Files
86Box/src/scsi/scsi_pcscsi.c
TC1995 84464dfe41 AMD 53c974 changes and fixes (July 27th, 2025)
1. Implemented as best as possible the MDL S/G required by NeXTSTEP/OPENSTEP, fixes detection of storage devices.
2. Timer bits from the Clock registers are now implemented.
2025-07-27 19:57:45 +02:00

2624 lines
77 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Implementation of the Tekram DC-390 SCSI and related MCA
* controllers using the NCR 53c9x series of chips.
*
*
*
* Authors: Fabrice Bellard (QEMU)
* Herve Poussineau (QEMU)
* TheCollector1995, <mariogplayer@gmail.com>
* Miran Grca, <mgrca8@gmail.com>
*
* Copyright 2005-2018 Fabrice Bellard.
* Copyright 2012-2018 Herve Poussineau.
* Copyright 2017-2018 Miran Grca.
*/
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#define HAVE_STDARG_H
#include <wchar.h>
#include <86box/86box.h>
#include <86box/io.h>
#include <86box/timer.h>
#include <86box/dma.h>
#include <86box/pic.h>
#include <86box/mem.h>
#include <86box/rom.h>
#include <86box/mca.h>
#include <86box/pci.h>
#include <86box/device.h>
#include <86box/nvr.h>
#include <86box/plat.h>
#include <86box/scsi.h>
#include <86box/scsi_device.h>
#include <86box/scsi_pcscsi.h>
#include <86box/vid_ati_eeprom.h>
#include <86box/fifo8.h>
#include "cpu.h"
#define DC390_ROM "roms/scsi/esp_pci/INT13.BIN"
#define AM53C974_ROM "roms/scsi/esp_pci/harom.bin"
#define ESP_REGS 16
#define ESP_FIFO_SZ 16
#define ESP_CMDFIFO_SZ 32
enum ESPASCMode {
ESP_ASC_MODE_DIS = 0, /* Disconnected */
ESP_ASC_MODE_INI = 1, /* Initiator */
ESP_ASC_MODE_TGT = 2 /* Target */
};
#define ESP_TCLO 0x0
#define ESP_TCMID 0x1
#define ESP_FIFO 0x2
#define ESP_CMD 0x3
#define ESP_RSTAT 0x4
#define ESP_WBUSID 0x4
#define ESP_RINTR 0x5
#define ESP_WSEL 0x5
#define ESP_RSEQ 0x6
#define ESP_WSYNTP 0x6
#define ESP_RFLAGS 0x7
#define ESP_WSYNO 0x7
#define ESP_CFG1 0x8
#define ESP_RRES1 0x9
#define ESP_WCCF 0x9
#define ESP_RRES2 0xa
#define ESP_WTEST 0xa
#define ESP_CFG2 0xb
#define ESP_CFG3 0xc
#define ESP_RES3 0xd
#define ESP_TCHI 0xe
#define ESP_RES4 0xf
#define CMD_DMA 0x80
#define CMD_CMD 0x7f
#define CMD_GRP_MASK 0x70
#define CMD_GRP_MISC 0x00
#define CMD_GRP_INIT 0x01
#define CMD_GRP_TRGT 0x02
#define CMD_GRP_DISC 0x04
#define CMD_NOP 0x00
#define CMD_FLUSH 0x01
#define CMD_RESET 0x02
#define CMD_BUSRESET 0x03
#define CMD_TI 0x10
#define CMD_ICCS 0x11
#define CMD_MSGACC 0x12
#define CMD_PAD 0x18
#define CMD_SATN 0x1a
#define CMD_RSTATN 0x1b
#define CMD_SEL 0x41
#define CMD_SELATN 0x42
#define CMD_SELATNS 0x43
#define CMD_ENSEL 0x44
#define CMD_DISSEL 0x45
#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MO 0x06
#define STAT_MI 0x07
#define STAT_PIO_MASK 0x06
#define STAT_TC 0x10
#define STAT_PE 0x20
#define STAT_GE 0x40
#define STAT_INT 0x80
#define BUSID_DID 0x07
#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20
#define INTR_IL 0x40
#define INTR_RST 0x80
#define SEQ_0 0x0
#define SEQ_MO 0x1
#define SEQ_CD 0x4
#define CFG1_RESREPT 0x40
#define TCHI_FAS100A 0x04
#define TCHI_AM53C974 0x12
#define DMA_CMD 0x0
#define DMA_STC 0x1
#define DMA_SPA 0x2
#define DMA_WBC 0x3
#define DMA_WAC 0x4
#define DMA_STAT 0x5
#define DMA_SMDLA 0x6
#define DMA_WMAC 0x7
#define DMA_CMD_MASK 0x03
#define DMA_CMD_DIAG 0x04
#define DMA_CMD_MDL 0x10
#define DMA_CMD_INTE_P 0x20
#define DMA_CMD_INTE_D 0x40
#define DMA_CMD_DIR 0x80
#define DMA_STAT_PWDN 0x01
#define DMA_STAT_ERROR 0x02
#define DMA_STAT_ABORT 0x04
#define DMA_STAT_DONE 0x08
#define DMA_STAT_SCSIINT 0x10
#define DMA_STAT_BCMBLT 0x20
#define SBAC_STATUS (1 << 24)
#define SBAC_PABTEN (1 << 25)
typedef struct esp_t {
mem_mapping_t mmio_mapping;
mem_mapping_t ram_mapping;
char nvr_path[64];
uint8_t pci_slot;
int has_bios;
int BIOSBase;
int MMIOBase;
rom_t bios;
ati_eeprom_t eeprom;
int PCIBase;
uint8_t rregs[ESP_REGS];
uint8_t wregs[ESP_REGS];
int irq;
int tchi_written;
uint32_t ti_size;
uint32_t status;
uint32_t dma;
Fifo8 fifo;
uint8_t bus;
uint8_t id, lun;
Fifo8 cmdfifo;
uint8_t cmdfifo_cdb_offset;
uint8_t asc_mode;
int data_ready;
int32_t xfer_counter;
int dma_enabled;
uint32_t buffer_pos;
uint32_t dma_regs[8];
uint32_t sbac;
double period;
pc_timer_t timer;
int local;
int mca;
uint16_t Base;
uint8_t HostID;
uint8_t DmaChannel;
struct {
uint8_t mode;
uint8_t status;
int interrupt;
int pos;
} dma_86c01;
uint8_t irq_state;
uint8_t pos_regs[8];
} esp_t;
#define READ_FROM_DEVICE 1
#define WRITE_TO_DEVICE 0
uint8_t esp_pci_regs[256];
bar_t esp_pci_bar[2];
#ifdef ENABLE_ESP_LOG
int esp_do_log = ENABLE_ESP_LOG;
static void
esp_log(const char *fmt, ...)
{
va_list ap;
if (esp_do_log) {
va_start(ap, fmt);
pclog_ex(fmt, ap);
va_end(ap);
}
}
#else
# define esp_log(fmt, ...)
#endif
static void esp_dma_enable(esp_t *dev, int level);
static void esp_do_dma(esp_t *dev);
static void esp_do_nodma(esp_t *dev);
static void esp_pci_dma_memory_rw(esp_t *dev, uint8_t *buf, uint32_t len, int dir);
static void esp_timer_on(esp_t *dev, scsi_device_t *sd, double p);
static void esp_command_complete(void *priv, uint32_t status);
static void esp_dma_ti_check(esp_t *dev);
static void esp_nodma_ti_dataout(esp_t *dev);
static void esp_pci_soft_reset(esp_t *dev);
static void esp_pci_hard_reset(esp_t *dev);
static void handle_ti(esp_t *dev);
static int
esp_cdb_length(uint8_t *buf)
{
int cdb_len;
switch (buf[0] >> 5) {
case 0:
case 3:
cdb_len = 6;
break;
case 1:
case 2:
case 6: /*Vendor unique*/
cdb_len = 10;
break;
case 4:
cdb_len = 16;
break;
case 5:
cdb_len = 12;
break;
default:
cdb_len = -1;
break;
}
return cdb_len;
}
static void
esp_pci_update_irq(esp_t *dev)
{
int scsi_level = !!(dev->dma_regs[DMA_STAT] & DMA_STAT_SCSIINT);
int dma_level = (dev->dma_regs[DMA_CMD] & DMA_CMD_INTE_D) ?
