Files
86Box/src/disk/zip.c

2300 lines
76 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Implementation of the Iomega ZIP drive with SCSI(-like)
* commands, for both ATAPI and SCSI usage.
*
* Authors: Miran Grca, <mgrca8@gmail.com>
*
* Copyright 2018-2025 Miran Grca.
*/
#ifdef ENABLE_ZIP_LOG
#include <stdarg.h>
#endif
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <86box/86box.h>
#include <86box/timer.h>
#include <86box/device.h>
#include <86box/log.h>
#include <86box/scsi.h>
#include <86box/scsi_device.h>
#include <86box/nvr.h>
#include <86box/path.h>
#include <86box/plat.h>
#include <86box/ui.h>
#include <86box/hdc_ide.h>
#include <86box/zip.h>
#define IDE_ATAPI_IS_EARLY id->sc->pad0
zip_drive_t zip_drives[ZIP_NUM];
// clang-format off
/*
Table of all SCSI commands and their flags, needed for the new disc change /
not ready handler.
*/
const uint8_t zip_command_flags[0x100] = {
[0x00] = IMPLEMENTED | CHECK_READY,
[0x01] = IMPLEMENTED | ALLOW_UA | SCSI_ONLY,
[0x03] = IMPLEMENTED | ALLOW_UA,
[0x04] = IMPLEMENTED | CHECK_READY | ALLOW_UA | SCSI_ONLY,
[0x06] = IMPLEMENTED,
[0x08] = IMPLEMENTED | CHECK_READY,
[0x0a ... 0x0b] = IMPLEMENTED | CHECK_READY,
[0x0c] = IMPLEMENTED,
[0x0d] = IMPLEMENTED | ATAPI_ONLY,
[0x12] = IMPLEMENTED | ALLOW_UA,
[0x13] = IMPLEMENTED | CHECK_READY | SCSI_ONLY,
[0x15] = IMPLEMENTED,
[0x16 ... 0x17] = IMPLEMENTED | SCSI_ONLY,
[0x1a] = IMPLEMENTED,
[0x1b] = IMPLEMENTED | CHECK_READY,
[0x1d] = IMPLEMENTED,
[0x1e] = IMPLEMENTED | CHECK_READY,
[0x23] = IMPLEMENTED | ATAPI_ONLY,
[0x25] = IMPLEMENTED | CHECK_READY,
[0x28] = IMPLEMENTED | CHECK_READY,
[0x2a ... 0x2b] = IMPLEMENTED | CHECK_READY,
[0x2e] = IMPLEMENTED | CHECK_READY,
[0x2f] = IMPLEMENTED | CHECK_READY | SCSI_ONLY,
[0x41] = IMPLEMENTED | CHECK_READY,
[0x55] = IMPLEMENTED,
[0x5a] = IMPLEMENTED,
[0xa8] = IMPLEMENTED | CHECK_READY,
[0xaa] = IMPLEMENTED | CHECK_READY,
[0xae] = IMPLEMENTED | CHECK_READY,
[0xaf] = IMPLEMENTED | CHECK_READY | SCSI_ONLY,
[0xbd] = IMPLEMENTED
};
static uint64_t zip_mode_sense_page_flags = (GPMODEP_R_W_ERROR_PAGE | GPMODEP_DISCONNECT_PAGE |
GPMODEP_IOMEGA_PAGE | GPMODEP_ALL_PAGES);
static uint64_t zip_250_mode_sense_page_flags = (GPMODEP_R_W_ERROR_PAGE | GPMODEP_FLEXIBLE_DISK_PAGE |
GPMODEP_CACHING_PAGE | GPMODEP_IOMEGA_PAGE |
GPMODEP_ALL_PAGES);
static const mode_sense_pages_t zip_mode_sense_pages_default = {
{ [0x01] = { GPMODE_R_W_ERROR_PAGE, 0x0a, 0xc8, 0x16, 0x00, 0x00, 0x00, 0x00,
0x5a, 0x00, 0x50, 0x20 },
