Files
86Box/src/network/net_tulip.c
2023-07-29 21:03:38 +06:00

1262 lines
32 KiB
C

#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include <86box/86box.h>
#include <86box/timer.h>
#include <86box/pci.h>
#include <86box/io.h>
#include <86box/mem.h>
#include <86box/dma.h>
#include <86box/device.h>
#include <86box/thread.h>
#include <86box/network.h>
#include <86box/net_eeprom_nmc93cxx.h>
#include <86box/net_tulip.h>
#include <86box/bswap.h>
#define CSR(_x) ((_x) << 3)
#define BIT(x) (1 << x)
#define CSR0_SWR BIT(0)
#define CSR0_BAR BIT(1)
#define CSR0_DSL_SHIFT 2
#define CSR0_DSL_MASK 0x1f
#define CSR0_BLE BIT(7)
#define CSR0_PBL_SHIFT 8
#define CSR0_PBL_MASK 0x3f
#define CSR0_CAC_SHIFT 14
#define CSR0_CAC_MASK 0x3
#define CSR0_DAS 0x10000
#define CSR0_TAP_SHIFT 17
#define CSR0_TAP_MASK 0x7
#define CSR0_DBO 0x100000
#define CSR1_TPD 0x01
#define CSR0_RLE BIT(23)
#define CSR0_WIE BIT(24)
#define CSR2_RPD 0x01
#define CSR5_TI BIT(0)
#define CSR5_TPS BIT(1)
#define CSR5_TU BIT(2)
#define CSR5_TJT BIT(3)
#define CSR5_LNP_ANC BIT(4)
#define CSR5_UNF BIT(5)
#define CSR5_RI BIT(6)
#define CSR5_RU BIT(7)
#define CSR5_RPS BIT(8)
#define CSR5_RWT BIT(9)
#define CSR5_ETI BIT(10)
#define CSR5_GTE BIT(11)
#define CSR5_LNF BIT(12)
#define CSR5_FBE BIT(13)
#define CSR5_ERI BIT(14)
#define CSR5_AIS BIT(15)
#define CSR5_NIS BIT(16)
#define CSR5_RS_SHIFT 17
#define CSR5_RS_MASK 7
#define CSR5_TS_SHIFT 20
#define CSR5_TS_MASK 7
#define CSR5_TS_STOPPED 0
#define CSR5_TS_RUNNING_FETCH 1
#define CSR5_TS_RUNNING_WAIT_EOT 2
#define CSR5_TS_RUNNING_READ_BUF 3
#define CSR5_TS_RUNNING_SETUP 5
#define CSR5_TS_SUSPENDED 6
#define CSR5_TS_RUNNING_CLOSE 7
#define CSR5_RS_STOPPED 0
#define CSR5_RS_RUNNING_FETCH 1
#define CSR5_RS_RUNNING_CHECK_EOR 2
#define CSR5_RS_RUNNING_WAIT_RECEIVE 3
#define CSR5_RS_SUSPENDED 4
#define CSR5_RS_RUNNING_CLOSE 5
#define CSR5_RS_RUNNING_FLUSH 6
#define CSR5_RS_RUNNING_QUEUE 7
#define CSR5_EB_SHIFT 23
#define CSR5_EB_MASK 7
#define CSR5_GPI BIT(26)
#define CSR5_LC BIT(27)
#define CSR6_HP BIT(0)
#define CSR6_SR BIT(1)
#define CSR6_HO BIT(2)
#define CSR6_PB BIT(3)
#define CSR6_IF BIT(4)
#define CSR6_SB BIT(5)
#define CSR6_PR BIT(6)
#define CSR6_PM BIT(7)
#define CSR6_FKD BIT(8)
#define CSR6_FD BIT(9)
#define CSR6_OM_SHIFT 10
#define CSR6_OM_MASK 3
#define CSR6_OM_NORMAL 0
#define CSR6_OM_INT_LOOPBACK 1
#define CSR6_OM_EXT_LOOPBACK 2
#define CSR6_FC BIT(12)
#define CSR6_ST BIT(13)
#define CSR6_TR_SHIFT 14
#define CSR6_TR_MASK 3
#define CSR6_TR_72 0
#define CSR6_TR_96 1
#define CSR6_TR_128 2
#define CSR6_TR_160 3
#define CSR6_CA BIT(17)
#define CSR6_RA BIT(30)
#define CSR6_SC BIT(31)
#define CSR7_TIM BIT(0)
#define CSR7_TSM BIT(1)
#define CSR7_TUM BIT(2)
#define CSR7_TJM BIT(3)
#define CSR7_LPM BIT(4)
#define CSR7_UNM BIT(5)
#define CSR7_RIM BIT(6)
#define CSR7_RUM BIT(7)
#define CSR7_RSM BIT(8)
#define CSR7_RWM BIT(9)
#define CSR7_TMM BIT(11)
#define CSR7_LFM BIT(12)
#define CSR7_SEM BIT(13)
#define CSR7_ERM BIT(14)
#define CSR7_AIM BIT(15)
#define CSR7_NIM BIT(16)
#define CSR8_MISSED_FRAME_OVL BIT(16)
#define CSR8_MISSED_FRAME_CNT_MASK 0xffff
#define CSR9_DATA_MASK 0xff
#define CSR9_SR_CS BIT(0)
#define CSR9_SR_SK BIT(1)
#define CSR9_SR_DI BIT(2)
#define CSR9_SR_DO BIT(3)
#define CSR9_REG BIT(10)