!!(dev->dma_regs[DMA_STAT] & DMA_STAT_DONE) : 0;
int level = scsi_level || dma_level;
if (level) {
pci_set_irq(dev->pci_slot, PCI_INTA, &dev->irq_state);
esp_log("Raising PCI IRQ...\n");
} else {
pci_clear_irq(dev->pci_slot, PCI_INTA, &dev->irq_state);
esp_log("Lowering PCI IRQ...\n");
}
}
static void
esp_irq(esp_t *dev, int level)
{
if (dev->mca) {
if (level) {
picintlevel(1 << dev->irq, &dev->irq_state);
dev->dma_86c01.mode |= 0x40;
esp_log("Raising IRQ...\n");
} else {
picintclevel(1 << dev->irq, &dev->irq_state);
dev->dma_86c01.mode &= ~0x40;
esp_log("Lowering IRQ...\n");
}
} else {
if (level) {
dev->dma_regs[DMA_STAT] |= DMA_STAT_SCSIINT;
/*
* If raising the ESP IRQ to indicate end of DMA transfer, set
* DMA_STAT_DONE at the same time. In theory this should be done in
* esp_pci_dma_memory_rw(), however there is a delay between setting
* DMA_STAT_DONE and the ESP IRQ arriving which is visible to the
* guest that can cause confusion e.g. Linux
*/
if (((dev->dma_regs[DMA_CMD] & DMA_CMD_MASK) == 0x03) &&
(dev->dma_regs[DMA_WBC] == 0))
dev->dma_regs[DMA_STAT] |= DMA_STAT_DONE;
} else
dev->dma_regs[DMA_STAT] &= ~DMA_STAT_SCSIINT;
esp_pci_update_irq(dev);
}
}
static void
esp_raise_irq(esp_t *dev)
{
if (!(dev->rregs[ESP_RSTAT] & STAT_INT)) {
dev->rregs[ESP_RSTAT] |= STAT_INT;
esp_irq(dev, 1);
}
}
static void
esp_lower_irq(esp_t *dev)
{
if (dev->rregs[ESP_RSTAT] & STAT_INT) {
dev->rregs[ESP_RSTAT] &= ~STAT_INT;
esp_irq(dev, 0);
}
}
static void
esp_set_phase(esp_t *dev, uint8_t phase)
{
dev->rregs[ESP_RSTAT] &= ~7;
dev->rregs[ESP_RSTAT] |= phase;
}
static uint8_t
esp_get_phase(esp_t *dev)
{
return dev->rregs[ESP_RSTAT] & 7;
}
static void
esp_fifo_push(esp_t *dev, uint8_t val)
{
if (fifo8_num_used(&dev->fifo) == dev->fifo.capacity)
return;
fifo8_push(&dev->fifo, val);
}
static uint8_t
esp_fifo_pop(esp_t *dev)
{
uint8_t val;
if (fifo8_is_empty(&dev->fifo))
val = 0;
else
val = fifo8_pop(&dev->fifo);
return val;
}
static uint32_t
esp_fifo_pop_buf(esp_t *dev, uint8_t *dest, int maxlen)
{
uint32_t len = fifo8_pop_buf(&dev->fifo, dest, maxlen);
return len;
}
static uint32_t
esp_get_tc(esp_t *dev)
{
uint32_t dmalen;
dmalen = dev->rregs[ESP_TCLO] & 0xff;
dmalen |= dev->rregs[ESP_TCMID] << 8;
dmalen |= dev->rregs[ESP_TCHI] << 16;
return dmalen;
}
static void
esp_set_tc(esp_t *dev, uint32_t dmalen)
{
uint32_t old_tc = esp_get_tc(dev);
dev->rregs[ESP_TCLO] = dmalen & 0xff;
dev->rregs[ESP_TCMID] = dmalen >> 8;
dev->rregs[ESP_TCHI] = dmalen >> 16;
esp_log("OLDTC=%d, DMALEN=%d.\n", old_tc, dmalen);
if (old_tc && !dmalen)
dev->rregs[ESP_RSTAT] |= STAT_TC;
}
static uint32_t
esp_get_stc(esp_t *dev)
{
uint32_t dmalen;
dmalen = dev->wregs[ESP_TCLO] & 0xff;
dmalen |= (dev->wregs[ESP_TCMID] << 8);
dmalen |= (dev->wregs[ESP_TCHI] << 16);
esp_log("STCW=%d.\n", dmalen);
return dmalen;
}
static int
esp_select(esp_t *dev)
{
scsi_device_t *sd;
dev->id = dev->wregs[ESP_WBUSID] & BUSID_DID;
sd = &scsi_devices[dev->bus][dev->id];
dev->ti_size = 0;
dev->rregs[ESP_RSEQ] = SEQ_0;
if (!scsi_device_present(sd)) {
esp_log("ESP SCSI no devices on ID %d, LUN %d\n", dev->id, dev->lun);
/* No such drive */
dev->rregs[ESP_RSTAT] = 0;
dev->asc_mode = ESP_ASC_MODE_DIS;
dev->rregs[ESP_RINTR] = INTR_DC;
esp_raise_irq(dev);
return -1;
} else
esp_log("ESP SCSI device present on ID %d, LUN %d\n", dev->id, dev->lun);
dev->asc_mode = ESP_ASC_MODE_INI;
return 0;
}
/* Callback to indicate that the SCSI layer has completed a transfer. */
static void
esp_transfer_data(esp_t *dev)
{
if (!dev->data_ready) {
dev->data_ready = 1;
switch (dev->rregs[ESP_CMD]) {
case CMD_SEL:
case (CMD_SEL | CMD_DMA):
case CMD_SELATN:
case (CMD_SELATN | CMD_DMA):
/*
* Initial incoming data xfer is complete for sequencer command
* so raise deferred bus service and function complete interrupt
*/
dev->rregs[ESP_RINTR] |= (INTR_BS | INTR_FC);
dev->rregs[ESP_RSEQ] = SEQ_CD;
esp_raise_irq(dev);
break;
case CMD_SELATNS:
case (CMD_SELATNS | CMD_DMA):
/*
* Initial incoming data xfer is complete so raise command
* completion interrupt
*/
dev->rregs[ESP_RINTR] |= INTR_BS;
dev->rregs[ESP_RSEQ] = SEQ_MO;
esp_raise_irq(dev);
break;
case CMD_TI:
case (CMD_TI | CMD_DMA):
/*
* If the final COMMAND phase data was transferred using a TI
* command, clear ESP_CMD to terminate the TI command and raise
* the completion interrupt
*/
dev->rregs[ESP_CMD] = 0;
dev->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(dev);
break;
default:
break;
}
}
/*
* Always perform the initial transfer upon reception of the next TI
* command to ensure the DMA/non-DMA status of the command is correct.
* It is not possible to use s->dma directly in the section below as
* some OSs send non-DMA NOP commands after a DMA transfer. Hence if the
* async data transfer is delayed then s->dma is set incorrectly.
*/
if (dev->rregs[ESP_CMD] == (CMD_TI | CMD_DMA)) {
/* When the SCSI layer returns more data, raise deferred INTR_BS */
esp_dma_ti_check(dev);
esp_do_dma(dev);
} else if (dev->rregs[ESP_CMD] == CMD_TI)
esp_do_nodma(dev);
}
static void
esp_do_command_phase(esp_t *dev)
{
uint32_t cmdlen;
uint8_t buf[ESP_CMDFIFO_SZ];
scsi_device_t *sd;
sd = &scsi_devices[dev->bus][dev->id];
sd->buffer_length = -1;
cmdlen = fifo8_num_used(&dev->cmdfifo);
if (!cmdlen)
return;
fifo8_pop_buf(&dev->cmdfifo, buf, cmdlen);
for (int i = 0; i < cmdlen; i++)
esp_log("CDB[%i] = %02x\n", i, buf[i]);
scsi_device_command_phase0(sd, buf);
dev->buffer_pos = 0;
dev->ti_size = sd->buffer_length;
dev->xfer_counter = sd->buffer_length;
esp_log("ESP SCSI Command = 0x%02x, ID = %d, LUN = %d, len = %d, phase = %02x.\n", buf[0], dev->id, dev->lun, sd->buffer_length, sd->phase);
fifo8_reset(&dev->cmdfifo);
dev->data_ready = 0;
if (sd->buffer_length > 0) {
if (sd->phase == SCSI_PHASE_DATA_IN) {
esp_set_phase(dev, STAT_DI);
esp_log("ESP Data In\n");
esp_timer_on(dev, sd, scsi_device_get_callback(sd));
} else if (sd->phase == SCSI_PHASE_DATA_OUT) {
esp_set_phase(dev, STAT_DO);
dev->ti_size = -sd->buffer_length;
esp_log("ESP Data Out\n");
esp_timer_on(dev, sd, scsi_device_get_callback(sd));
}
esp_log("ESP SCSI Start reading/writing\n");
esp_do_dma(dev);
} else {
esp_log("ESP SCSI Command with no length\n");
esp_command_complete(dev, sd->status);
}
esp_transfer_data(dev);
}
static void
esp_do_message_phase(esp_t *dev)
{
int len;
uint8_t message;
if (dev->cmdfifo_cdb_offset) {
message = fifo8_is_empty(&dev->cmdfifo) ? 0 :
fifo8_pop(&dev->cmdfifo);
dev->lun = message & 7;
dev->cmdfifo_cdb_offset--;
if (scsi_device_present(&scsi_devices[dev->bus][dev->id]) && (dev->lun > 0)) {
/* We only support LUN 0 */
esp_log("LUN = %i\n", dev->lun);
dev->rregs[ESP_RSTAT] = 0;
dev->asc_mode = ESP_ASC_MODE_DIS;
dev->rregs[ESP_RINTR] = INTR_DC;
dev->rregs[ESP_RSEQ] = SEQ_0;
esp_raise_irq(dev);
fifo8_reset(&dev->cmdfifo);
return;
}
scsi_device_identify(&scsi_devices[dev->bus][dev->id], dev->lun);
}
esp_log("CDB offset = %i\n", dev->cmdfifo_cdb_offset);
if (dev->cmdfifo_cdb_offset) {
len = MIN(dev->cmdfifo_cdb_offset, fifo8_num_used(&dev->cmdfifo));
fifo8_drop(&dev->cmdfifo, len);
dev->cmdfifo_cdb_offset = 0;
}
}
static void
esp_do_cmd(esp_t *dev)
{
esp_log("DO CMD.\n");
esp_do_message_phase(dev);