[0x02] = { GPMODE_DISCONNECT_PAGE, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
[0x2f] = { GPMODE_IOMEGA_PAGE, 0x04, 0x5c, 0x0f, 0xff, 0x0f } }
};
static const mode_sense_pages_t zip_250_mode_sense_pages_default = {
{ [0x01] = { GPMODE_R_W_ERROR_PAGE, 0x06, 0xc8, 0x64, 0x00, 0x00, 0x00, 0x00 },
[0x05] = { GPMODE_FLEXIBLE_DISK_PAGE, 0x1e, 0x80, 0x00, 0x40, 0x20, 0x02, 0x00,
0x00, 0xef, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x0b, 0x7d, 0x00, 0x00 },
[0x08] = { GPMODE_CACHING_PAGE, 0x0a, 0x04, 0x00, 0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff },
[0x2f] = { GPMODE_IOMEGA_PAGE, 0x04, 0x5c, 0x0f, 0x3c, 0x0f } }
};
static const mode_sense_pages_t zip_mode_sense_pages_default_scsi = {
{ [0x01] = { GPMODE_R_W_ERROR_PAGE, 0x0a, 0xc8, 0x16, 0x00, 0x00, 0x00, 0x00,
0x5a, 0x00, 0x50, 0x20 },
[0x02] = { GPMODE_DISCONNECT_PAGE, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
[0x2f] = { GPMODE_IOMEGA_PAGE, 0x04, 0x5c, 0x0f, 0xff, 0x0f } }
};
static const mode_sense_pages_t zip_250_mode_sense_pages_default_scsi = {
{ [0x01] = { GPMODE_R_W_ERROR_PAGE, 0x06, 0xc8, 0x64, 0x00, 0x00, 0x00, 0x00 },
[0x05] = { GPMODE_FLEXIBLE_DISK_PAGE, 0x1e, 0x80, 0x00, 0x40, 0x20, 0x02, 0x00,
0x00, 0xef, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x0b, 0x7d, 0x00, 0x00 },
[0x08] = { GPMODE_CACHING_PAGE, 0x0a, 0x04, 0x00, 0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff },
[0x2f] = { GPMODE_IOMEGA_PAGE, 0x04, 0x5c, 0x0f, 0x3c, 0x0f } }
};
static const mode_sense_pages_t zip_mode_sense_pages_changeable = {
{ [0x01] = { GPMODE_R_W_ERROR_PAGE, 0x0a, 0xff, 0xff, 0x00, 0x00, 0x00, 0xff,
0x5a, 0xff, 0xff, 0xff },
[0x02] = { GPMODE_DISCONNECT_PAGE, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
[0x2f] = { GPMODE_IOMEGA_PAGE, 0x04, 0xff, 0xff, 0xff, 0xff } }
};
static const mode_sense_pages_t zip_250_mode_sense_pages_changeable = {
{ [0x01] = { GPMODE_R_W_ERROR_PAGE, 0x06, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 },
[0x05] = { GPMODE_FLEXIBLE_DISK_PAGE, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00 },
[0x08] = { GPMODE_CACHING_PAGE, 0x0a, 0x04, 0x00, 0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff },
[0x2f] = { GPMODE_IOMEGA_PAGE, 0x04, 0xff, 0xff, 0xff, 0xff } }
};
// clang-format on
static void zip_command_complete(zip_t *dev);
static void zip_init(zip_t *dev);
#ifdef ENABLE_ZIP_LOG
int zip_do_log = ENABLE_ZIP_LOG;
static void
zip_log(void *priv, const char *fmt, ...)
{
va_list ap;
if (zip_do_log) {
va_start(ap, fmt);
log_out(priv, fmt, ap);
va_end(ap);
