Files
86Box/src/codegen_new/codegen.c
Jasmine Iwanek 5b894c32e6 Macro Cleaning
2025-02-08 01:28:24 -05:00

752 lines
26 KiB
C

#include <stdint.h>
#include <86box/86box.h>
#include "cpu.h"
#include <86box/mem.h>
#include <86box/plat_unused.h>
#include "x86_ops.h"
#include "codegen.h"
#include "x86.h"
#include "x86seg_common.h"
#include "x86seg.h"
#include "386_common.h"
#include "codegen_accumulate.h"
#include "codegen_allocator.h"
#include "codegen_backend.h"
#include "codegen_ir.h"
#include "codegen_ops.h"
#include "codegen_ops_helpers.h"
#define MAX_INSTRUCTION_COUNT 50
static struct {
uint32_t pc;
int op_ssegs;
x86seg *op_ea_seg;
uint32_t op_32;
int first_uop;
int TOP;
} codegen_instructions[MAX_INSTRUCTION_COUNT];
int
codegen_get_instruction_uop(codeblock_t *block, uint32_t pc, int *first_instruction, int *TOP)
{
for (uint8_t c = 0; c <= block->ins; c++) {
if (codegen_instructions[c].pc == pc) {
*first_instruction = c;
*TOP = codegen_instructions[c].TOP;
return codegen_instructions[c].first_uop;
}
}
*first_instruction = block->ins;
return -1;
}
void
codegen_set_loop_start(ir_data_t *ir, int first_instruction)
{
uop_MOV_IMM(ir, IREG_op32, codegen_instructions[first_instruction].op_32);
uop_MOV_PTR(ir, IREG_ea_seg, (void *) codegen_instructions[first_instruction].op_ea_seg);
uop_MOV_IMM(ir, IREG_ssegs, codegen_instructions[first_instruction].op_ssegs);
}
int has_ea;
codeblock_t *codeblock;
uint16_t *codeblock_hash;
void (*codegen_timing_start)(void);
void (*codegen_timing_prefix)(uint8_t prefix, uint32_t fetchdat);
void (*codegen_timing_opcode)(uint8_t opcode, uint32_t fetchdat, int op_32, uint32_t op_pc);
void (*codegen_timing_block_start)(void);
void (*codegen_timing_block_end)(void);
int (*codegen_timing_jump_cycles)(void);
void
codegen_timing_set(codegen_timing_t *timing)
{
codegen_timing_start = timing->start;
codegen_timing_prefix = timing->prefix;
codegen_timing_opcode = timing->opcode;
codegen_timing_block_start = timing->block_start;
codegen_timing_block_end = timing->block_end;
codegen_timing_jump_cycles = timing->jump_cycles;
}
int codegen_in_recompile;
static int last_op_ssegs;
static x86seg *last_op_ea_seg;
static uint32_t last_op_32;
void
codegen_generate_reset(void)
{
last_op_ssegs = -1;
last_op_ea_seg = NULL;
last_op_32 = -1;
has_ea = 0;
}
void
codegen_check_seg_read(UNUSED(codeblock_t *block), ir_data_t *ir, x86seg *seg)
{
/*Segments always valid in real/V86 mode*/
if (!(cr0 & 1) || (cpu_state.eflags & VM_FLAG))
return;
/*CS and SS must always be valid*/
if (seg == &cpu_state.seg_cs || seg == &cpu_state.seg_ss)
return;
if (seg->checked)
return;
if (seg == &cpu_state.seg_ds && codegen_flat_ds && !(cpu_cur_status & CPU_STATUS_NOTFLATDS))
return;
uop_CMP_IMM_JZ(ir, ireg_seg_base(seg), (uint32_t) -1, codegen_gpf_rout);