assert(dev->cmdfifo_cdb_offset == 0);
esp_do_command_phase(dev);
}
static void
esp_dma_enable(esp_t *dev, int level)
{
if (level) {
esp_log("ESP DMA Enabled\n");
dev->dma_enabled = 1;
timer_stop(&dev->timer);
if (((dev->rregs[ESP_CMD] & CMD_CMD) != CMD_TI) && ((dev->rregs[ESP_CMD] & CMD_CMD) != CMD_PAD)) {
if (dev->wregs[ESP_WCCF] & 0x07)
timer_on_auto(&dev->timer, ((double)(dev->wregs[ESP_WCCF] & 0x07)) * 5.0);
else
timer_on_auto(&dev->timer, 40.0);
} else {
esp_log("Period = %lf\n", dev->period);
timer_on_auto(&dev->timer, dev->period);
}
} else {
esp_log("ESP DMA Disabled\n");
dev->dma_enabled = 0;
}
}
static void
esp_hard_reset(esp_t *dev)
{
memset(dev->rregs, 0, ESP_REGS);
memset(dev->wregs, 0, ESP_REGS);
dev->ti_size = 0;
fifo8_reset(&dev->fifo);
fifo8_reset(&dev->cmdfifo);
dev->dma = 0;
dev->tchi_written = 0;
dev->asc_mode = ESP_ASC_MODE_DIS;
dev->rregs[ESP_CFG1] = dev->mca ? dev->HostID : 7;
esp_log("ESP Reset\n");
timer_stop(&dev->timer);
}
static int
esp_cdb_ready(esp_t *dev)
{
int len = fifo8_num_used(&dev->cmdfifo) - dev->cmdfifo_cdb_offset;
const uint8_t *pbuf;
uint32_t n;
int cdblen;
if (len <= 0)
return 0;
pbuf = fifo8_peek_bufptr(&dev->cmdfifo, len, &n);
if (n < len) {
/*
* In normal use the cmdfifo should never wrap, but include this check
* to prevent a malicious guest from reading past the end of the
* cmdfifo data buffer below
*/
return 0;
}
cdblen = esp_cdb_length((uint8_t *)&pbuf[dev->cmdfifo_cdb_offset]);
return (cdblen < 0) ? 0 : (len >= cdblen);
}
static void
esp_dma_ti_check(esp_t *dev)
{
if ((esp_get_tc(dev) == 0) && (fifo8_num_used(&dev->fifo) < 2)) {
dev->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(dev);
}
}
static void
esp_do_dma(esp_t *dev)
{
scsi_device_t *sd = &scsi_devices[dev->bus][dev->id];
uint8_t buf[ESP_CMDFIFO_SZ];
uint32_t len;
len = esp_get_tc(dev);
esp_log("ESP SCSI Actual DMA len=%d, cfg3=%02x.\n", len, dev->rregs[ESP_CFG3]);
switch (esp_get_phase(dev)) {
case STAT_MO:
len = MIN(len, fifo8_num_free(&dev->cmdfifo));
esp_log("ESP SCSI Message Out len=%d.\n", len);
if (len) {
if (dev->mca) {
dma_set_drq(dev->DmaChannel, 1);
while (dev->dma_86c01.pos < len) {
int val = dma_channel_read(dev->DmaChannel);
buf[dev->dma_86c01.pos++] = val & 0xff;
}
dev->dma_86c01.pos = 0;
dma_set_drq(dev->DmaChannel, 0);
} else
esp_pci_dma_memory_rw(dev, buf, len, WRITE_TO_DEVICE);
esp_set_tc(dev, esp_get_tc(dev) - len);
}
fifo8_push_all(&dev->cmdfifo, buf, len);
dev->cmdfifo_cdb_offset += len;
switch (dev->rregs[ESP_CMD]) {
case (CMD_SELATN | CMD_DMA):
if (fifo8_num_used(&dev->cmdfifo) >= 1) {
/* First byte received, switch to command phase */
esp_set_phase(dev, STAT_CD);
dev->rregs[ESP_RSEQ] = SEQ_CD;
dev->cmdfifo_cdb_offset = 1;
if (fifo8_num_used(&dev->cmdfifo) > 1) {
/* Process any additional command phase data */
esp_do_dma(dev);
}
}
break;
case (CMD_SELATNS | CMD_DMA):
if (fifo8_num_used(&dev->cmdfifo) == 1) {
/* First byte received, stop in message out phase */
dev->rregs[ESP_RSEQ] = SEQ_MO;
dev->cmdfifo_cdb_offset = 1;
/* Raise command completion interrupt */
dev->rregs[ESP_RINTR] |= (INTR_BS | INTR_FC);
esp_raise_irq(dev);
}
break;
case (CMD_TI | CMD_DMA):
/* ATN remains asserted until TC == 0 */
if (esp_get_tc(dev) == 0) {
esp_set_phase(dev, STAT_CD);
dev->rregs[ESP_CMD] = 0;
dev->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(dev);
}
break;
default:
break;
}
break;
case STAT_CD:
len = MIN(len, fifo8_num_free(&dev->cmdfifo));
if (len) {
if (dev->mca) {
dma_set_drq(dev->DmaChannel, 1);
while (dev->dma_86c01.pos < len) {
int val = dma_channel_read(dev->DmaChannel);
buf[dev->dma_86c01.pos++] = val & 0xff;
}
dev->dma_86c01.pos = 0;
dma_set_drq(dev->DmaChannel, 0);
} else
esp_pci_dma_memory_rw(dev, buf, len, WRITE_TO_DEVICE);
fifo8_push_all(&dev->cmdfifo, buf, len);
esp_set_tc(dev, esp_get_tc(dev) - len);
}
dev->ti_size = 0;
if (esp_get_tc(dev) == 0) {
/* Command has been received */
esp_do_cmd(dev);
}
break;
case STAT_DO:
if (!dev->xfer_counter && esp_get_tc(dev)) {
/* Defer until data is available. */
return;
}
if (len > dev->xfer_counter)
len = dev->xfer_counter;
switch (dev->rregs[ESP_CMD]) {
case (CMD_TI | CMD_DMA):
if (len) {
if (dev->mca) {
dma_set_drq(dev->DmaChannel, 1);
while (dev->dma_86c01.pos < len) {
int val = dma_channel_read(dev->DmaChannel);
esp_log("ESP SCSI DMA write for 53C9x: pos = %i, val = %02x\n", dev->dma_86c01.pos, val & 0xff);
sd->sc->temp_buffer[dev->buffer_pos + dev->dma_86c01.pos] = val & 0xff;
dev->dma_86c01.pos++;
}
dma_set_drq(dev->DmaChannel, 0);
dev->dma_86c01.pos = 0;
} else
esp_pci_dma_memory_rw(dev, sd->sc->temp_buffer + dev->buffer_pos, len, WRITE_TO_DEVICE);
esp_set_tc(dev, esp_get_tc(dev) - len);
}
dev->buffer_pos += len;
dev->xfer_counter -= len;
dev->ti_size += len;
break;
case (CMD_PAD | CMD_DMA):
/* Copy TC zero bytes into the incoming stream */
memset(sd->sc->temp_buffer + dev->buffer_pos, 0, len);
dev->buffer_pos += len;
dev->xfer_counter -= len;
dev->ti_size += len;
break;
default:
break;
}
if ((dev->xfer_counter <= 0) && (fifo8_num_used(&dev->fifo) < 2)) {
/* Defer until the scsi layer has completed */
if (dev->ti_size < 0) {
esp_log("ESP SCSI Keep writing\n");
esp_do_dma(dev);
} else {
esp_log("ESP SCSI Write finished\n");
scsi_device_command_phase1(sd);
esp_command_complete(dev, sd->status);
}
return;
}
esp_dma_ti_check(dev);
break;
case STAT_DI:
if (!dev->xfer_counter && esp_get_tc(dev)) {
/* Defer until data is available. */
return;
}
if (len > dev->xfer_counter)
len = dev->xfer_counter;
switch (dev->rregs[ESP_CMD]) {
case (CMD_TI | CMD_DMA):
if (len) {
if (dev->mca) {
dma_set_drq(dev->DmaChannel, 1);
while (dev->dma_86c01.pos < len) {
dma_channel_write(dev->DmaChannel, sd->sc->temp_buffer[dev->buffer_pos + dev->dma_86c01.pos]);
esp_log("ESP SCSI DMA read for 53C9x: pos = %i, val = %02x\n", dev->dma_86c01.pos, sd->sc->temp_buffer[dev->buffer_pos + dev->dma_86c01.pos]);
dev->dma_86c01.pos++;
}
dev->dma_86c01.pos = 0;
dma_set_drq(dev->DmaChannel, 0);
} else
esp_pci_dma_memory_rw(dev, sd->sc->temp_buffer + dev->buffer_pos, len, READ_FROM_DEVICE);
}
dev->buffer_pos += len;
dev->xfer_counter -= len;
dev->ti_size -= len;
esp_set_tc(dev, esp_get_tc(dev) - len);
break;
case (CMD_PAD | CMD_DMA):
dev->buffer_pos += len;
dev->xfer_counter -= len;
dev->ti_size -= len;
esp_set_tc(dev, esp_get_tc(dev) - len);
break;
default:
break;
}
if ((dev->xfer_counter <= 0) && (fifo8_num_used(&dev->fifo) < 2)) {
/* Defer until the scsi layer has completed */
if (dev->ti_size <= 0) {
esp_log("ESP SCSI Read finished\n");
scsi_device_command_phase1(sd);
esp_command_complete(dev, sd->status);
} else {
esp_log("ESP SCSI Keep reading\n");
esp_do_dma(dev);
}
return;
}
esp_dma_ti_check(dev);
break;
case STAT_ST:
switch (dev->rregs[ESP_CMD]) {
case (CMD_ICCS | CMD_DMA):
len = MIN(len, 1);
if (len) {
buf[0] = dev->status;
/* Length already non-zero */
if (dev->mca) {
dma_set_drq(dev->DmaChannel, 1);
while (dev->dma_86c01.pos < len) {
dma_channel_write(dev->DmaChannel, buf[dev->dma_86c01.pos]);
dev->dma_86c01.pos++;
}
dev->dma_86c01.pos = 0;
dma_set_drq(dev->DmaChannel, 0);
} else
esp_pci_dma_memory_rw(dev, buf, len, READ_FROM_DEVICE);