}
}
#else
# define zip_log(priv, fmt, ...)
#endif
static int
zip_load_abort(const zip_t *dev)
{
if (dev->drv->fp)
fclose(dev->drv->fp);
dev->drv->fp = NULL;
dev->drv->medium_size = 0;
zip_eject(dev->id); /* Make sure the host OS knows we've rejected (and ejected) the image. */
return 0;
}
int
image_is_zdi(const char *s)
{
return !strcasecmp(path_get_extension((char *) s), "ZDI");
}
int
zip_is_empty(const uint8_t id)
{
const zip_t *dev = (const zip_t *) zip_drives[id].priv;
int ret = 0;
if ((dev->drv == NULL) || (dev->drv->fp == NULL))
ret = 1;
return ret;
}
void
zip_load(const zip_t *dev, const char *fn, const int skip_insert)
{
const int was_empty = zip_is_empty(dev->id);
int ret = 0;
if (dev->drv == NULL)
zip_eject(dev->id);
else {
const int is_zdi = image_is_zdi(fn);
dev->drv->fp = plat_fopen(fn, dev->drv->read_only ? "rb" : "rb+");
ret = 1;
if (dev->drv->fp == NULL) {
if (!dev->drv->read_only) {
dev->drv->fp = plat_fopen(fn, "rb");
if (dev->drv->fp == NULL)
ret = zip_load_abort(dev);
else
dev->drv->read_only = 1;
} else
ret = zip_load_abort(dev);
}
if (ret) {
fseek(dev->drv->fp, 0, SEEK_END);
int size = ftell(dev->drv->fp);
if (is_zdi) {
/* This is a ZDI image. */
size -= 0x1000;
dev->drv->base = 0x1000;
} else
dev->drv->base = 0;
if (dev->drv->is_250) {
if ((size != (ZIP_250_SECTORS << 9)) && (size != (ZIP_SECTORS << 9))) {
zip_log(dev->log, "File is incorrect size for a ZIP image\n");
zip_log(dev->log, "Must be exactly %i or %i bytes\n",
ZIP_250_SECTORS << 9, ZIP_SECTORS << 9);
ret = zip_load_abort(dev);
}
} else if (size != (ZIP_SECTORS << 9)) {
zip_log(dev->log, "File is incorrect size for a ZIP image\n");
zip_log(dev->log, "Must be exactly %i bytes\n", ZIP_SECTORS << 9);
ret = zip_load_abort(dev);
}
if (ret)
dev->drv->medium_size = size >> 9;
}
if (ret) {
if (fseek(dev->drv->fp, dev->drv->base, SEEK_SET) == -1)
log_fatal(dev->log, "zip_load(): Error seeking to the beginning of "
"the file\n");
strncpy(dev->drv->image_path, fn, sizeof(dev->drv->image_path) - 1);
/*
After using strncpy, dev->drv->image_path needs to be explicitly null
terminated to make gcc happy.
In the event strlen(dev->drv->image_path) == sizeof(dev->drv->image_path)
(no null terminator) it is placed at the very end. Otherwise, it is placed
right after the string.
*/
const size_t term = strlen(dev->drv->image_path) ==
sizeof(dev->drv->image_path) ? sizeof(dev->drv->image_path) - 1 :
strlen(dev->drv->image_path);
dev->drv->image_path[term] = '\0';
}
}
if (ret && !skip_insert) {
/* Signal media change to the emulated machine. */
zip_insert((zip_t *) dev);
/* The drive was previously empty, transition directly to UNIT ATTENTION. */
if (was_empty)
zip_insert((zip_t *) dev);
}
}
void
zip_disk_reload(const zip_t *dev)
{
if (strlen(dev->drv->prev_image_path) != 0)
(void) zip_load(dev, dev->drv->prev_image_path, 0);
}
static void
zip_disk_unload(const zip_t *dev)
{
if ((dev->drv != NULL) && (dev->drv->fp != NULL)) {
fclose(dev->drv->fp);
dev->drv->fp = NULL;
}
}
void
zip_disk_close(const zip_t *dev)
{
if ((dev->drv != NULL) && (dev->drv->fp != NULL)) {
zip_disk_unload(dev);