#define CSR9_SR BIT(11)
#define CSR9_BR BIT(12)
#define CSR9_WR BIT(13)
#define CSR9_RD BIT(14)
#define CSR9_MOD BIT(15)
#define CSR9_MDC BIT(16)
#define CSR9_MDO BIT(17)
#define CSR9_MII BIT(18)
#define CSR9_MDI BIT(19)
#define CSR11_CON BIT(16)
#define CSR11_TIMER_MASK 0xffff
#define CSR12_MRA BIT(0)
#define CSR12_LS100 BIT(1)
#define CSR12_LS10 BIT(2)
#define CSR12_APS BIT(3)
#define CSR12_ARA BIT(8)
#define CSR12_TRA BIT(9)
#define CSR12_NSN BIT(10)
#define CSR12_TRF BIT(11)
#define CSR12_ANS_SHIFT 12
#define CSR12_ANS_MASK 7
#define CSR12_LPN BIT(15)
#define CSR12_LPC_SHIFT 16
#define CSR12_LPC_MASK 0xffff
#define CSR13_SRL BIT(0)
#define CSR13_CAC BIT(2)
#define CSR13_AUI BIT(3)
#define CSR13_SDM_SHIFT 4
#define CSR13_SDM_MASK 0xfff
#define CSR14_ECEN BIT(0)
#define CSR14_LBK BIT(1)
#define CSR14_DREN BIT(2)
#define CSR14_LSE BIT(3)
#define CSR14_CPEN_SHIFT 4
#define CSR14_CPEN_MASK 3
#define CSR14_MBO BIT(6)
#define CSR14_ANE BIT(7)
#define CSR14_RSQ BIT(8)
#define CSR14_CSQ BIT(9)
#define CSR14_CLD BIT(10)
#define CSR14_SQE BIT(11)
#define CSR14_LTE BIT(12)
#define CSR14_APE BIT(13)
#define CSR14_SPP BIT(14)
#define CSR14_TAS BIT(15)
#define CSR15_JBD BIT(0)
#define CSR15_HUJ BIT(1)
#define CSR15_JCK BIT(2)
#define CSR15_ABM BIT(3)
#define CSR15_RWD BIT(4)
#define CSR15_RWR BIT(5)
#define CSR15_LE1 BIT(6)
#define CSR15_LV1 BIT(7)
#define CSR15_TSCK BIT(8)
#define CSR15_FUSQ BIT(9)
#define CSR15_FLF BIT(10)
#define CSR15_LSD BIT(11)
#define CSR15_DPST BIT(12)
#define CSR15_FRL BIT(13)
#define CSR15_LE2 BIT(14)
#define CSR15_LV2 BIT(15)
#define RDES0_OF BIT(0)
#define RDES0_CE BIT(1)
#define RDES0_DB BIT(2)
#define RDES0_RJ BIT(4)
#define RDES0_FT BIT(5)
#define RDES0_CS BIT(6)
#define RDES0_TL BIT(7)
#define RDES0_LS BIT(8)
#define RDES0_FS BIT(9)
#define RDES0_MF BIT(10)
#define RDES0_RF BIT(11)
#define RDES0_DT_SHIFT 12
#define RDES0_DT_MASK 3
#define RDES0_DE BIT(14)
#define RDES0_ES BIT(15)
#define RDES0_FL_SHIFT 16
#define RDES0_FL_MASK 0x3fff
#define RDES0_FF BIT(30)
#define RDES0_OWN BIT(31)
#define RDES1_BUF1_SIZE_SHIFT 0
#define RDES1_BUF1_SIZE_MASK 0x7ff
#define RDES1_BUF2_SIZE_SHIFT 11
#define RDES1_BUF2_SIZE_MASK 0x7ff
#define RDES1_RCH BIT(24)
#define RDES1_RER BIT(25)
#define TDES0_DE BIT(0)
#define TDES0_UF BIT(1)
#define TDES0_LF BIT(2)
#define TDES0_CC_SHIFT 3
#define TDES0_CC_MASK 0xf
#define TDES0_HF BIT(7)
#define TDES0_EC BIT(8)
#define TDES0_LC BIT(9)
#define TDES0_NC BIT(10)
#define TDES0_LO BIT(11)
#define TDES0_TO BIT(14)
#define TDES0_ES BIT(15)
#define TDES0_OWN BIT(31)
#define TDES1_BUF1_SIZE_SHIFT 0
#define TDES1_BUF1_SIZE_MASK 0x7ff
#define TDES1_BUF2_SIZE_SHIFT 11
#define TDES1_BUF2_SIZE_MASK 0x7ff
#define TDES1_FT0 BIT(22)
#define TDES1_DPD BIT(23)
#define TDES1_TCH BIT(24)
#define TDES1_TER BIT(25)
#define TDES1_AC BIT(26)
#define TDES1_SET BIT(27)
#define TDES1_FT1 BIT(28)
#define TDES1_FS BIT(29)
#define TDES1_LS BIT(30)
#define TDES1_IC BIT(31)
#define ETH_ALEN 6
struct tulip_descriptor {
uint32_t status;
uint32_t control;
uint32_t buf_addr1;
uint32_t buf_addr2;
};
struct TULIPState {
uint8_t dev;
uint16_t subsys_id, subsys_ven_id;
mem_mapping_t memory;
netcard_t *nic;
nmc93cxx_eeprom_t *eeprom;
uint32_t csr[16];
uint8_t pci_conf[256];