esp_set_tc(dev, esp_get_tc(dev) - len);
esp_set_phase(dev, STAT_MI);
if (esp_get_tc(dev) > 0) {
/* Process any message in phase data */
esp_do_dma(dev);
}
}
break;
default:
/* Consume remaining data if the guest underflows TC */
if (fifo8_num_used(&dev->fifo) < 2) {
dev->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(dev);
}
break;
}
break;
case STAT_MI:
switch (dev->rregs[ESP_CMD]) {
case (CMD_ICCS | CMD_DMA):
len = MIN(len, 1);
if (len) {
buf[0] = 0;
/* Length already non-zero */
if (dev->mca) {
dma_set_drq(dev->DmaChannel, 1);
while (dev->dma_86c01.pos < len) {
dma_channel_write(dev->DmaChannel, buf[dev->dma_86c01.pos]);
dev->dma_86c01.pos++;
}
dev->dma_86c01.pos = 0;
dma_set_drq(dev->DmaChannel, 0);
} else
esp_pci_dma_memory_rw(dev, buf, len, READ_FROM_DEVICE);
esp_set_tc(dev, esp_get_tc(dev) - len);
/* Raise end of command interrupt */
dev->rregs[ESP_RINTR] |= INTR_FC;
esp_raise_irq(dev);
}
break;
}
break;
default:
break;
}
}
static void
esp_nodma_ti_dataout(esp_t *dev)
{
scsi_device_t *sd = &scsi_devices[dev->bus][dev->id];
int len;
if (!dev->xfer_counter) {
/* Defer until data is available. */
return;
}
len = MIN(dev->xfer_counter, ESP_FIFO_SZ);
len = MIN(len, fifo8_num_used(&dev->fifo));
esp_fifo_pop_buf(dev, sd->sc->temp_buffer + dev->buffer_pos, len);
dev->buffer_pos += len;
dev->xfer_counter -= len;
dev->ti_size += len;
if (dev->xfer_counter <= 0) {
if (dev->ti_size < 0) {
esp_log("ESP SCSI Keep writing\n");
esp_nodma_ti_dataout(dev);
} else {
esp_log("ESP SCSI Write finished\n");
scsi_device_command_phase1(sd);
esp_command_complete(dev, sd->status);
}
return;
}
dev->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(dev);
}
static void
esp_do_nodma(esp_t *dev)
{
scsi_device_t *sd = &scsi_devices[dev->bus][dev->id];
uint8_t buf[ESP_FIFO_SZ];
int len;
switch (esp_get_phase(dev)) {
case STAT_MO:
switch (dev->rregs[ESP_CMD]) {
case CMD_SELATN:
/* Copy FIFO into cmdfifo */
len = esp_fifo_pop_buf(dev, buf, fifo8_num_used(&dev->fifo));
len = MIN(fifo8_num_free(&dev->cmdfifo), len);
esp_log("ESP Message Out CMD SelAtn len=%d.\n", len);
fifo8_push_all(&dev->cmdfifo, buf, len);
if (fifo8_num_used(&dev->cmdfifo) >= 1) {
/* First byte received, switch to command phase */
esp_set_phase(dev, STAT_CD);
dev->rregs[ESP_RSEQ] = SEQ_CD;
dev->cmdfifo_cdb_offset = 1;
if (fifo8_num_used(&dev->cmdfifo) > 1) {
/* Process any additional command phase data */
esp_do_nodma(dev);
}
}
break;
case CMD_SELATNS:
/* Copy one byte from FIFO into cmdfifo */
len = esp_fifo_pop_buf(dev, buf,
MIN(fifo8_num_used(&dev->fifo), 1));
len = MIN(fifo8_num_free(&dev->cmdfifo), len);
fifo8_push_all(&dev->cmdfifo, buf, len);
if (fifo8_num_used(&dev->cmdfifo) >= 1) {
/* First byte received, stop in message out phase */
dev->rregs[ESP_RSEQ] = SEQ_MO;
dev->cmdfifo_cdb_offset = 1;
/* Raise command completion interrupt */
dev->rregs[ESP_RINTR] |= (INTR_BS | INTR_FC);
esp_raise_irq(dev);
}
break;
case CMD_TI:
/* Copy FIFO into cmdfifo */
len = esp_fifo_pop_buf(dev, buf, fifo8_num_used(&dev->fifo));
len = MIN(fifo8_num_free(&dev->cmdfifo), len);
fifo8_push_all(&dev->cmdfifo, buf, len);
/* ATN remains asserted until FIFO empty */
dev->cmdfifo_cdb_offset = fifo8_num_used(&dev->cmdfifo);
esp_set_phase(dev, STAT_CD);
dev->rregs[ESP_CMD] = 0;
dev->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(dev);
break;
default:
break;
}
break;
case STAT_CD:
switch (dev->rregs[ESP_CMD]) {
case CMD_TI:
/* Copy FIFO into cmdfifo */
len = esp_fifo_pop_buf(dev, buf, fifo8_num_used(&dev->fifo));
len = MIN(fifo8_num_free(&dev->cmdfifo), len);
fifo8_push_all(&dev->cmdfifo, buf, len);
/* CDB may be transferred in one or more TI commands */
if (esp_cdb_ready(dev)) {
/* Command has been received */
esp_do_cmd(dev);
} else {
/*
* If data was transferred from the FIFO then raise bus
* service interrupt to indicate transfer complete. Otherwise
* defer until the next FIFO write.
*/
if (len) {
/* Raise interrupt to indicate transfer complete */
dev->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(dev);
}
}
break;
case (CMD_SEL | CMD_DMA):
case (CMD_SELATN | CMD_DMA):
/* Copy FIFO into cmdfifo */
len = esp_fifo_pop_buf(dev, buf, fifo8_num_used(&dev->fifo));
len = MIN(fifo8_num_free(&dev->cmdfifo), len);
fifo8_push_all(&dev->cmdfifo, buf, len);
/* Handle when DMA transfer is terminated by non-DMA FIFO write */
if (esp_cdb_ready(dev)) {
/* Command has been received */
esp_do_cmd(dev);
}
break;
case CMD_SEL:
case CMD_SELATN:
/* FIFO already contain entire CDB: copy to cmdfifo and execute */
len = esp_fifo_pop_buf(dev, buf, fifo8_num_used(&dev->fifo));
len = MIN(fifo8_num_free(&dev->cmdfifo), len);
fifo8_push_all(&dev->cmdfifo, buf, len);
esp_do_cmd(dev);
break;
default:
break;
}
break;
case STAT_DO:
/* Accumulate data in FIFO until non-DMA TI is executed */
break;
case STAT_DI:
if (!dev->xfer_counter) {
/* Defer until data is available. */
return;
}
if (fifo8_is_empty(&dev->fifo)) {
esp_fifo_push(dev, sd->sc->temp_buffer[dev->buffer_pos]);
dev->buffer_pos++;
dev->ti_size--;
dev->xfer_counter--;
}
if (dev->xfer_counter <= 0) {
if (dev->ti_size <= 0) {
esp_log("ESP FIFO Read finished\n");
scsi_device_command_phase1(sd);
esp_command_complete(dev, sd->status);
} else {
esp_log("ESP FIFO Keep reading\n");
esp_do_nodma(dev);
}
return;
}
/* If preloading the FIFO, defer until TI command issued */
if (dev->rregs[ESP_CMD] != CMD_TI)
return;
dev->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(dev);
break;
case STAT_ST:
switch (dev->rregs[ESP_CMD]) {
case CMD_ICCS:
esp_fifo_push(dev, dev->status);
esp_set_phase(dev, STAT_MI);
/* Process any message in phase data */
esp_do_nodma(dev);
break;
default:
break;
}
break;
case STAT_MI:
switch (dev->rregs[ESP_CMD]) {
case CMD_ICCS:
esp_fifo_push(dev, 0);
/* Raise end of command interrupt */
dev->rregs[ESP_RINTR] |= INTR_FC;
esp_raise_irq(dev);
break;
default:
break;
}
break;
}
}
/* Callback to indicate that the SCSI layer has completed a command. */
static void
esp_command_complete(void *priv, uint32_t status)
{
esp_t *dev = (esp_t *) priv;
scsi_device_t *sd = &scsi_devices[dev->bus][dev->id];
dev->ti_size = 0;
dev->status = status;
switch (dev->rregs[ESP_CMD]) {
case CMD_SEL:
case (CMD_SEL | CMD_DMA):
case CMD_SELATN:
case (CMD_SELATN | CMD_DMA):
/*
* Switch to status phase. For non-DMA transfers from the target the last
* byte is still in the FIFO
*/
dev->rregs[ESP_RINTR] |= (INTR_BS | INTR_FC);
dev->rregs[ESP_RSEQ] = SEQ_CD;
break;
case CMD_TI:
case (CMD_TI | CMD_DMA):
dev->rregs[ESP_CMD] = 0;
break;
default:
break;
}
/* Raise bus service interrupt to indicate change to STATUS phase */
scsi_device_identify(sd, SCSI_LUN_USE_CDB);
esp_set_phase(dev, STAT_ST);
dev->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(dev);
}
static void
esp_timer_on(esp_t *dev, scsi_device_t *sd, double p)
{
if ((dev->rregs[ESP_CFG3] & 0x18) == 0x18) {
/* Fast SCSI: 10000000 bytes per second */
dev->period = (p > 0.0) ? p : (((double) sd->buffer_length) * 0.1);
} else {
/* Normal SCSI: 5000000 bytes per second */
dev->period = (p > 0.0) ? p : (((double) sd->buffer_length) * 0.2);
}
if ((dev->wregs[ESP_WCCF] & 0x07) == 0x00)