memcpy(dev->drv->prev_image_path, dev->drv->image_path,
sizeof(dev->drv->prev_image_path));
memset(dev->drv->image_path, 0, sizeof(dev->drv->image_path));
dev->drv->medium_size = 0;
zip_insert((zip_t *) dev);
}
}
static void
zip_set_callback(const zip_t *dev)
{
if (dev->drv->bus_type != ZIP_BUS_SCSI)
ide_set_callback(ide_drives[dev->drv->ide_channel], dev->callback);
}
static void
zip_init(zip_t *dev)
{
if (dev->id < ZIP_NUM) {
dev->requested_blocks = 1;
dev->sense[0] = 0xf0;
dev->sense[7] = 10;
dev->drv->bus_mode = 0;
if (dev->drv->bus_type >= ZIP_BUS_ATAPI)
dev->drv->bus_mode |= 2;
if (dev->drv->bus_type < ZIP_BUS_SCSI)
dev->drv->bus_mode |= 1;
zip_log(dev->log, "Bus type %i, bus mode %i\n", dev->drv->bus_type, dev->drv->bus_mode);
if (dev->drv->bus_type < ZIP_BUS_SCSI) {
dev->tf->phase = 1;
dev->tf->request_length = 0xEB14;
}
dev->tf->status = READY_STAT | DSC_STAT;
dev->tf->pos = 0;
dev->packet_status = PHASE_NONE;
zip_sense_key = zip_asc = zip_ascq = dev->unit_attention = dev->transition = 0;
zip_info = 0x00000000;
}
}
static int
zip_supports_pio(const zip_t *dev)
{
return (dev->drv->bus_mode & 1);
}
static int
zip_supports_dma(const zip_t *dev)
{
return (dev->drv->bus_mode & 2);
}
/* Returns: 0 for none, 1 for PIO, 2 for DMA. */
static int
zip_current_mode(const zip_t *dev)
{
if (!zip_supports_pio(dev) && !zip_supports_dma(dev))
return 0;
if (zip_supports_pio(dev) && !zip_supports_dma(dev)) {
zip_log(dev->log, "Drive does not support DMA, setting to PIO\n");
return 1;
}
if (!zip_supports_pio(dev) && zip_supports_dma(dev))
return 2;
if (zip_supports_pio(dev) && zip_supports_dma(dev)) {
zip_log(dev->log, "Drive supports both, setting to %s\n",
(dev->tf->features & 1) ? "DMA" : "PIO");
return (dev->tf->features & 1) ? 2 : 1;
}
return 0;
}
static void
zip_mode_sense_load(zip_t *dev)
{
char fn[512] = { 0 };
memset(&dev->ms_pages_saved, 0, sizeof(mode_sense_pages_t));
if (dev->drv->is_250) {
if (zip_drives[dev->id].bus_type == ZIP_BUS_SCSI)
memcpy(&dev->ms_pages_saved, &zip_250_mode_sense_pages_default_scsi, sizeof(mode_sense_pages_t));
else
memcpy(&dev->ms_pages_saved, &zip_250_mode_sense_pages_default, sizeof(mode_sense_pages_t));
} else {
if (zip_drives[dev->id].bus_type == ZIP_BUS_SCSI)
memcpy(&dev->ms_pages_saved, &zip_mode_sense_pages_default_scsi, sizeof(mode_sense_pages_t));
else
memcpy(&dev->ms_pages_saved, &zip_mode_sense_pages_default, sizeof(mode_sense_pages_t));
}
if (dev->drv->bus_type == ZIP_BUS_SCSI)
sprintf(fn, "scsi_zip_%02i_mode_sense_bin", dev->id);
else
sprintf(fn, "zip_%02i_mode_sense_bin", dev->id);
FILE *fp = plat_fopen(nvr_path(fn), "rb");
if (fp) {
/* Nothing to read, not used by ZIP. */
fclose(fp);
}
}
static void
zip_mode_sense_save(const zip_t *dev)
{
char fn[512] = { 0 };
if (dev->drv->bus_type == ZIP_BUS_SCSI)
sprintf(fn, "scsi_zip_%02i_mode_sense_bin", dev->id);
else
sprintf(fn, "zip_%02i_mode_sense_bin", dev->id);
FILE *fp = plat_fopen(nvr_path(fn), "wb");
if (fp) {
/* Nothing to write, not used by ZIP. */
fclose(fp);
}
}
/* SCSI Mode Sense 6/10. */
static uint8_t
zip_mode_sense_read(const zip_t *dev, const uint8_t pgctl,
const uint8_t page, const uint8_t pos)