uint16_t mii_regs[32];
/* state for MII */
uint32_t old_csr9;
uint32_t mii_word;
uint32_t mii_bitcnt;
uint32_t current_rx_desc;
uint32_t current_tx_desc;
uint8_t rx_frame[2048];
uint8_t tx_frame[2048];
uint16_t tx_frame_len;
uint16_t rx_frame_len;
uint16_t rx_frame_size;
uint32_t rx_status;
uint8_t filter[16][6];
};
typedef struct TULIPState TULIPState;
static void tulip_desc_read(TULIPState *s, uint32_t p,
struct tulip_descriptor *desc)
{
desc->status = mem_readl_phys(p);
desc->control = mem_readl_phys(p + 4);
desc->buf_addr1 = mem_readl_phys(p + 8);
desc->buf_addr2 = mem_readl_phys(p + 12);
if (s->csr[0] & CSR0_DBO) {
bswap32s(&desc->status);
bswap32s(&desc->control);
bswap32s(&desc->buf_addr1);
bswap32s(&desc->buf_addr2);
}
}
static void tulip_desc_write(TULIPState *s, uint32_t p,
struct tulip_descriptor *desc)
{
if (s->csr[0] & CSR0_DBO) {
mem_writel_phys(p, bswap32(desc->status));
mem_writel_phys(p + 4, bswap32(desc->control));
mem_writel_phys(p + 8, bswap32(desc->buf_addr1));
mem_writel_phys(p + 12, bswap32(desc->buf_addr2));
} else {
mem_writel_phys(p, desc->status);
mem_writel_phys(p + 4, desc->control);
mem_writel_phys(p + 8, desc->buf_addr1);
mem_writel_phys(p + 12, desc->buf_addr2);
}
}
static void tulip_update_int(TULIPState *s)
{
uint32_t ie = s->csr[5] & s->csr[7];
bool assert = false;
s->csr[5] &= ~(CSR5_AIS | CSR5_NIS);
if (ie & (CSR5_TI | CSR5_TU | CSR5_RI | CSR5_GTE | CSR5_ERI)) {
s->csr[5] |= CSR5_NIS;
}
if (ie & (CSR5_LC | CSR5_GPI | CSR5_FBE | CSR5_LNF | CSR5_ETI | CSR5_RWT |
CSR5_RPS | CSR5_RU | CSR5_UNF | CSR5_LNP_ANC | CSR5_TJT |
CSR5_TPS)) {
s->csr[5] |= CSR5_AIS;
}
assert = s->csr[5] & s->csr[7] & (CSR5_AIS | CSR5_NIS);
if (!assert)
pci_clear_irq(s->dev, PCI_INTA);
else
pci_set_irq(s->dev, PCI_INTA);
}
static bool tulip_rx_stopped(TULIPState *s)
{
return ((s->csr[5] >> CSR5_RS_SHIFT) & CSR5_RS_MASK) == CSR5_RS_STOPPED;
}
static void tulip_next_rx_descriptor(TULIPState *s,
struct tulip_descriptor *desc)
{
if (desc->control & RDES1_RER) {
s->current_rx_desc = s->csr[3];
} else if (desc->control & RDES1_RCH) {
s->current_rx_desc = desc->buf_addr2;
} else {
s->current_rx_desc += sizeof(struct tulip_descriptor) +
(((s->csr[0] >> CSR0_DSL_SHIFT) & CSR0_DSL_MASK) << 2);
}
s->current_rx_desc &= ~3ULL;
}
static void tulip_copy_rx_bytes(TULIPState *s, struct tulip_descriptor *desc)
{
int len1 = (desc->control >> RDES1_BUF1_SIZE_SHIFT) & RDES1_BUF1_SIZE_MASK;
int len2 = (desc->control >> RDES1_BUF2_SIZE_SHIFT) & RDES1_BUF2_SIZE_MASK;
int len;
if (s->rx_frame_len && len1) {
if (s->rx_frame_len > len1) {
len = len1;
} else {
len = s->rx_frame_len;
}
dma_bm_write(desc->buf_addr1, s->rx_frame +
(s->rx_frame_size - s->rx_frame_len), len, 1);
s->rx_frame_len -= len;
}
if (s->rx_frame_len && len2) {
if (s->rx_frame_len > len2) {
len = len2;
} else {
len = s->rx_frame_len;
}
dma_bm_write(desc->buf_addr2, s->rx_frame +
(s->rx_frame_size - s->rx_frame_len), len, 1);
s->rx_frame_len -= len;
}
}
static bool tulip_filter_address(TULIPState *s, const uint8_t *addr)
{
static const char broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
bool ret = false;
int i;
for (i = 0; i < 16 && ret == false; i++) {
if (!memcmp(&s->filter[i], addr, ETH_ALEN)) {
ret = true;
}
}
if (!memcmp(addr, broadcast, ETH_ALEN)) {