timer_on_auto(&dev->timer, dev->period + 40.0);
else
timer_on_auto(&dev->timer, dev->period + (((double)(dev->wregs[ESP_WCCF] & 0x07)) * 5.0));
}
static void
handle_pad(esp_t *dev)
{
if (dev->dma) {
esp_log("ESP Handle PAD, do data, minlen = %i\n", esp_get_tc(dev));
esp_do_dma(dev);
} else {
esp_log("ESP Handle PAD, do nodma, minlen = %i\n", dev->xfer_counter);
esp_do_nodma(dev);
}
}
static void
handle_ti(esp_t *dev)
{
if (dev->dma) {
esp_log("ESP Handle TI, do data, minlen = %i\n", esp_get_tc(dev));
esp_do_dma(dev);
} else {
esp_log("ESP Handle TI, do nodma, minlen = %i\n", dev->xfer_counter);
esp_do_nodma(dev);
if (esp_get_phase(dev) == STAT_DO)
esp_nodma_ti_dataout(dev);
}
}
static void
handle_s_without_atn(void *priv)
{
esp_t *dev = (esp_t *) priv;
if (esp_select(dev) < 0)
return;
esp_set_phase(dev, STAT_CD);
dev->cmdfifo_cdb_offset = 0;
if (dev->dma)
esp_do_dma(dev);
else
esp_do_nodma(dev);
}
static void
handle_satn(void *priv)
{
esp_t *dev = (esp_t *) priv;
if (esp_select(dev) < 0)
return;
esp_set_phase(dev, STAT_MO);
if (dev->dma)
esp_do_dma(dev);
else
esp_do_nodma(dev);
}
static void
handle_satn_stop(void *priv)
{
esp_t *dev = (esp_t *) priv;
if (esp_select(dev) < 0)
return;
esp_set_phase(dev, STAT_MO);
dev->cmdfifo_cdb_offset = 0;
if (dev->dma)
esp_do_dma(dev);
else
esp_do_nodma(dev);
}
static void
esp_write_response(esp_t *dev)
{
if (dev->dma)
esp_do_dma(dev);
else
esp_do_nodma(dev);
}
static void
esp_callback(void *priv)
{
esp_t *dev = (esp_t *) priv;
if (dev->dma_enabled || !dev->dma || ((dev->rregs[ESP_CMD] & CMD_CMD) == CMD_PAD)) {
if ((dev->rregs[ESP_CMD] & CMD_CMD) == CMD_TI) {
esp_log("ESP SCSI Handle TI Callback\n");
handle_ti(dev);
} else if ((dev->rregs[ESP_CMD] & CMD_CMD) == CMD_PAD) {
esp_log("ESP SCSI Handle PAD Callback\n");
handle_pad(dev);
}
}
}
static int
esp_cmd_is_valid(esp_t *dev, uint8_t cmd)
{
uint8_t cmd_group = (cmd & CMD_GRP_MASK) >> 4;
/* Always allow misc commands */
if (cmd_group == CMD_GRP_MISC)
return 1;
switch (dev->asc_mode) {
case ESP_ASC_MODE_DIS:
/* Disconnected mode: only allow disconnected commands */
if (cmd_group == CMD_GRP_DISC)
return 1;
break;
case ESP_ASC_MODE_INI:
/* Initiator mode: allow initiator commands */
if (cmd_group == CMD_GRP_INIT)
return 1;
break;
default:
break;
}
return 0;
}
static uint32_t
esp_reg_read(esp_t *dev, uint32_t saddr)
{
uint32_t ret;
switch (saddr) {
case ESP_FIFO:
dev->rregs[ESP_FIFO] = esp_fifo_pop(dev);
ret = dev->rregs[ESP_FIFO];
break;
case ESP_RINTR:
/* Clear sequence step, interrupt register and all status bits
except TC */
ret = dev->rregs[ESP_RINTR];
dev->rregs[ESP_RINTR] = 0;
dev->rregs[ESP_RSTAT] &= ~STAT_TC;
esp_log("ESP SCSI Clear sequence step\n");
esp_lower_irq(dev);
esp_log("ESP RINTR read old val = %02x\n", ret);
break;
case ESP_TCHI: /* Return the unique id if the value has never been written */
if (dev->mca)
ret = dev->rregs[ESP_TCHI];
else {
if (!dev->tchi_written)
ret = TCHI_AM53C974;
else
ret = dev->rregs[ESP_TCHI];
}
break;
case ESP_RFLAGS:
ret = fifo8_num_used(&dev->fifo);
break;
default:
ret = dev->rregs[saddr];
break;
}
esp_log("Read reg %02x = %02x\n", saddr, ret);
return ret;
}
static void
esp_reg_write(esp_t *dev, uint32_t saddr, uint32_t val)
{
esp_log("Write reg %02x = %02x\n", saddr, val);
switch (saddr) {
case ESP_TCHI:
dev->tchi_written = 1;
fallthrough;
case ESP_TCLO:
case ESP_TCMID:
esp_log("%04X:%08X: ESP TCW reg%02x = %02x.\n", CS, cpu_state.pc, saddr, val);
dev->rregs[ESP_RSTAT] &= ~STAT_TC;
break;
case ESP_FIFO:
if (!fifo8_is_full(&dev->fifo))
esp_fifo_push(dev, val);
esp_do_nodma(dev);
break;
case ESP_CMD:
dev->rregs[ESP_CMD] = val;
if (!esp_cmd_is_valid(dev, dev->rregs[ESP_CMD])) {
dev->rregs[ESP_RSTAT] |= INTR_IL;
esp_raise_irq(dev);
break;
}
if (val & CMD_DMA) {
dev->dma = 1;
/* Reload DMA counter. */
esp_set_tc(dev, esp_get_stc(dev));
if (!esp_get_stc(dev)) {
if (dev->rregs[ESP_CFG2] & 0x40)
esp_set_tc(dev, 0x1000000 - 1);
else
esp_set_tc(dev, 0x10000 - 1);
}
} else {
dev->dma = 0;
esp_log("ESP Command not for DMA\n");
}
if (dev->mca)
esp_dma_enable(dev, dev->dma);
esp_log("[%04X:%08X]: ESP Command = %02x, DMA ena1 = %d, DMA ena2 = %d\n", CS, cpu_state.pc, val & (CMD_CMD | CMD_DMA), dev->dma, dev->dma_enabled);
switch (val & CMD_CMD) {
case CMD_NOP:
break;
case CMD_FLUSH:
fifo8_reset(&dev->fifo);
timer_on_auto(&dev->timer, 10.0);
break;
case CMD_RESET:
if (dev->mca) {
esp_lower_irq(dev);
esp_hard_reset(dev);
} else
esp_pci_soft_reset(dev);
break;
case CMD_BUSRESET:
for (uint8_t i = 0; i < 16; i++)
scsi_device_reset(&scsi_devices[dev->bus][i]);
if (!(dev->wregs[ESP_CFG1] & CFG1_RESREPT)) {
dev->rregs[ESP_RINTR] |= INTR_RST;
esp_log("ESP Bus Reset with IRQ\n");
esp_raise_irq(dev);
}
break;
case CMD_TI:
esp_log("Transfer Information val = %02X\n", val);
break;
case CMD_ICCS:
esp_write_response(dev);
dev->rregs[ESP_RINTR] |= INTR_FC;
dev->rregs[ESP_RSTAT] |= STAT_MI;
break;
case CMD_SEL:
handle_s_without_atn(dev);
break;
case CMD_SELATN:
handle_satn(dev);
break;
case CMD_SELATNS:
handle_satn_stop(dev);
break;
case CMD_MSGACC:
dev->asc_mode = ESP_ASC_MODE_DIS;
dev->rregs[ESP_RINTR] |= INTR_DC;
dev->rregs[ESP_RSEQ] = 0;
dev->rregs[ESP_RFLAGS] = 0;
esp_log("ESP SCSI MSGACC IRQ\n");
esp_raise_irq(dev);
break;
case CMD_PAD:
esp_log("val = %02X\n", val);
timer_stop(&dev->timer);
timer_on_auto(&dev->timer, dev->period);
esp_log("ESP Transfer Pad\n");
break;
case CMD_SATN:
case CMD_RSTATN:
break;
case CMD_ENSEL:
dev->rregs[ESP_RINTR] = 0;
esp_log("ESP Enable Selection.\n");
break;
case CMD_DISSEL:
dev->rregs[ESP_RINTR] = 0;
esp_log("ESP Disable Selection\n");
esp_raise_irq(dev);
break;
default:
break;
}
break;
case ESP_WBUSID:
esp_log("ESP BUS ID=%d.\n", val & BUSID_DID);
break;
case ESP_WSEL:
case ESP_WSYNTP:
case ESP_WSYNO:
break;
case ESP_CFG1:
case ESP_CFG2:
case ESP_CFG3:
case ESP_RES3:
case ESP_RES4:
dev->rregs[saddr] = val;
break;
case ESP_WCCF:
case ESP_WTEST:
break;
default:
esp_log("Unhandled writeb 0x%x = 0x%x\n", saddr, val);
break;
}
dev->wregs[saddr] = val;
}
static void
esp_pci_dma_memory_rw(esp_t *dev, uint8_t *buf, uint32_t len, int dir)
{
uint32_t addr;
int expected_dir;
int sg_pos = 0;
uint32_t DMALen;
uint32_t DMAPtr;
uint32_t WAC = 0;
if (dev->dma_regs[DMA_CMD] & DMA_CMD_DIR)
expected_dir = READ_FROM_DEVICE;
else
expected_dir = WRITE_TO_DEVICE;
if (dir != expected_dir) {
esp_log("ESP unexpected direction\n");
return;
}
if (dev->dma_regs[DMA_CMD] & DMA_CMD_MDL) {
if (dev->dma_regs[DMA_WBC] < len)
len = dev->dma_regs[DMA_WBC];
if (len) {
dma_bm_read(dev->dma_regs[DMA_WMAC], (uint8_t *)&DMAPtr, 4, 4);
dev->dma_regs[DMA_WAC] = DMAPtr | dev->dma_regs[DMA_SPA];
DMALen = len;
WAC = dev->dma_regs[DMA_SPA];
for (uint32_t i = 0; i < len; i += 4) {
if (WAC == 0) {
dma_bm_read(dev->dma_regs[DMA_WMAC], (uint8_t *)&DMAPtr, 4, 4);
dev->dma_regs[DMA_WAC] = DMAPtr;
}
addr = dev->dma_regs[DMA_WAC];
esp_log("Data Buffer %s: length %d (%u), pointer 0x%04X\n",
expected_dir ? "read" : "write", len, len, addr);
if (addr && DMALen) {
if (expected_dir)
dma_bm_write(addr, &buf[sg_pos], DMALen, 4);
else
dma_bm_read(addr, &buf[sg_pos], DMALen, 4);
}
sg_pos += 4;
DMALen -= 4;
/* update status registers */