{
switch (pgctl) {
case 0:
case 3:
if (dev->drv->is_250 && (page == 5) && (pos == 9) &&
(dev->drv->medium_size == ZIP_SECTORS))
return 0x60;
return dev->ms_pages_saved.pages[page][pos];
case 1:
if (dev->drv->is_250)
return zip_250_mode_sense_pages_changeable.pages[page][pos];
else
return zip_mode_sense_pages_changeable.pages[page][pos];
case 2:
if (dev->drv->is_250) {
if ((page == 5) && (pos == 9) && (dev->drv->medium_size == ZIP_SECTORS))
return 0x60;
if (dev->drv->bus_type == ZIP_BUS_SCSI)
return zip_250_mode_sense_pages_default_scsi.pages[page][pos];
else
return zip_250_mode_sense_pages_default.pages[page][pos];
} else {
if (dev->drv->bus_type == ZIP_BUS_SCSI)
return zip_mode_sense_pages_default_scsi.pages[page][pos];
else
return zip_mode_sense_pages_default.pages[page][pos];
}
default:
break;
}
return 0;
}
static uint32_t
zip_mode_sense(const zip_t *dev, uint8_t *buf, uint32_t pos,
uint8_t page, const uint8_t block_descriptor_len)
{
uint64_t pf;
const uint8_t pgctl = (page >> 6) & 3;
if (dev->drv->is_250)
pf = zip_250_mode_sense_page_flags;
else
pf = zip_mode_sense_page_flags;
page &= 0x3f;
if (block_descriptor_len) {
buf[pos++] = ((dev->drv->medium_size >> 24) & 0xff);
buf[pos++] = ((dev->drv->medium_size >> 16) & 0xff);
buf[pos++] = ((dev->drv->medium_size >> 8) & 0xff);
buf[pos++] = (dev->drv->medium_size & 0xff);
buf[pos++] = 0; /* Reserved. */
buf[pos++] = 0; /* Block length (0x200 = 512 bytes). */
buf[pos++] = 2;
buf[pos++] = 0;
}
for (uint8_t i = 0; i < 0x40; i++) {
if ((page == GPMODE_ALL_PAGES) || (page == i)) {
if (pf & (1LL << ((uint64_t) page))) {
const uint8_t msplen = zip_mode_sense_read(dev, pgctl, i, 1);
buf[pos++] = zip_mode_sense_read(dev, pgctl, i, 0);
buf[pos++] = msplen;
zip_log(dev->log, "MODE SENSE: Page [%02X] length %i\n", i, msplen);
for (uint8_t j = 0; j < msplen; j++)
buf[pos++] = zip_mode_sense_read(dev, pgctl, i, 2 + j);
}
}
}
return pos;
}
static void
zip_update_request_length(zip_t *dev, int len, int block_len)
{
int bt;
int min_len = 0;
dev->max_transfer_len = dev->tf->request_length;
/*
For media access commands, make sure the requested DRQ length matches the
block length.
*/
switch (dev->current_cdb[0]) {
case 0x08:
case 0x0a:
case 0x28:
case 0x2a:
case 0xa8:
case 0xaa:
/* Round it to the nearest 2048 bytes. */
dev->max_transfer_len = (dev->max_transfer_len >> 9) << 9;
/*
Make sure total length is not bigger than sum of the lengths of
all the requested blocks.
*/
bt = (dev->requested_blocks * block_len);
if (len > bt)
len = bt;
min_len = block_len;
if (len <= block_len) {
/* Total length is less or equal to block length. */
if (dev->max_transfer_len < block_len) {
/* Transfer a minimum of (block size) bytes. */
dev->max_transfer_len = block_len;
dev->packet_len = block_len;
break;
}
}
fallthrough;
default:
dev->packet_len = len;
break;
}
/*
If the DRQ length is odd, and the total remaining length is bigger,
make sure it's even.
*/
if ((dev->max_transfer_len & 1) && (dev->max_transfer_len < len))
dev->max_transfer_len &= 0xfffe;
/*
If the DRQ length is smaller or equal in size to the total remaining length,
set it to that.