return true;
}
if (s->csr[6] & (CSR6_PR | CSR6_RA)) {
/* Promiscuous mode enabled */
s->rx_status |= RDES0_FF;
return true;
}
if ((s->csr[6] & CSR6_PM) && (addr[0] & 1)) {
/* Pass all Multicast enabled */
s->rx_status |= RDES0_MF;
return true;
}
if (s->csr[6] & CSR6_IF) {
ret ^= true;
}
return ret;
}
static int tulip_receive(void* p, uint8_t *buf, int size)
{
struct tulip_descriptor desc;
TULIPState *s = (TULIPState*)p;
if (size < 14 || size > sizeof(s->rx_frame) - 4
|| s->rx_frame_len || tulip_rx_stopped(s)) {
return 0;
}
if (!tulip_filter_address(s, buf)) {
return 1;
}
do {
tulip_desc_read(s, s->current_rx_desc, &desc);
if (!(desc.status & RDES0_OWN)) {
s->csr[5] |= CSR5_RU;
tulip_update_int(s);
return s->rx_frame_size - s->rx_frame_len;
}
desc.status = 0;
if (!s->rx_frame_len) {
s->rx_frame_size = size + 4;
s->rx_status = RDES0_LS |
((s->rx_frame_size & RDES0_FL_MASK) << RDES0_FL_SHIFT);
desc.status |= RDES0_FS;
memcpy(s->rx_frame, buf, size);
s->rx_frame_len = s->rx_frame_size;
}
tulip_copy_rx_bytes(s, &desc);
if (!s->rx_frame_len) {
desc.status |= s->rx_status;
s->csr[5] |= CSR5_RI;
tulip_update_int(s);
}
tulip_desc_write(s, s->current_rx_desc, &desc);
tulip_next_rx_descriptor(s, &desc);
} while (s->rx_frame_len);
return 1;
}
static const char *tulip_reg_name(const uint32_t addr)
{
switch (addr) {
case CSR(0):
return "CSR0";
case CSR(1):
return "CSR1";
case CSR(2):
return "CSR2";
case CSR(3):
return "CSR3";
case CSR(4):
return "CSR4";
case CSR(5):
return "CSR5";
case CSR(6):
return "CSR6";
case CSR(7):
return "CSR7";
case CSR(8):
return "CSR8";
case CSR(9):
return "CSR9";
case CSR(10):
return "CSR10";
case CSR(11):
return "CSR11";
case CSR(12):
return "CSR12";
case CSR(13):
return "CSR13";
case CSR(14):
return "CSR14";
case CSR(15):
return "CSR15";
default:
break;
}
return "";
}
static const char *tulip_rx_state_name(int state)
{
switch (state) {
case CSR5_RS_STOPPED:
return "STOPPED";
case CSR5_RS_RUNNING_FETCH:
return "RUNNING/FETCH";
case CSR5_RS_RUNNING_CHECK_EOR:
return "RUNNING/CHECK EOR";
case CSR5_RS_RUNNING_WAIT_RECEIVE:
return "WAIT RECEIVE";
case CSR5_RS_SUSPENDED:
return "SUSPENDED";
case CSR5_RS_RUNNING_CLOSE:
return "RUNNING/CLOSE";
case CSR5_RS_RUNNING_FLUSH:
return "RUNNING/FLUSH";
case CSR5_RS_RUNNING_QUEUE:
return "RUNNING/QUEUE";
default:
break;
}
return "";
}
static const char *tulip_tx_state_name(int state)
{
switch (state) {
case CSR5_TS_STOPPED:
return "STOPPED";
case CSR5_TS_RUNNING_FETCH:
return "RUNNING/FETCH";
case CSR5_TS_RUNNING_WAIT_EOT:
return "RUNNING/WAIT EOT";
case CSR5_TS_RUNNING_READ_BUF:
return "RUNNING/READ BUF";
case CSR5_TS_RUNNING_SETUP:
return "RUNNING/SETUP";
case CSR5_TS_SUSPENDED:
return "SUSPENDED";
case CSR5_TS_RUNNING_CLOSE:
return "RUNNING/CLOSE";
default:
break;
}
return "";
}
static void tulip_update_rs(TULIPState *s, int state)
{
s->csr[5] &= ~(CSR5_RS_MASK << CSR5_RS_SHIFT);
s->csr[5] |= (state & CSR5_RS_MASK) << CSR5_RS_SHIFT;
}
static const uint16_t tulip_mdi_default[] = {
/* MDI Registers 0 - 6, 7 */
0x3100, 0xf02c, 0x7810, 0x0000, 0x0501, 0x4181, 0x0000, 0x0000,
/* MDI Registers 8 - 15 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* MDI Registers 16 - 31 */
0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
};