seg->checked = 1;
}
void
codegen_check_seg_write(UNUSED(codeblock_t *block), ir_data_t *ir, x86seg *seg)
{
/*Segments always valid in real/V86 mode*/
if (!(cr0 & 1) || (cpu_state.eflags & VM_FLAG))
return;
/*CS and SS must always be valid*/
if (seg == &cpu_state.seg_cs || seg == &cpu_state.seg_ss)
return;
if (seg->checked)
return;
if (seg == &cpu_state.seg_ds && codegen_flat_ds && !(cpu_cur_status & CPU_STATUS_NOTFLATDS))
return;
uop_CMP_IMM_JZ(ir, ireg_seg_base(seg), (uint32_t) -1, codegen_gpf_rout);
seg->checked = 1;
}
static x86seg *
codegen_generate_ea_16_long(ir_data_t *ir, x86seg *op_ea_seg, uint32_t fetchdat, int op_ssegs, uint32_t *op_pc)
{
uint32_t old_pc = (*op_pc) + 1;
if (!cpu_mod && cpu_rm == 6) {
uint16_t addr = (fetchdat >> 8) & 0xffff;
uop_MOV_IMM(ir, IREG_eaaddr, addr);
(*op_pc) += 2;
} else {
int base_reg;
int index_reg;
int offset;
switch (cpu_rm & 7) {
default:
case 0:
case 1:
case 7:
base_reg = IREG_EBX;
break;
case 2:
case 3:
case 6:
base_reg = IREG_EBP;
break;
case 4:
base_reg = IREG_ESI;
break;
case 5:
base_reg = IREG_EDI;
break;
}
uop_MOV(ir, IREG_eaaddr, base_reg);
if (!(cpu_rm & 4)) {
if (!(cpu_rm & 1))
index_reg = IREG_ESI;
else
index_reg = IREG_EDI;
uop_ADD(ir, IREG_eaaddr, IREG_eaaddr, index_reg);
}
switch (cpu_mod) {
case 1:
offset = (int) (int8_t) ((fetchdat >> 8) & 0xff);
uop_ADD_IMM(ir, IREG_eaaddr, IREG_eaaddr, offset);
(*op_pc)++;
break;
case 2:
offset = (fetchdat >> 8) & 0xffff;
uop_ADD_IMM(ir, IREG_eaaddr, IREG_eaaddr, offset);
(*op_pc) += 2;
break;
default:
break;
}
uop_AND_IMM(ir, IREG_eaaddr, IREG_eaaddr, 0xffff);
if (mod1seg[cpu_rm] == &ss && !op_ssegs) {
op_ea_seg = &cpu_state.seg_ss;
}
}
codegen_mark_code_present(ir->block, cs + old_pc, ((*op_pc) + 1) - old_pc);
return op_ea_seg;
}
static x86seg *
codegen_generate_ea_32_long(ir_data_t *ir, x86seg *op_ea_seg, uint32_t fetchdat, int op_ssegs, uint32_t *op_pc, int stack_offset)
{
codeblock_t *block = ir->block;
uint32_t old_pc = (*op_pc) + 1;
uint32_t new_eaaddr;
int extra_bytes = 0;
if (cpu_rm == 4) {
uint8_t sib = fetchdat >> 8;
(*op_pc)++;
switch (cpu_mod) {
case 0:
if ((sib & 7) == 5) {
if (block->flags & CODEBLOCK_NO_IMMEDIATES) {
LOAD_IMMEDIATE_FROM_RAM_32(block, ir, IREG_eaaddr, cs + (*op_pc) + 1);
extra_bytes = 1;
} else {
new_eaaddr = fastreadl(cs + (*op_pc) + 1);
uop_MOV_IMM(ir, IREG_eaaddr, new_eaaddr);
extra_bytes = 5;
}
(*op_pc) += 4;
} else {
uop_MOV(ir, IREG_eaaddr, sib & 7);
extra_bytes = 1;
}
break;
case 1:
new_eaaddr = (uint32_t) (int8_t) ((fetchdat >> 16) & 0xff);
uop_MOV_IMM(ir, IREG_eaaddr, new_eaaddr);
uop_ADD(ir, IREG_eaaddr, IREG_eaaddr, sib & 7);
(*op_pc)++;
extra_bytes = 2;
break;
case 2:
if (block->flags & CODEBLOCK_NO_IMMEDIATES) {
LOAD_IMMEDIATE_FROM_RAM_32(block, ir, IREG_eaaddr, cs + (*op_pc) + 1);
extra_bytes = 1;