dev->dma_regs[DMA_WBC] -= 4;
dev->dma_regs[DMA_WAC] += 4;
WAC += 4;
if (WAC >= 0x1000) {
WAC = 0;
dev->dma_regs[DMA_WMAC] += 4;
}
if (DMALen < 0)
DMALen = 0;
if (dev->dma_regs[DMA_WBC] <= 0) {
dev->dma_regs[DMA_WBC] = 0;
break;
}
}
}
esp_log("Finished count=%d.\n", dev->dma_regs[DMA_WBC]);
if (dev->dma_regs[DMA_WBC] == 0) {
esp_log("DMA transfer finished.\n");
dev->dma_regs[DMA_STAT] |= DMA_STAT_DONE;
}
} else {
if (dev->dma_regs[DMA_WBC] < len)
len = dev->dma_regs[DMA_WBC];
addr = dev->dma_regs[DMA_WAC];
if (expected_dir)
dma_bm_write(addr, buf, len, 4);
else
dma_bm_read(addr, buf, len, 4);
/* update status registers */
dev->dma_regs[DMA_WBC] -= len;
dev->dma_regs[DMA_WAC] += len;
esp_log("Finished count=%d.\n", dev->dma_regs[DMA_WBC]);
if (dev->dma_regs[DMA_WBC] == 0) {
esp_log("DMA transfer finished.\n");
dev->dma_regs[DMA_STAT] |= DMA_STAT_DONE;
}
}
}
static uint32_t
esp_pci_dma_read(esp_t *dev, uint16_t saddr)
{
uint32_t ret;
ret = dev->dma_regs[saddr];
if (saddr == DMA_STAT) {
if (!(dev->sbac & SBAC_STATUS)) {
dev->dma_regs[DMA_STAT] &= ~(DMA_STAT_ERROR | DMA_STAT_ABORT | DMA_STAT_DONE);
esp_log("ESP PCI DMA Read done cleared\n");
esp_pci_update_irq(dev);
}
}
esp_log("ESP PCI DMA Read regs addr = %04x, temp = %06x\n", saddr, ret);
return ret;
}
static void
esp_pci_dma_write(esp_t *dev, uint16_t saddr, uint32_t val)
{
uint32_t mask;
switch (saddr) {
case DMA_CMD:
dev->dma_regs[DMA_CMD] = val;
esp_log("ESP PCI DMA Write CMD = %02x\n", val & DMA_CMD_MASK);
switch (val & DMA_CMD_MASK) {
case 0: /*IDLE*/
esp_dma_enable(dev, 0);
esp_log("PCI DMA disable\n");
break;
case 1: /*BLAST*/
dev->dma_regs[DMA_STAT] |= DMA_STAT_BCMBLT;
break;
case 2: /*ABORT*/
scsi_device_command_stop(&scsi_devices[dev->bus][dev->id]);
break;
case 3: /*START*/
dev->dma_regs[DMA_WBC] = dev->dma_regs[DMA_STC];
dev->dma_regs[DMA_WAC] = dev->dma_regs[DMA_SPA];
if (val & DMA_CMD_MDL)
dev->dma_regs[DMA_WMAC] = dev->dma_regs[DMA_SMDLA] & 0xfffffffc;
dev->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT | DMA_STAT_DONE | DMA_STAT_ABORT | DMA_STAT_ERROR | DMA_STAT_PWDN);
esp_dma_enable(dev, 1);
esp_log("PCI DMA enable, MDL bit=%02x, SPA=%08x, SMDLA=%08x, STC=%d, ID=%d, SCSICMD=%02x.\n", val & DMA_CMD_MDL, dev->dma_regs[DMA_SPA], dev->dma_regs[DMA_SMDLA], dev->dma_regs[DMA_STC], dev->id, dev->cmdfifo.data[1]);
break;
default: /* can't happen */
abort();
break;
}
break;
case DMA_STC:
dev->dma_regs[DMA_STC] = val;
esp_log("DMASTC PCI write=%08x.\n", val);
break;
case DMA_SPA:
dev->dma_regs[DMA_SPA] = val;
esp_log("DMASPA PCI write=%08x.\n", val);
break;
case DMA_SMDLA:
dev->dma_regs[DMA_SMDLA] = val;
esp_log("DMASMDLA PCI write=%08x.\n", val);
break;
case DMA_STAT:
if (dev->sbac & SBAC_STATUS) {
/* clear some bits on write */
mask = DMA_STAT_ERROR | DMA_STAT_ABORT | DMA_STAT_DONE;
dev->dma_regs[DMA_STAT] &= ~(val & mask);
esp_pci_update_irq(dev);
}
break;
default:
break;
}
}
static void
esp_pci_soft_reset(esp_t *dev)
{
esp_irq(dev, 0);
dev->rregs[ESP_RSTAT] &= ~STAT_INT;
esp_pci_hard_reset(dev);
}
static void
esp_pci_hard_reset(esp_t *dev)
{
esp_hard_reset(dev);
dev->dma_regs[DMA_CMD] &= ~(DMA_CMD_DIR | DMA_CMD_INTE_D | DMA_CMD_INTE_P
| DMA_CMD_MDL | DMA_CMD_DIAG | DMA_CMD_MASK);
dev->dma_regs[DMA_WBC] &= ~0xffff;
dev->dma_regs[DMA_WAC] = 0xffffffff;
dev->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT
| DMA_STAT_DONE | DMA_STAT_ABORT
| DMA_STAT_ERROR);
dev->dma_regs[DMA_WMAC] = 0xfffffffc;
}
static uint32_t
esp_io_pci_read(esp_t *dev, uint32_t addr, unsigned int size)
{
uint32_t ret;
addr &= 0x7f;
if (addr < 0x40) {
/* SCSI core reg */
ret = esp_reg_read(dev, addr >> 2);
} else if (addr < 0x60) {
/* PCI DMA CCB */
ret = esp_pci_dma_read(dev, (addr - 0x40) >> 2);
esp_log("ESP PCI DMA CCB read addr = %02x, ret = %02x\n", (addr - 0x40) >> 2, ret);
} else if (addr == 0x70) {
/* DMA SCSI Bus and control */
ret = dev->sbac;
esp_log("ESP PCI SBAC read = %02x\n", ret);
} else {
/* Invalid region */
ret = 0;
}
/* give only requested data */
ret >>= (addr & 3) * 8;
ret &= ~(~(uint64_t) 0 << (8 * size));
esp_log("ESP PCI I/O read: addr = %02x, val = %02x\n", addr, ret);
return ret;
}
static void
esp_io_pci_write(esp_t *dev, uint32_t addr, uint32_t val, unsigned int size)
{
uint32_t current;
uint32_t mask;
int shift;
addr &= 0x7f;
if (size < 4 || addr & 3) {
/* need to upgrade request: we only support 4-bytes accesses */
current = 0;
if (addr < 0x40) {
current = dev->wregs[addr >> 2];
} else if (addr < 0x60) {
current = dev->dma_regs[(addr - 0x40) >> 2];
} else if (addr == 0x70) {
current = dev->sbac;
}
shift = (4 - size) * 8;
mask = (~(uint32_t) 0 << shift) >> shift;
shift = ((4 - (addr & 3)) & 3) * 8;
val <<= shift;
val |= current & ~(mask << shift);
addr &= ~3;
size = 4;
}
esp_log("ESP PCI I/O write: addr = %02x, val = %02x\n", addr, val);
if (addr < 0x40) {
/* SCSI core reg */
esp_reg_write(dev, addr >> 2, val);
} else if (addr < 0x60) {
/* PCI DMA CCB */
esp_pci_dma_write(dev, (addr - 0x40) >> 2, val);
} else if (addr == 0x70) {
/* DMA SCSI Bus and control */
dev->sbac = val;
}
}
static void
esp_pci_io_writeb(uint16_t addr, uint8_t val, void *priv)
{
esp_t *dev = (esp_t *) priv;
esp_io_pci_write(dev, addr, val, 1);
}
static void
esp_pci_io_writew(uint16_t addr, uint16_t val, void *priv)
{
esp_t *dev = (esp_t *) priv;
esp_io_pci_write(dev, addr, val, 2);
}
static void
esp_pci_io_writel(uint16_t addr, uint32_t val, void *priv)
{
esp_t *dev = (esp_t *) priv;
esp_io_pci_write(dev, addr, val, 4);
}
static uint8_t
esp_pci_io_readb(uint16_t addr, void *priv)
{
esp_t *dev = (esp_t *) priv;
return esp_io_pci_read(dev, addr, 1);
}
static uint16_t
esp_pci_io_readw(uint16_t addr, void *priv)
{
esp_t *dev = (esp_t *) priv;
return esp_io_pci_read(dev, addr, 2);
}
static uint32_t
esp_pci_io_readl(uint16_t addr, void *priv)
{
esp_t *dev = (esp_t *) priv;
return esp_io_pci_read(dev, addr, 4);
}
static void
esp_io_set(esp_t *dev, uint32_t base, uint16_t len)
{
esp_log("ESP: [PCI] Setting I/O handler at %04X\n", base);
io_sethandler(base, len,
esp_pci_io_readb, esp_pci_io_readw, esp_pci_io_readl,
esp_pci_io_writeb, esp_pci_io_writew, esp_pci_io_writel, dev);
}
static void
esp_io_remove(esp_t *dev, uint32_t base, uint16_t len)
{
esp_log("ESP: [PCI] Removing I/O handler at %04X\n", base);
io_removehandler(base, len,
esp_pci_io_readb, esp_pci_io_readw, esp_pci_io_readl,
esp_pci_io_writeb, esp_pci_io_writew, esp_pci_io_writel, dev);
}
static void
esp_bios_set_addr(esp_t *dev, uint32_t base)
{
mem_mapping_set_addr(&dev->bios.mapping, base, 0x8000);
}
static void
esp_bios_disable(esp_t *dev)
{
mem_mapping_disable(&dev->bios.mapping);
}
#define EE_ADAPT_SCSI_ID 64
#define EE_MODE2 65
#define EE_DELAY 66
#define EE_TAG_CMD_NUM 67
#define EE_ADAPT_OPTIONS 68
#define EE_BOOT_SCSI_ID 69
#define EE_BOOT_SCSI_LUN 70
#define EE_CHKSUM1 126
#define EE_CHKSUM2 127
#define EE_ADAPT_OPTION_F6_F8_AT_BOOT 0x01
#define EE_ADAPT_OPTION_BOOT_FROM_CDROM 0x02
#define EE_ADAPT_OPTION_INT13 0x04
#define EE_ADAPT_OPTION_SCAM_SUPPORT 0x08
/*To do: make this separate from the SCSI card*/
static void
dc390_save_eeprom(esp_t *dev)
{
FILE *fp = nvr_fopen(dev->nvr_path, "wb");
if (!fp)