/* Readonly mask for MDI (PHY) registers */
static const uint16_t tulip_mdi_mask[] = {
0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
};
static uint16_t tulip_mii_read(TULIPState *s, int phy, int reg)
{
uint16_t ret = 0;
if (phy == 1) {
ret = s->mii_regs[reg];
}
return ret;
}
static void tulip_mii_write(TULIPState *s, int phy, int reg, uint16_t data)
{
if (phy != 1) {
return;
}
s->mii_regs[reg] &= ~tulip_mdi_mask[reg];
s->mii_regs[reg] |= (data & tulip_mdi_mask[reg]);
}
static void tulip_mii(TULIPState *s)
{
uint32_t changed = s->old_csr9 ^ s->csr[9];
uint16_t data;
int op, phy, reg;
if (!(changed & CSR9_MDC)) {
return;
}
if (!(s->csr[9] & CSR9_MDC)) {
return;
}
s->mii_bitcnt++;
s->mii_word <<= 1;
if (s->csr[9] & CSR9_MDO && (s->mii_bitcnt < 16 ||
!(s->csr[9] & CSR9_MII))) {
/* write op or address bits */
s->mii_word |= 1;
}
if (s->mii_bitcnt >= 16 && (s->csr[9] & CSR9_MII)) {
if (s->mii_word & 0x8000) {
s->csr[9] |= CSR9_MDI;
} else {
s->csr[9] &= ~CSR9_MDI;
}
}
if (s->mii_word == 0xffffffff) {
s->mii_bitcnt = 0;
} else if (s->mii_bitcnt == 16) {
op = (s->mii_word >> 12) & 0x0f;
phy = (s->mii_word >> 7) & 0x1f;
reg = (s->mii_word >> 2) & 0x1f;
if (op == 6) {
s->mii_word = tulip_mii_read(s, phy, reg);
}
} else if (s->mii_bitcnt == 32) {
op = (s->mii_word >> 28) & 0x0f;
phy = (s->mii_word >> 23) & 0x1f;
reg = (s->mii_word >> 18) & 0x1f;
data = s->mii_word & 0xffff;
if (op == 5) {
tulip_mii_write(s, phy, reg, data);
}
}
}
static uint32_t tulip_csr9_read(TULIPState *s)
{
if (s->csr[9] & CSR9_SR) {
if (nmc93cxx_eeprom_read(s->eeprom)) {
s->csr[9] |= CSR9_SR_DO;
} else {
s->csr[9] &= ~CSR9_SR_DO;
}
}
tulip_mii(s);
return s->csr[9];
}
static void tulip_update_ts(TULIPState *s, int state)
{
s->csr[5] &= ~(CSR5_TS_MASK << CSR5_TS_SHIFT);
s->csr[5] |= (state & CSR5_TS_MASK) << CSR5_TS_SHIFT;
}
static uint32_t tulip_read(uint32_t addr, void *opaque)
{
TULIPState *s = opaque;
uint32_t data = 0;
addr &= 127;
switch (addr) {
case CSR(9):
data = tulip_csr9_read(s);
break;
case CSR(12):
/* Fake autocompletion complete until we have PHY emulation */
data = 5 << CSR12_ANS_SHIFT;
break;
default:
if (!(addr & 7))
data = s->csr[addr >> 3];
break;
}
return data;
}
static void tulip_tx(TULIPState *s, struct tulip_descriptor *desc)
{
if (s->tx_frame_len) {
if ((s->csr[6] >> CSR6_OM_SHIFT) & CSR6_OM_MASK) {
/* Internal or external Loopback */
tulip_receive(s, s->tx_frame, s->tx_frame_len);
} else if (s->tx_frame_len <= sizeof(s->tx_frame)) {
network_tx(s->nic, s->tx_frame, s->tx_frame_len);
}
}
if (desc->control & TDES1_IC) {
s->csr[5] |= CSR5_TI;
tulip_update_int(s);
}
}
static int tulip_copy_tx_buffers(TULIPState *s, struct tulip_descriptor *desc)
{
int len1 = (desc->control >> TDES1_BUF1_SIZE_SHIFT) & TDES1_BUF1_SIZE_MASK;
int len2 = (desc->control >> TDES1_BUF2_SIZE_SHIFT) & TDES1_BUF2_SIZE_MASK;
if (s->tx_frame_len + len1 > sizeof(s->tx_frame)) {
return -1;
}
if (len1) {
dma_bm_read(desc->buf_addr1,
s->tx_frame + s->tx_frame_len, len1, 1);
s->tx_frame_len += len1;
}
if (s->tx_frame_len + len2 > sizeof(s->tx_frame)) {
return -1;
}
if (len2) {
dma_bm_read(desc->buf_addr2,
s->tx_frame + s->tx_frame_len, len2, 1);
s->tx_frame_len += len2;
}
desc->status = (len1 + len2) ? 0 : 0x7fffffff;
return 0;
}