} else {
new_eaaddr = fastreadl(cs + (*op_pc) + 1);
uop_MOV_IMM(ir, IREG_eaaddr, new_eaaddr);
extra_bytes = 5;
}
(*op_pc) += 4;
uop_ADD(ir, IREG_eaaddr, IREG_eaaddr, sib & 7);
break;
default:
break;
}
if (stack_offset && (sib & 7) == 4 && (cpu_mod || (sib & 7) != 5)) { /*ESP*/
uop_ADD_IMM(ir, IREG_eaaddr, IREG_eaaddr, stack_offset);
#if 0
addbyte(0x05);
addlong(stack_offset);
#endif
}
if (((sib & 7) == 4 || (cpu_mod && (sib & 7) == 5)) && !op_ssegs)
op_ea_seg = &cpu_state.seg_ss;
if (((sib >> 3) & 7) != 4) {
switch (sib >> 6) {
case 0:
uop_ADD(ir, IREG_eaaddr, IREG_eaaddr, (sib >> 3) & 7);
break;
case 1:
uop_ADD_LSHIFT(ir, IREG_eaaddr, IREG_eaaddr, (sib >> 3) & 7, 1);
break;
case 2:
uop_ADD_LSHIFT(ir, IREG_eaaddr, IREG_eaaddr, (sib >> 3) & 7, 2);
break;
case 3:
uop_ADD_LSHIFT(ir, IREG_eaaddr, IREG_eaaddr, (sib >> 3) & 7, 3);
break;
default:
break;
}
}
} else {
if (!cpu_mod && cpu_rm == 5) {
if (block->flags & CODEBLOCK_NO_IMMEDIATES) {
LOAD_IMMEDIATE_FROM_RAM_32(block, ir, IREG_eaaddr, cs + (*op_pc) + 1);
} else {
new_eaaddr = fastreadl(cs + (*op_pc) + 1);
uop_MOV_IMM(ir, IREG_eaaddr, new_eaaddr);
extra_bytes = 4;
}
(*op_pc) += 4;
} else {
uop_MOV(ir, IREG_eaaddr, cpu_rm);
if (cpu_mod) {
if (cpu_rm == 5 && !op_ssegs)
op_ea_seg = &cpu_state.seg_ss;
if (cpu_mod == 1) {
uop_ADD_IMM(ir, IREG_eaaddr, IREG_eaaddr, (uint32_t) (int8_t) (fetchdat >> 8));
(*op_pc)++;
extra_bytes = 1;
} else {
if (block->flags & CODEBLOCK_NO_IMMEDIATES) {
LOAD_IMMEDIATE_FROM_RAM_32(block, ir, IREG_temp0, cs + (*op_pc) + 1);
uop_ADD(ir, IREG_eaaddr, IREG_eaaddr, IREG_temp0);
} else {
new_eaaddr = fastreadl(cs + (*op_pc) + 1);
uop_ADD_IMM(ir, IREG_eaaddr, IREG_eaaddr, new_eaaddr);
extra_bytes = 4;
}
(*op_pc) += 4;
}
}
}
}
if (extra_bytes)
codegen_mark_code_present(ir->block, cs + old_pc, extra_bytes);
return op_ea_seg;
}
x86seg *
codegen_generate_ea(ir_data_t *ir, x86seg *op_ea_seg, uint32_t fetchdat, int op_ssegs, uint32_t *op_pc, uint32_t op_32, int stack_offset)
{
cpu_mod = (fetchdat >> 6) & 3;
cpu_reg = (fetchdat >> 3) & 7;
cpu_rm = fetchdat & 7;
if ((fetchdat & 0xc0) == 0xc0)
return NULL;
if (op_32 & 0x200)
return codegen_generate_ea_32_long(ir, op_ea_seg, fetchdat, op_ssegs, op_pc, stack_offset);
return codegen_generate_ea_16_long(ir, op_ea_seg, fetchdat, op_ssegs, op_pc);
}
// clang-format off
static uint8_t opcode_modrm[256] = {
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, /*00*/
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, /*10*/
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, /*20*/
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, /*30*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*40*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*50*/
0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, /*60*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*70*/