return;
fwrite(dev->eeprom.data, 1, 128, fp);
fclose(fp);
}
static void
dc390_write_eeprom(esp_t *dev, int ena, int clk, int dat)
{
/*Actual EEPROM is the same as the one used by the ATI cards, the 93cxx series.*/
ati_eeprom_t *eeprom = &dev->eeprom;
uint8_t tick = eeprom->count;
uint8_t eedo = eeprom->out;
uint16_t address = eeprom->address;
uint8_t command = eeprom->opcode;
esp_log("EEPROM CS=%02x,SK=%02x,DI=%02x,DO=%02x,tick=%d\n",
ena, clk, dat, eedo, tick);
if (!eeprom->oldena && ena) {
esp_log("EEPROM Start chip select cycle\n");
tick = 0;
command = 0;
address = 0;
} else if (eeprom->oldena && !ena) {
if (!eeprom->wp) {
uint8_t subcommand = address >> 4;
if (command == 0 && subcommand == 2) {
esp_log("EEPROM Erase All\n");
for (address = 0; address < 64; address++)
eeprom->data[address] = 0xffff;
dc390_save_eeprom(dev);
} else if (command == 3) {
esp_log("EEPROM Erase Word\n");
eeprom->data[address] = 0xffff;
dc390_save_eeprom(dev);
} else if (tick >= 26) {
if (command == 1) {
esp_log("EEPROM Write Word\n");
eeprom->data[address] &= eeprom->dat;
dc390_save_eeprom(dev);
} else if (command == 0 && subcommand == 1) {
esp_log("EEPROM Write All\n");
for (address = 0; address < 64; address++)
eeprom->data[address] &= eeprom->dat;
dc390_save_eeprom(dev);
}
}
}
eedo = 1;
esp_log("EEPROM DO read\n");
} else if (ena && !eeprom->oldclk && clk) {
if (tick == 0) {
if (dat == 0) {
esp_log("EEPROM Got correct 1st start bit, waiting for 2nd start bit (1)\n");
tick++;
} else {
esp_log("EEPROM Wrong 1st start bit (is 1, should be 0)\n");
tick = 2;
}
} else if (tick == 1) {
if (dat != 0) {
esp_log("EEPROM Got correct 2nd start bit, getting command + address\n");
tick++;
} else {
esp_log("EEPROM 1st start bit is longer than needed\n");
}
} else if (tick < 4) {
tick++;
command <<= 1;
if (dat)
command += 1;
} else if (tick < 10) {
tick++;
address = (address << 1) | dat;
if (tick == 10) {
esp_log("EEPROM command = %02x, address = %02x (val = %04x)\n", command,
address, eeprom->data[address]);
if (command == 2)
eedo = 0;
address = address % 64;
if (command == 0) {
switch (address >> 4) {
case 0:
esp_log("EEPROM Write disable command\n");
eeprom->wp = 1;
break;
case 1:
esp_log("EEPROM Write all command\n");
break;
case 2:
esp_log("EEPROM Erase all command\n");
break;
case 3:
esp_log("EEPROM Write enable command\n");
eeprom->wp = 0;
break;
default:
break;
}
} else {
esp_log("EEPROM Read, write or erase word\n");
eeprom->dat = eeprom->data[address];
}
}
} else if (tick < 26) {
tick++;
if (command == 2) {
esp_log("EEPROM Read Word\n");
eedo = ((eeprom->dat & 0x8000) != 0);
}
eeprom->dat <<= 1;
eeprom->dat += dat;
} else {
esp_log("EEPROM Additional unneeded tick, not processed\n");
}
}
eeprom->count = tick;
eeprom->oldena = ena;
eeprom->oldclk = clk;
eeprom->out = eedo;
eeprom->address = address;
eeprom->opcode = command;
esp_log("EEPROM EEDO = %d\n", eeprom->out);
}
static void
dc390_load_eeprom(esp_t *dev)
{
ati_eeprom_t *eeprom = &dev->eeprom;
uint8_t *nvr = (uint8_t *) eeprom->data;
int i;
uint16_t checksum = 0;
FILE *fp;
eeprom->out = 1;
fp = nvr_fopen(dev->nvr_path, "rb");
if (fp) {
esp_log("EEPROM Load\n");
if (fread(nvr, 1, 128, fp) != 128)
fatal("dc390_eeprom_load(): Error reading data\n");
fclose(fp);
} else {
for (i = 0; i < 16; i++) {
nvr[i * 2] = 0x57;
nvr[i * 2 + 1] = 0x00;
}
esp_log("EEPROM Defaults\n");
nvr[EE_ADAPT_SCSI_ID] = 7;
nvr[EE_MODE2] = 0x0f;
nvr[EE_TAG_CMD_NUM] = 0x04;
nvr[EE_ADAPT_OPTIONS] = EE_ADAPT_OPTION_F6_F8_AT_BOOT | EE_ADAPT_OPTION_BOOT_FROM_CDROM | EE_ADAPT_OPTION_INT13;
for (i = 0; i < EE_CHKSUM1; i += 2) {
checksum += ((nvr[i] & 0xff) | (nvr[i + 1] << 8));
esp_log("Checksum calc = %04x, nvr = %02x\n", checksum, nvr[i]);
}
checksum = 0x1234 - checksum;
nvr[EE_CHKSUM1] = checksum & 0xff;
nvr[EE_CHKSUM2] = checksum >> 8;
esp_log("EEPROM Checksum = %04x\n", checksum);
}
}
static uint8_t
esp_pci_read(UNUSED(int func), int addr, void *priv)
{
esp_t *dev = (esp_t *) priv;
// esp_log("ESP PCI: Reading register %02X\n", addr & 0xff);
switch (addr) {
case 0x00:
// esp_log("ESP PCI: Read DO line = %02x\n", dev->eeprom.out);
if (!dev->has_bios || dev->local)
return 0x22;
else {
if (dev->eeprom.out)
return 0x22;
else {
dev->eeprom.out = 1;
return 2;
}
}
break;
case 0x01:
return 0x10;
case 0x02:
return 0x20;
case 0x03:
return 0x20;
case 0x04:
return esp_pci_regs[0x04] | 0x80; /*Respond to IO*/
case 0x05:
return esp_pci_regs[0x05];
case 0x07:
return esp_pci_regs[0x07] | 0x02;
case 0x08:
return 0x10; /*Revision ID*/
case 0x09:
return 0; /*Programming interface*/
case 0x0A:
return 0; /*devubclass*/
case 0x0B:
return 1; /*Class code*/
case 0x0E:
return 0; /*Header type */
case 0x10:
return esp_pci_bar[0].addr_regs[0] | 0x01; /*I/O space*/
case 0x11:
return esp_pci_bar[0].addr_regs[1];
case 0x12:
return esp_pci_bar[0].addr_regs[2];
case 0x13:
return esp_pci_bar[0].addr_regs[3];
case 0x30:
if (!dev->has_bios)
return 0;
return esp_pci_bar[1].addr_regs[0];
case 0x31:
if (!dev->has_bios)
return 0;
return esp_pci_bar[1].addr_regs[1];
case 0x32:
if (!dev->has_bios)
return 0;
return esp_pci_bar[1].addr_regs[2];
case 0x33:
if (!dev->has_bios)
return 0;
return esp_pci_bar[1].addr_regs[3];
case 0x3C:
return dev->irq;
case 0x3D:
return PCI_INTA;
case 0x40 ... 0x4f:
esp_log("ESP PCI: Read value %02X to register %02X, ID=%d\n", esp_pci_regs[addr], addr, dev->id);
return esp_pci_regs[addr];
default:
break;
}
return 0;
}
static void
esp_pci_write(UNUSED(int func), int addr, uint8_t val, void *priv)
{
esp_t *dev = (esp_t *) priv;
uint8_t valxor;
int eesk;
int eedi;
// esp_log("ESP PCI: Write value %02X to register %02X\n", val, addr);
if (!dev->local) {
if ((addr >= 0x80) && (addr <= 0xFF)) {
if (addr == 0x80) {
eesk = val & 0x80 ? 1 : 0;
eedi = val & 0x40 ? 1 : 0;
dc390_write_eeprom(dev, 1, eesk, eedi);
} else if (addr == 0xc0)
dc390_write_eeprom(dev, 0, 0, 0);
// esp_log("ESP PCI: Write value %02X to register %02X\n", val, addr);
return;
}
}
switch (addr) {
case 0x04:
valxor = (val & 0x01) ^ esp_pci_regs[addr];
if (valxor & PCI_COMMAND_IO) {
esp_io_remove(dev, dev->PCIBase, 0x80);
if ((val & PCI_COMMAND_IO) && (dev->PCIBase != 0))
esp_io_set(dev, dev->PCIBase, 0x80);
}
if (dev->has_bios && (valxor & PCI_COMMAND_MEM)) {
esp_bios_disable(dev);
if ((val & PCI_COMMAND_MEM) && (esp_pci_bar[1].addr & 0x00000001))
esp_bios_set_addr(dev, dev->BIOSBase);
}
if (dev->has_bios)
esp_pci_regs[addr] = val & 0x47;
else
esp_pci_regs[addr] = val & 0x45;
break;
case 0x05:
esp_pci_regs[addr] = val & 0x01;
break;
case 0x07:
esp_pci_regs[addr] &= ~(val & 0xf9);
break;
case 0x10:
case 0x11:
case 0x12:
case 0x13:
/* I/O Base set. */
/* First, remove the old I/O. */
esp_io_remove(dev, dev->PCIBase, 0x80);
/* Then let's set the PCI regs. */
esp_pci_bar[0].addr_regs[addr & 3] = val;
/* Then let's calculate the new I/O base. */
esp_pci_bar[0].addr &= 0xff80;
dev->PCIBase = esp_pci_bar[0].addr;
/* Log the new base. */
// esp_log("ESP PCI: New I/O base is %04X\n" , dev->PCIBase);
/* We're done, so get out of the here. */
if (esp_pci_regs[4] & PCI_COMMAND_IO) {
if (dev->PCIBase != 0) {
esp_io_set(dev, dev->PCIBase, 0x80);
}
}
return;
case 0x30:
case 0x31:
case 0x32:
case 0x33:
if (!dev->has_bios)
return;
/* BIOS Base set. */
/* First, remove the old I/O. */
esp_bios_disable(dev);
/* Then let's set the PCI regs. */
esp_pci_bar[1].addr_regs[addr & 3] = val;
/* Then let's calculate the new I/O base. */
esp_pci_bar[1].addr &= 0xffff0001;
dev->BIOSBase = esp_pci_bar[1].addr & 0xffff0000;
/* Log the new base. */
// esp_log("ESP PCI: New BIOS base is %08X\n" , dev->BIOSBase);
/* We're done, so get out of the here. */
if ((esp_pci_regs[0x04] & PCI_COMMAND_MEM) && (esp_pci_bar[1].addr & 0x00000001))
esp_bios_set_addr(dev, dev->BIOSBase);
return;
case 0x3c:
esp_pci_regs[addr] = val;
dev->irq = val;
esp_log("ESP IRQ now: %i\n", val);
return;
case 0x40 ... 0x4f:
esp_log("ESP PCI: Write value %02X to register %02X, ID=%i.\n", val, addr, dev->id);
esp_pci_regs[addr] = val;
return;
default:
break;
}
}
static void *
dc390_init(UNUSED(const device_t *info))
{
esp_t *dev = calloc(1, sizeof(esp_t));
dev->bus = scsi_get_bus();
dev->local = info->local;
dev->mca = 0;
fifo8_create(&dev->fifo, ESP_FIFO_SZ);
fifo8_create(&dev->cmdfifo, ESP_CMDFIFO_SZ);
dev->PCIBase = 0;
dev->MMIOBase = 0;
pci_add_card(PCI_ADD_NORMAL, esp_pci_read, esp_pci_write, dev, &dev->pci_slot);
esp_pci_bar[0].addr_regs[0] = 1;
esp_pci_regs[0x04] = 3;
dev->has_bios = device_get_config_int("bios");
if (dev->has_bios) {
dev->BIOSBase = 0xd0000;
if (dev->local) {
;//rom_init(&dev->bios, AM53C974_ROM, 0xd0000, 0x8000, 0x7fff, 0, MEM_MAPPING_EXTERNAL);
} else
rom_init(&dev->bios, DC390_ROM, 0xd0000, 0x8000, 0x7fff, 0, MEM_MAPPING_EXTERNAL);
}
/* Enable our BIOS space in PCI, if needed. */
if (dev->has_bios)
esp_pci_bar[1].addr = 0xffff0000;
else
esp_pci_bar[1].addr = 0;
if (dev->has_bios)
esp_bios_disable(dev);
if (!dev->local) {
sprintf(dev->nvr_path, "dc390_%i.nvr", device_get_instance());
/* Load the serial EEPROM. */
dc390_load_eeprom(dev);
}
esp_pci_hard_reset(dev);
for (uint8_t i = 0; i < 16; i++)
scsi_device_reset(&scsi_devices[dev->bus][i]);
timer_add(&dev->timer, esp_callback, dev, 0);
scsi_bus_set_speed(dev->bus, 10000000.0);
return dev;
}
static uint16_t
ncr53c9x_in(uint16_t port, void *priv)
{
esp_t *dev = (esp_t *) priv;
uint16_t ret = 0xffff;
port &= 0x1f;
if (port >= 0x10)
ret = esp_reg_read(dev, port - 0x10);
else {
switch (port) {
case 0x02:
ret = dev->dma_86c01.mode;
break;
case 0x0c:
if (dev->dma_86c01.mode & 0x40)
dev->dma_86c01.status |= 0x01;
else
dev->dma_86c01.status &= ~0x01;
if (dev->dma_enabled)
dev->dma_86c01.status |= 0x02;
else
dev->dma_86c01.status &= ~0x02;
ret = dev->dma_86c01.status;
break;
default:
break;
}
}
esp_log("[%04X:%08X]: NCR53c9x DMA read port = %02x, ret = %02x, local = %d.\n\n", CS, cpu_state.pc, port, ret, dev->local);
return ret;
}
static uint8_t
ncr53c9x_inb(uint16_t port, void *priv)
{
return ncr53c9x_in(port, priv);
}
static uint16_t
ncr53c9x_inw(uint16_t port, void *priv)
{
return (ncr53c9x_in(port, priv) & 0xff) | (ncr53c9x_in(port + 1, priv) << 8);
}
static void
ncr53c9x_out(uint16_t port, uint16_t val, void *priv)
{
esp_t *dev = (esp_t *) priv;
port &= 0x1f;
esp_log("[%04X:%08X]: NCR53c9x DMA write port = %02x, val = %02x.\n\n", CS, cpu_state.pc, port, val);
if (port >= 0x10)
esp_reg_write(dev, port - 0x10, val);
else {
if (port == 0x02)
dev->dma_86c01.mode = val;
}
}
static void
ncr53c9x_outb(uint16_t port, uint8_t val, void *priv)
{
ncr53c9x_out(port, val, priv);
}
static void
ncr53c9x_outw(uint16_t port, uint16_t val, void *priv)
{
ncr53c9x_out(port, val & 0xff, priv);
ncr53c9x_out(port + 1, val >> 8, priv);
}
static uint8_t
ncr53c9x_mca_read(int port, void *priv)
{
const esp_t *dev = (esp_t *) priv;
return (dev->pos_regs[port & 7]);
}
static void
ncr53c9x_mca_write(int port, uint8_t val, void *priv)
{
esp_t *dev = (esp_t *) priv;
static const uint16_t ncrmca_iobase[] = {
0, 0x240, 0x340, 0x400, 0x420, 0x3240, 0x8240, 0xa240
};
/* MCA does not write registers below 0x0100. */
if (port < 0x0102)
return;
/* Save the MCA register value. */
dev->pos_regs[port & 7] = val;
/* This is always necessary so that the old handler doesn't remain. */
if (dev->Base != 0) {
io_removehandler(dev->Base, 0x20,
ncr53c9x_inb, ncr53c9x_inw, NULL,
ncr53c9x_outb, ncr53c9x_outw, NULL, dev);
}
/* Get the new assigned I/O base address. */
dev->Base = ncrmca_iobase[(dev->pos_regs[2] & 0x0e) >> 1];
/* Save the new IRQ and DMA channel values. */
dev->irq = 3 + (2 * ((dev->pos_regs[2] & 0x30) >> 4));
if (dev->irq == 9)
dev->irq = 2;
dev->DmaChannel = dev->pos_regs[3] & 0x0f;
/*
* Get misc SCSI config stuff. For now, we are only
* interested in the configured HA target ID.
*/
dev->HostID = 6 + ((dev->pos_regs[5] & 0x20) ? 1 : 0);
/* Initialize the device if fully configured. */
if (dev->pos_regs[2] & 0x01) {
if (dev->Base != 0) {
/* Card enabled; register (new) I/O handler. */
io_sethandler(dev->Base, 0x20,
ncr53c9x_inb, ncr53c9x_inw, NULL,
ncr53c9x_outb, ncr53c9x_outw, NULL, dev);
esp_hard_reset(dev);
for (uint8_t i = 0; i < 8; i++)
scsi_device_reset(&scsi_devices[dev->bus][i]);
}
/* Say hello. */
esp_log("NCR 53c9x: I/O=%04x, IRQ=%d, DMA=%d, HOST ID %i\n",
dev->Base, dev->irq, dev->DmaChannel, dev->HostID);
}
}
static uint8_t
ncr53c9x_mca_feedb(void *priv)
{
const esp_t *dev = (esp_t *) priv;
return (dev->pos_regs[2] & 0x01);
}
static void *
ncr53c9x_mca_init(const device_t *info)
{
esp_t *dev = calloc(1, sizeof(esp_t));
dev->bus = scsi_get_bus();
dev->mca = 1;
dev->local = info->local;
fifo8_create(&dev->fifo, ESP_FIFO_SZ);
fifo8_create(&dev->cmdfifo, ESP_CMDFIFO_SZ);
dev->pos_regs[0] = 0x4f; /* MCA board ID */
dev->pos_regs[1] = 0x7f;
mca_add(ncr53c9x_mca_read, ncr53c9x_mca_write, ncr53c9x_mca_feedb, NULL, dev);
esp_hard_reset(dev);
for (uint8_t i = 0; i < 8; i++)
scsi_device_reset(&scsi_devices[dev->bus][i]);
timer_add(&dev->timer, esp_callback, dev, 0);
scsi_bus_set_speed(dev->bus, 10000000.0);
return dev;
}
static void
esp_close(void *priv)
{
esp_t *dev = (esp_t *) priv;
if (dev) {
fifo8_destroy(&dev->fifo);
fifo8_destroy(&dev->cmdfifo);
free(dev);
dev = NULL;
}
}
static const device_config_t bios_enable_config[] = {
// clang-format off
{
.name = "bios",
.description = "Enable BIOS",
.type = CONFIG_BINARY,
.default_string = NULL,
.default_int = 0,
.file_filter = NULL,
.spinner = { 0 },
.selection = { { 0 } },
.bios = { { 0 } }
},
{ .name = "", .description = "", .type = CONFIG_END }
// clang-format on
};
const device_t dc390_pci_device = {
.name = "Tekram DC-390 PCI",
.internal_name = "dc390",
.flags = DEVICE_PCI,
.local = 0,
.init = dc390_init,
.close = esp_close,
.reset = NULL,
.available = NULL,
.speed_changed = NULL,
.force_redraw = NULL,
.config = bios_enable_config
};
const device_t am53c974_pci_device = {
.name = "AMD 53c974A PCI",
.internal_name = "am53c974",
.flags = DEVICE_PCI,
.local = 1,
.init = dc390_init,
.close = esp_close,
.reset = NULL,
.available = NULL,
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t ncr53c90a_mca_device = {
.name = "NCR 53c90a MCA",
.internal_name = "ncr53c90a",
.flags = DEVICE_MCA,
.local = 0,
.init = ncr53c9x_mca_init,
.close = esp_close,
.reset = NULL,
.available = NULL,
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};