static void tulip_setup_filter_addr(TULIPState *s, uint8_t *buf, int n)
{
int offset = n * 12;
s->filter[n][0] = buf[offset];
s->filter[n][1] = buf[offset + 1];
s->filter[n][2] = buf[offset + 4];
s->filter[n][3] = buf[offset + 5];
s->filter[n][4] = buf[offset + 8];
s->filter[n][5] = buf[offset + 9];
}
static void tulip_setup_frame(TULIPState *s,
struct tulip_descriptor *desc)
{
uint8_t buf[4096];
int len = (desc->control >> TDES1_BUF1_SIZE_SHIFT) & TDES1_BUF1_SIZE_MASK;
int i;
if (len == 192) {
dma_bm_read(desc->buf_addr1, buf, len, 1);
for (i = 0; i < 16; i++) {
tulip_setup_filter_addr(s, buf, i);
}
}
desc->status = 0x7fffffff;
if (desc->control & TDES1_IC) {
s->csr[5] |= CSR5_TI;
tulip_update_int(s);
}
}
static void tulip_next_tx_descriptor(TULIPState *s,
struct tulip_descriptor *desc)
{
if (desc->control & TDES1_TER) {
s->current_tx_desc = s->csr[4];
} else if (desc->control & TDES1_TCH) {
s->current_tx_desc = desc->buf_addr2;
} else {
s->current_tx_desc += sizeof(struct tulip_descriptor) +
(((s->csr[0] >> CSR0_DSL_SHIFT) & CSR0_DSL_MASK) << 2);
}
s->current_tx_desc &= ~3ULL;
}
static uint32_t tulip_ts(TULIPState *s)
{
return (s->csr[5] >> CSR5_TS_SHIFT) & CSR5_TS_MASK;
}
static void tulip_xmit_list_update(TULIPState *s)
{
#define TULIP_DESC_MAX 128
uint8_t i = 0;
struct tulip_descriptor desc;
if (tulip_ts(s) != CSR5_TS_SUSPENDED) {
return;
}
for (i = 0; i < TULIP_DESC_MAX; i++) {
tulip_desc_read(s, s->current_tx_desc, &desc);
if (!(desc.status & TDES0_OWN)) {
tulip_update_ts(s, CSR5_TS_SUSPENDED);
s->csr[5] |= CSR5_TU;
tulip_update_int(s);
return;
}
if (desc.control & TDES1_SET) {
tulip_setup_frame(s, &desc);
} else {
if (desc.control & TDES1_FS) {
s->tx_frame_len = 0;
}
if (!tulip_copy_tx_buffers(s, &desc)) {
if (desc.control & TDES1_LS) {
tulip_tx(s, &desc);
}
}
}
tulip_desc_write(s, s->current_tx_desc, &desc);
tulip_next_tx_descriptor(s, &desc);
}
}
static void tulip_csr9_write(TULIPState *s, uint32_t old_val,
uint32_t new_val)
{
if (new_val & CSR9_SR) {
nmc93cxx_eeprom_write(s->eeprom,
!!(new_val & CSR9_SR_CS),
!!(new_val & CSR9_SR_SK),
!!(new_val & CSR9_SR_DI));
}
}
static void tulip_reset(void* priv)
{
TULIPState *s = (TULIPState*)priv;
uint16_t* eeprom_data = nmc93cxx_eeprom_data(s->eeprom);
s->csr[0] = 0xfe000000;
s->csr[1] = 0xffffffff;
s->csr[2] = 0xffffffff;
s->csr[5] = 0xf0000000;
s->csr[6] = 0x32000040;
s->csr[7] = 0xf3fe0000;
s->csr[8] = 0xe0000000;
s->csr[9] = 0xfff483ff;
s->csr[11] = 0xfffe0000;
s->csr[12] = 0x000000c6;
s->csr[13] = 0xffff0000;
s->csr[14] = 0xffffffff;
s->csr[15] = 0x8ff00000;
s->subsys_id = eeprom_data[1];
s->subsys_ven_id = eeprom_data[0];
}
static void tulip_write(uint32_t addr, uint32_t data, void *opaque)
{
TULIPState *s = opaque;
addr &= 127;
switch (addr) {
case CSR(0):
s->csr[0] = data;
if (data & CSR0_SWR) {
tulip_reset(s);
tulip_update_int(s);
}
break;
case CSR(1):
tulip_xmit_list_update(s);
break;
case CSR(2):
break;
case CSR(3):
s->csr[3] = data & ~3ULL;
s->current_rx_desc = s->csr[3];
break;
case CSR(4):
s->csr[4] = data & ~3ULL;
s->current_tx_desc = s->csr[4];
tulip_xmit_list_update(s);
break;
case CSR(5):
/* Status register, write clears bit */
s->csr[5] &= ~(data & (CSR5_TI | CSR5_TPS | CSR5_TU | CSR5_TJT |
CSR5_LNP_ANC | CSR5_UNF | CSR5_RI | CSR5_RU |