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /*80*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*90*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*a0*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*b0*/
1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, /*c0*/
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, /*d0*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*e0*/
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, /*f0*/
};
static uint8_t opcode_0f_modrm[256] = {
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, /*00*/
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, /*10*/
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*20*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, /*30*/
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /*40*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*50*/
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, /*60*/
0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, /*70*/
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*80*/
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /*90*/
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, /*a0*/
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, /*b0*/
1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, /*c0*/
0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, /*d0*/
0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, /*e0*/
0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0 /*f0*/
};
// clang-format on
void
codegen_generate_call(uint8_t opcode, OpFn op, uint32_t fetchdat, uint32_t new_pc, uint32_t old_pc)
{
codeblock_t *block = &codeblock[block_current];
ir_data_t *ir = codegen_get_ir_data();
uint32_t op_pc = new_pc;
const OpFn *op_table = x86_dynarec_opcodes;
RecompOpFn *recomp_op_table = recomp_opcodes;
int opcode_shift = 0;
int opcode_mask = 0x3ff;
uint32_t recomp_opcode_mask = 0x1ff;
uint32_t op_32 = use32;
int over = 0;
int test_modrm = 1;
int pc_off = 0;
uint32_t next_pc = 0;
#ifdef DEBUG_EXTRA
uint8_t last_prefix = 0;
#endif
op_ea_seg = &cpu_state.seg_ds;
op_ssegs = 0;
codegen_timing_start();
while (!over) {
switch (opcode) {
case 0x0f:
#ifdef DEBUG_EXTRA
last_prefix = 0x0f;
#endif
op_table = x86_dynarec_opcodes_0f;
recomp_op_table = fpu_softfloat ? recomp_opcodes_0f_no_mmx : recomp_opcodes_0f;
over = 1;
break;
case 0x26: /*ES:*/
op_ea_seg = &cpu_state.seg_es;
op_ssegs = 1;
break;
case 0x2e: /*CS:*/
op_ea_seg = &cpu_state.seg_cs;
op_ssegs = 1;
break;
case 0x36: /*SS:*/
op_ea_seg = &cpu_state.seg_ss;
op_ssegs = 1;
break;
case 0x3e: /*DS:*/
op_ea_seg = &cpu_state.seg_ds;
op_ssegs = 1;
break;
case 0x64: /*FS:*/
op_ea_seg = &cpu_state.seg_fs;
op_ssegs = 1;
break;
case 0x65: /*GS:*/
