_t *)malloc(sizeof(scamp_t));
memset(dev, 0, sizeof(scamp_t));
dev->cfg_regs[CFG_ID] = ID_VL82C311;
dev->cfg_enable = 1;
io_sethandler(0x00e8, 0x0001,
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
io_sethandler(0x00ea, 0x0006,
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
io_sethandler(0x00f4, 0x0002,
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
io_sethandler(0x00f9, 0x0001,
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
io_sethandler(0x00fb, 0x0001,
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
dev->ram_config = 0;
/*Find best fit configuration for the requested memory size*/
for (c = 0; c < NR_ELEMS(ram_configs); c++) {
if (mem_size < ram_configs[c].size_kb)
break;
dev->ram_config = c;
}
mem_mapping_set_handler(&ram_low_mapping,
ram_mirrored_read, NULL, NULL,
ram_mirrored_write, NULL, NULL);
dev->ram_struct[2].parent = dev;
dev->ram_struct[2].bank = 0;
mem_mapping_set_p(&ram_low_mapping, (void *) &dev->ram_struct[2]);
mem_mapping_disable(&ram_high_mapping);
addr = 0;
for (c = 0; c < 2; c++) {
dev->ram_struct[c].parent = dev;
dev->ram_struct[c].bank = c;
mem_mapping_add(&dev->ram_mapping[c], 0, 0,
ram_mirrored_read, NULL, NULL,
ram_mirrored_write, NULL, NULL,
&ram[addr], MEM_MAPPING_INTERNAL, (void *) &dev->ram_struct[c]);
mem_mapping_disable(&dev->ram_mapping[c]);
dev->ram_phys_base[c] = addr;
/* pclog("Bank calc : %i = %08x\n", c ,addr);*/
switch (ram_configs[dev->ram_config].bank[c]) {
case BANK_NONE:
dev->ram_mask[c] = 0;
dev->ram_interleaved[c] = 0;
break;
case BANK_256K:
addr += 512*1024;
dev->ram_mask[c] = 0x1ff;
dev->row_phys_shift[c] = 10;
dev->ram_interleaved[c] = 0;
break;
case BANK_256K_INTERLEAVED:
addr += 512*1024*2;
dev->ram_mask[c] = 0x1ff;
dev->row_phys_shift[c] = 10;
dev->ibank_shift[c] = 19;
dev->ram_interleaved[c] = 1;
break;
case BANK_1M:
addr += 2048*1024;
dev->ram_mask[c] = 0x3ff;
dev->row_phys_shift[c] = 11;
dev->ram_interleaved[c] = 0;
break;
case BANK_1M_INTERLEAVED:
addr += 2048*1024*2;
dev->ram_mask[c] = 0x3ff;
dev->row_phys_shift[c] = 11;
dev->ibank_shift[c] = 21;
dev->ram_interleaved[c] = 1;
break;
case BANK_4M:
addr += 8192*1024;
dev->ram_mask[c] = 0x7ff;
dev->row_phys_shift[c] = 12;
dev->ram_interleaved[c] = 0;
break;
case BANK_4M_INTERLEAVED:
addr += 8192*1024*2;
dev->ram_mask[c] = 0x7ff;
dev->row_phys_shift[c] = 12;
dev->ibank_shift[c] = 23;
dev->ram_interleaved[c] = 1;
break;
}
}
mem_set_mem_state(0xfe0000, 0x20000, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
return dev;
}
const device_t vlsi_scamp_device = {
"VLSI SCAMP",
0,
0,
scamp_init, scamp_close, NULL,
NULL, NULL, NULL,
NULL
};