CSR5_RPS | CSR5_RWT | CSR5_ETI | CSR5_GTE |
CSR5_LNF | CSR5_FBE | CSR5_ERI | CSR5_AIS |
CSR5_NIS | CSR5_GPI | CSR5_LC));
tulip_update_int(s);
break;
case CSR(6):
s->csr[6] = data;
if (s->csr[6] & CSR6_SR) {
tulip_update_rs(s, CSR5_RS_RUNNING_WAIT_RECEIVE);
} else {
tulip_update_rs(s, CSR5_RS_STOPPED);
}
if (s->csr[6] & CSR6_ST) {
tulip_update_ts(s, CSR5_TS_SUSPENDED);
tulip_xmit_list_update(s);
} else {
tulip_update_ts(s, CSR5_TS_STOPPED);
}
break;
case CSR(7):
s->csr[7] = data;
tulip_update_int(s);
break;
case CSR(8):
s->csr[9] = data;
break;
case CSR(9):
tulip_csr9_write(s, s->csr[9], data);
/* don't clear MII read data */
s->csr[9] &= CSR9_MDI;
s->csr[9] |= (data & ~CSR9_MDI);
tulip_mii(s);
s->old_csr9 = s->csr[9];
break;
case CSR(10):
s->csr[10] = data;
break;
case CSR(11):
s->csr[11] = data;
break;
case CSR(12):
/* SIA Status register, some bits are cleared by writing 1 */
s->csr[12] &= ~(data & (CSR12_MRA | CSR12_TRA | CSR12_ARA));
break;
case CSR(13):
s->csr[13] = data;
break;
case CSR(14):
s->csr[14] = data;
break;
case CSR(15):
s->csr[15] = data;
break;
default:
pclog("%s: write to CSR at unknown address "
"0x%u\n", __func__, addr);
break;
}
}
static void tulip_write_io(uint16_t addr, uint32_t data, void *opaque)
{
return tulip_write(addr, data, opaque);
}
static uint32_t tulip_read_io(uint16_t addr, void *opaque)
{
return tulip_read(addr, opaque);
}
static void tulip_idblock_crc(uint16_t *srom)
{
int word;
int bit;
unsigned char bitval, crc;
const int len = 9;
crc = -1;
for (word = 0; word < len; word++) {
for (bit = 15; bit >= 0; bit--) {
if ((word == (len - 1)) && (bit == 7)) {
/*
* Insert the correct CRC result into input data stream
* in place.
*/
srom[len - 1] = (srom[len - 1] & 0xff00) | (unsigned short)crc;
break;
}
bitval = ((srom[word] >> bit) & 1) ^ ((crc >> 7) & 1);
crc = crc << 1;
if (bitval == 1) {
crc ^= 6;
crc |= 0x01;
}
}
}
}
static uint16_t tulip_srom_crc(uint8_t *eeprom, size_t len)
{
unsigned long crc = 0xffffffff;
unsigned long flippedcrc = 0;
unsigned char currentbyte;
unsigned int msb, bit, i;
for (i = 0; i < len; i++) {
currentbyte = eeprom[i];
for (bit = 0; bit < 8; bit++) {
msb = (crc >> 31) & 1;
crc <<= 1;
if (msb ^ (currentbyte & 1)) {
crc ^= 0x04c11db6;
crc |= 0x00000001;
}
currentbyte >>= 1;
}
}
for (i = 0; i < 32; i++) {
flippedcrc <<= 1;
bit = crc & 1;
crc >>= 1;
flippedcrc += bit;
}
return (flippedcrc ^ 0xffffffff) & 0xffff;
}
static const uint8_t eeprom_default[128] = {
0xf0, 0x11, 0x35, 0x42, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x56, 0x08, 0x04, 0x01, 0x00, 0x80, 0x48, 0xb3,
0x0e, 0xa7, 0x00, 0x1e, 0x00, 0x00, 0x00, 0x08,
0x01, 0x8d, 0x03, 0x00, 0x00, 0x00, 0x00, 0x78,
0xe0, 0x01, 0x00, 0x50, 0x00, 0x18, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe8, 0x6b,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
0x48, 0xb3, 0x0e, 0xa7, 0x40, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static void tulip_fill_eeprom(TULIPState *s)
{
uint16_t *eeprom = nmc93cxx_eeprom_data(s->eeprom);
memcpy(eeprom, eeprom_default, 128);
tulip_idblock_crc(eeprom);
eeprom[63] = (tulip_srom_crc((uint8_t *)eeprom, 126));
}
static uint8_t tulip_pci_read(int func, int addr, void* p)
{
TULIPState* s = (TULIPState*)p;
switch(addr) {
default:
return s->pci_conf[addr & 0xFF];