op_ea_seg = &cpu_state.seg_gs;
op_ssegs = 1;
break;
case 0x66: /*Data size select*/
op_32 = ((use32 & 0x100) ^ 0x100) | (op_32 & 0x200);
break;
case 0x67: /*Address size select*/
op_32 = ((use32 & 0x200) ^ 0x200) | (op_32 & 0x100);
break;
case 0xd8:
#ifdef DEBUG_EXTRA
last_prefix = 0xd8;
#endif
op_table = (op_32 & 0x200) ? x86_dynarec_opcodes_d8_a32 : x86_dynarec_opcodes_d8_a16;
recomp_op_table = fpu_softfloat ? NULL : recomp_opcodes_d8;
opcode_shift = 3;
opcode_mask = 0x1f;
over = 1;
pc_off = -1;
test_modrm = 0;
block->flags |= CODEBLOCK_HAS_FPU;
break;
case 0xd9:
#ifdef DEBUG_EXTRA
last_prefix = 0xd9;
#endif
op_table = (op_32 & 0x200) ? x86_dynarec_opcodes_d9_a32 : x86_dynarec_opcodes_d9_a16;
recomp_op_table = fpu_softfloat ? NULL : recomp_opcodes_d9;
opcode_mask = 0xff;
over = 1;
pc_off = -1;
test_modrm = 0;
block->flags |= CODEBLOCK_HAS_FPU;
break;
case 0xda:
#ifdef DEBUG_EXTRA
last_prefix = 0xda;
#endif
op_table = (op_32 & 0x200) ? x86_dynarec_opcodes_da_a32 : x86_dynarec_opcodes_da_a16;
recomp_op_table = fpu_softfloat ? NULL : recomp_opcodes_da;
opcode_mask = 0xff;
over = 1;
pc_off = -1;
test_modrm = 0;
block->flags |= CODEBLOCK_HAS_FPU;
break;
case 0xdb:
#ifdef DEBUG_EXTRA
last_prefix = 0xdb;
#endif
op_table = (op_32 & 0x200) ? x86_dynarec_opcodes_db_a32 : x86_dynarec_opcodes_db_a16;
recomp_op_table = fpu_softfloat ? NULL : recomp_opcodes_db;
opcode_mask = 0xff;
over = 1;
pc_off = -1;
test_modrm = 0;
block->flags |= CODEBLOCK_HAS_FPU;
break;
case 0xdc:
#ifdef DEBUG_EXTRA
last_prefix = 0xdc;
#endif
op_table = (op_32 & 0x200) ? x86_dynarec_opcodes_dc_a32 : x86_dynarec_opcodes_dc_a16;
recomp_op_table = fpu_softfloat ? NULL : recomp_opcodes_dc;
opcode_shift = 3;
opcode_mask = 0x1f;
over = 1;
pc_off = -1;
test_modrm = 0;
block->flags |= CODEBLOCK_HAS_FPU;
break;
case 0xdd:
#ifdef DEBUG_EXTRA
last_prefix = 0xdd;
#endif
op_table = (op_32 & 0x200) ? x86_dynarec_opcodes_dd_a32 : x86_dynarec_opcodes_dd_a16;
recomp_op_table = fpu_softfloat ? NULL : recomp_opcodes_dd;
opcode_mask = 0xff;
over = 1;
pc_off = -1;
test_modrm = 0;
block->flags |= CODEBLOCK_HAS_FPU;
break;
case 0xde:
#ifdef DEBUG_EXTRA
last_prefix = 0xde;
#endif
op_table = (op_32 & 0x200) ? x86_dynarec_opcodes_de_a32 : x86_dynarec_opcodes_de_a16;
recomp_op_table = fpu_softfloat ? NULL : recomp_opcodes_de;
opcode_mask = 0xff;
over = 1;
pc_off = -1;
test_modrm = 0;
block->flags |= CODEBLOCK_HAS_FPU;
break;
case 0xdf:
#ifdef DEBUG_EXTRA
last_prefix = 0xdf;
#endif
op_table = (op_32 & 0x200) ? x86_dynarec_opcodes_df_a32 : x86_dynarec_opcodes_df_a16;
recomp_op_table = fpu_softfloat ? NULL : recomp_opcodes_df;
opcode_mask = 0xff;
over = 1;
pc_off = -1;
test_modrm = 0;
block->flags |= CODEBLOCK_HAS_FPU;
break;
case 0xf0: /*LOCK*/
break;
case 0xf2: /*REPNE*/
#ifdef DEBUG_EXTRA
last_prefix = 0xf2;
#endif
op_table = x86_dynarec_opcodes_REPNE;
recomp_op_table = NULL; // recomp_opcodes_REPNE;
break;
case 0xf3: /*REPE*/
#ifdef DEBUG_EXTRA
last_prefix = 0xf3;
#endif
op_table = x86_dynarec_opcodes_REPE;
recomp_op_table = NULL; // recomp_opcodes_REPE;
break;
default:
goto generate_call;
}
fetchdat = fastreadl(cs + op_pc);
codegen_timing_prefix(opcode, fetchdat);
if (cpu_state.abrt)
return;
opcode = fetchdat & 0xff;
if (!pc_off)
fetchdat >>= 8;
op_pc++;
}
generate_call:
codegen_instructions[block->ins].pc = cpu_state.oldpc;
codegen_instructions[block->ins].op_ssegs = last_op_ssegs;
codegen_instructions[block->ins].op_ea_seg = last_op_ea_seg;
codegen_instructions[block->ins].op_32 = last_op_32;
codegen_instructions[block->ins].TOP = cpu_state.TOP;
codegen_instructions[block->ins].first_uop = ir->wr_pos;
codegen_timing_opcode(opcode, fetchdat, op_32, op_pc);
codegen_accumulate(ir, ACCREG_cycles, -codegen_block_cycles);
codegen_block_cycles = 0;
if ((op_table == x86_dynarec_opcodes && ((opcode & 0xf0) == 0x70 || (opcode & 0xfc) == 0xe0 || opcode == 0xc2 || (opcode & 0xfe) == 0xca || (opcode & 0xfc) == 0xcc || (opcode & 0xfc) == 0xe8 || (opcode == 0xff && ((fetchdat & 0x38) >= 0x10 && (fetchdat & 0x38) < 0x30)))) || (op_table == x86_dynarec_opcodes_0f && ((opcode & 0xf0) == 0x80))) {
/*On some CPUs (eg K6), a jump/branch instruction may be able to pair with
subsequent instructions, so no cycles may have been deducted for it yet.
To prevent having zero cycle blocks (eg with a jump instruction pointing
to itself), apply the cycles that would be taken if this jump is taken,
then reverse it for subsequent instructions if the jump is not taken*/
int jump_cycles = 0;
if (codegen_timing_jump_cycles)
codegen_timing_jump_cycles();
if (jump_cycles)
codegen_accumulate(ir, ACCREG_cycles, -jump_cycles);
codegen_accumulate_flush(ir);
if (jump_cycles)
codegen_accumulate(ir, ACCREG_cycles, jump_cycles);
}
if (op_table == x86_dynarec_opcodes_0f && opcode == 0x0f) {
/*3DNow opcodes are stored after ModR/M, SIB and any offset*/
uint8_t modrm = fetchdat & 0xff;
uint8_t sib = (fetchdat >> 8) & 0xff;
uint32_t opcode_pc = op_pc + 1;
uint8_t opcode_3dnow;
if ((modrm & 0xc0) != 0xc0) {
if (op_32 & 0x200) {
if ((modrm & 7) == 4) {
/* Has SIB*/
opcode_pc++;
if ((modrm & 0xc0) == 0x40)
opcode_pc++;
else if ((modrm & 0xc0) == 0x80)
opcode_pc += 4;
else if ((sib & 0x07) == 0x05)
opcode_pc += 4;
} else {
if ((modrm & 0xc0) == 0x40)
opcode_pc++;
else if ((modrm & 0xc0) == 0x80)
opcode_pc += 4;
else if ((modrm & 0xc7) == 0x05)
opcode_pc += 4;
}
} else {
if ((modrm & 0xc0) == 0x40)
opcode_pc++;
else if ((modrm & 0xc0) == 0x80)
opcode_pc += 2;
else if ((modrm & 0xc7) == 0x06)
opcode_pc += 2;
}
}
opcode_3dnow = fastreadb(cs + opcode_pc);