case 0x00:
return 0x11;
case 0x01:
return 0x10;
case 0x02:
return 0x19;
case 0x03:
return 0x00;
case 0x07:
return 0x02;
case 0x06:
return 0x80;
case 0x5:
return s->pci_conf[addr & 0xFF] & 1;
case 0x8:
return 0x30;
case 0x9:
return 0x0;
case 0xA:
return 0x0;
case 0xB:
return 0x2;
case 0x10:
return (s->pci_conf[addr & 0xFF] & 0x80) | 1;
case 0x14:
return s->pci_conf[addr & 0xFF] & 0x80;
case 0x2C:
return s->subsys_ven_id & 0xFF;
case 0x2D:
return s->subsys_ven_id >> 8;
case 0x2E:
return s->subsys_id & 0xFF;
case 0x2F:
return s->subsys_id >> 8;
case 0x3D:
return PCI_INTA;
}
}
static void tulip_pci_write(int func, int addr, uint8_t val, void* p)
{
TULIPState* s = (TULIPState*)p;
switch (addr)
{
case 0x4:
mem_mapping_disable(&s->memory);
io_removehandler((s->pci_conf[0x10] & 0x80) | (s->pci_conf[0x11] << 8), 128, NULL, NULL, tulip_read_io, NULL, NULL, tulip_write_io, p);
s->pci_conf[addr & 0xFF] = val;
if (val & PCI_COMMAND_IO)
io_sethandler((s->pci_conf[0x10] & 0x80) | (s->pci_conf[0x11] << 8), 128, NULL, NULL, tulip_read_io, NULL, NULL, tulip_write_io, p);
if ((val & PCI_COMMAND_MEM) && s->memory.size)
mem_mapping_enable(&s->memory);
break;
case 0x5:
s->pci_conf[addr & 0xFF] = val & 1;
break;
case 0x10:
case 0x11:
io_removehandler((s->pci_conf[0x10] & 0x80) | (s->pci_conf[0x11] << 8), 128, NULL, NULL, tulip_read_io, NULL, NULL, tulip_write_io, p);
s->pci_conf[addr & 0xFF] = val;
if (s->pci_conf[0x4] & PCI_COMMAND_IO)
io_sethandler((s->pci_conf[0x10] & 0x80) | (s->pci_conf[0x11] << 8), 128, NULL, NULL, tulip_read_io, NULL, NULL, tulip_write_io, p);
break;
case 0x14:
case 0x15:
case 0x16:
case 0x17:
s->pci_conf[addr & 0xFF] = val;
if (s->pci_conf[0x4] & PCI_COMMAND_MEM)
mem_mapping_set_addr(&s->memory, (s->pci_conf[0x14] & 0x80) | (s->pci_conf[0x15] << 8) | (s->pci_conf[0x16] << 16) | (s->pci_conf[0x17] << 24), 128);
break;
case 0x3C:
s->pci_conf[addr & 0xFF] = val;
break;
}
}
static void *
nic_init(const device_t *info)
{
uint8_t eeprom_default_local[128];
nmc93cxx_eeprom_params_t params;
TULIPState *s = calloc(1, sizeof(TULIPState));
char filename[1024] = { 0 };
if (!s)
return NULL;
memcpy(eeprom_default_local, eeprom_default, sizeof(eeprom_default));
tulip_idblock_crc((uint16_t*)eeprom_default_local);
(((uint16_t*)eeprom_default_local))[63] = (tulip_srom_crc((uint8_t *)eeprom_default_local, 126));
params.nwords = 64;
params.default_content = (uint16_t*)eeprom_default_local;
params.filename = filename;
snprintf(filename, sizeof(filename), "nmc93cxx_eeprom_%s_%d.nvr", info->internal_name, device_get_instance());
s->eeprom = device_add_parameters(&nmc93cxx_device, &params);
if (!s->eeprom) {
free(s);
return NULL;
}
memcpy(s->mii_regs, tulip_mdi_default, sizeof(tulip_mdi_default));
s->nic = network_attach(s, (uint8_t*)&nmc93cxx_eeprom_data(s->eeprom)[10], tulip_receive, NULL);
s->dev = pci_add_card(PCI_ADD_NETWORK, tulip_pci_read, tulip_pci_write, s);
tulip_reset(s);
return s;
}
static void
nic_close(void* priv)
{
free(priv);
}
const device_t dec_tulip_device = {
.name = "Compu-Shack FASTLine-II UTP 10/100",
.internal_name = "dec_21143_tulip",
.flags = DEVICE_PCI,
.local = 0,
.init = nic_init,
.close = nic_close,
.reset = tulip_reset,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};