if (!fpu_softfloat && recomp_opcodes_3DNOW[opcode_3dnow]) {
next_pc = opcode_pc + 1;
op_table = x86_dynarec_opcodes_3DNOW;
recomp_op_table = fpu_softfloat ? NULL : recomp_opcodes_3DNOW;
opcode = opcode_3dnow;
recomp_opcode_mask = 0xff;
opcode_mask = 0xff;
}
}
codegen_mark_code_present(block, cs + old_pc, (op_pc - old_pc) - pc_off);
/* It is apparently a prefixed instruction. */
#if 0
if ((recomp_op_table == recomp_opcodes) && (opcode == 0x48))
goto codegen_skip;
#endif
if (recomp_op_table && recomp_op_table[(opcode | op_32) & recomp_opcode_mask]) {
uint32_t new_pc = recomp_op_table[(opcode | op_32) & recomp_opcode_mask](block, ir, opcode, fetchdat, op_32, op_pc);
if (new_pc) {
if (new_pc != -1)
uop_MOV_IMM(ir, IREG_pc, new_pc);
codegen_endpc = (cs + cpu_state.pc) + 8;
block->ins++;
if (block->ins >= MAX_INSTRUCTION_COUNT)
CPU_BLOCK_END();
return;
}
}
// codegen_skip:
if ((op_table == x86_dynarec_opcodes_REPNE || op_table == x86_dynarec_opcodes_REPE) && !op_table[opcode | op_32]) {
op_table = x86_dynarec_opcodes;
recomp_op_table = recomp_opcodes;
}
op = op_table[((opcode >> opcode_shift) | op_32) & opcode_mask];
if (!test_modrm || (op_table == x86_dynarec_opcodes && opcode_modrm[opcode]) || (op_table == x86_dynarec_opcodes_0f && opcode_0f_modrm[opcode]) || (op_table == x86_dynarec_opcodes_3DNOW)) {
int stack_offset = 0;
if (op_table == x86_dynarec_opcodes && opcode == 0x8f) /*POP*/
stack_offset = (op_32 & 0x100) ? 4 : 2;
cpu_mod = (fetchdat >> 6) & 3;
cpu_reg = (fetchdat >> 3) & 7;
cpu_rm = fetchdat & 7;
uop_MOV_IMM(ir, IREG_rm_mod_reg, cpu_rm | (cpu_mod << 8) | (cpu_reg << 16));
op_pc += pc_off;
if (cpu_mod != 3 && !(op_32 & 0x200)) {
op_ea_seg = codegen_generate_ea_16_long(ir, op_ea_seg, fetchdat, op_ssegs, &op_pc);
}
if (cpu_mod != 3 && (op_32 & 0x200)) {
op_ea_seg = codegen_generate_ea_32_long(ir, op_ea_seg, fetchdat, op_ssegs, &op_pc, stack_offset);
}
op_pc -= pc_off;
}
#ifdef DEBUG_EXTRA
uop_LOG_INSTR(ir, opcode | (last_prefix << 8));
#endif
codegen_accumulate_flush(ir);
if (op_table == x86_dynarec_opcodes_3DNOW)
uop_MOV_IMM(ir, IREG_pc, next_pc);
else
uop_MOV_IMM(ir, IREG_pc, op_pc + pc_off);
uop_MOV_IMM(ir, IREG_oldpc, old_pc);
if (op_32 != last_op_32)
uop_MOV_IMM(ir, IREG_op32, op_32);
if (op_ea_seg != last_op_ea_seg)
uop_MOV_PTR(ir, IREG_ea_seg, (void *) op_ea_seg);
if (op_ssegs != last_op_ssegs)
uop_MOV_IMM(ir, IREG_ssegs, op_ssegs);
uop_LOAD_FUNC_ARG_IMM(ir, 0, fetchdat);
uop_CALL_INSTRUCTION_FUNC(ir, op);
codegen_flags_changed = 0;
codegen_mark_code_present(block, cs + cpu_state.pc, 8);
last_op_32 = op_32;
last_op_ea_seg = op_ea_seg;
last_op_ssegs = op_ssegs;
#if 0
codegen_block_ins++;
#endif
block->ins++;
if (block->ins >= MAX_INSTRUCTION_COUNT)
CPU_BLOCK_END();
codegen_endpc = (cs + cpu_state.pc) + 8;
#if 0
if (has_ea)
fatal("Has EA\n");
#endif
}