*/
if (!dev->max_transfer_len)
dev->max_transfer_len = 65534;
if ((len <= dev->max_transfer_len) && (len >= min_len))
dev->tf->request_length = dev->max_transfer_len = len;
else if (len > dev->max_transfer_len)
dev->tf->request_length = dev->max_transfer_len;
return;
}
static double
zip_bus_speed(zip_t *dev)
{
double ret = -1.0;
if (dev && dev->drv && (dev->drv->bus_type == ZIP_BUS_SCSI)) {
dev->callback = -1.0; /* Speed depends on SCSI controller */
return 0.0;
} else {
if (dev && dev->drv)
ret = ide_atapi_get_period(dev->drv->ide_channel);
if (ret == -1.0) {
if (dev)
dev->callback = -1.0;
return 0.0;
} else
return ret * 1000000.0;
}
}
static void
zip_command_common(zip_t *dev)
{
dev->tf->status = BUSY_STAT;
dev->tf->phase = 1;
dev->tf->pos = 0;
if (dev->packet_status == PHASE_COMPLETE)
dev->callback = 0.0;
else {
double bytes_per_second;
if (dev->drv->bus_type == ZIP_BUS_SCSI) {
dev->callback = -1.0; /* Speed depends on SCSI controller */
return;
} else
bytes_per_second = zip_bus_speed(dev);
double period = 1000000.0 / bytes_per_second;
dev->callback = period * (double) (dev->packet_len);
}
zip_set_callback(dev);
}
static void
zip_command_complete(zip_t *dev)
{
dev->packet_status = PHASE_COMPLETE;
zip_command_common(dev);
}
static void
zip_command_read(zip_t *dev)
{
dev->packet_status = PHASE_DATA_IN;
zip_command_common(dev);
}
static void
zip_command_read_dma(zip_t *dev)
{
dev->packet_status = PHASE_DATA_IN_DMA;
zip_command_common(dev);
}
static void
zip_command_write(zip_t *dev)
{
dev->packet_status = PHASE_DATA_OUT;
zip_command_common(dev);
}
static void
zip_command_write_dma(zip_t *dev)
{
dev->packet_status = PHASE_DATA_OUT_DMA;
zip_command_common(dev);
}
/*
dev = Pointer to current ZIP device;
len = Total transfer length;
block_len = Length of a single block (why does it matter?!);
alloc_len = Allocated transfer length;
direction = Transfer direction (0 = read from host, 1 = write to host).
*/
static void
zip_data_command_finish(zip_t *dev, int len, const int block_len,
const int alloc_len, const int direction)
{
zip_log(dev->log, "Finishing command (%02X): %i, %i, %i, %i, %i\n",
dev->current_cdb[0], len, block_len, alloc_len,
direction, dev->tf->request_length);
dev->tf->pos = 0;
if (alloc_len >= 0) {
if (alloc_len < len)
len = alloc_len;
}
if ((len == 0) || (zip_current_mode(dev) == 0)) {
if (dev->drv->bus_type != ZIP_BUS_SCSI)
dev->packet_len = 0;
zip_command_complete(dev);
} else {
if (zip_current_mode(dev) == 2) {
if (dev->drv->bus_type != ZIP_BUS_SCSI)
dev->packet_len = alloc_len;
if (direction == 0)
zip_command_read_dma(dev);
else
zip_command_write_dma(dev);
} else {
zip_update_request_length(dev, len, block_len);
if (direction == 0)
zip_command_read(dev);
else
zip_command_write(dev);
}
}
zip_log(dev->log, "Status: %i, cylinder %i, packet length: %i, position: %i, phase: %i\n",
dev->packet_status, dev->tf->request_length, dev->packet_len,
dev->tf->pos, dev->tf->phase);
}
static void
zip_sense_clear(zip_t *dev, UNUSED(int command))
{
zip_sense_key = zip_asc = zip_ascq = 0;
zip_info = 0x00000000;
}
static void
zip_set_phase(const zip_t *dev, const uint8_t phase)
{
const uint8_t scsi_bus = (dev->drv->scsi_device_id >> 4) & 0x0f;
const uint8_t scsi_id = dev->drv->scsi_device_id & 0x0f;
if (dev->drv->bus_type == ZIP_BUS_SCSI)
scsi_devices[scsi_bus][scsi_id].phase = phase;
}
static void
zip_cmd_error(zip_t *dev)
{
zip_set_phase(dev, SCSI_PHASE_STATUS);
dev->tf->error = ((zip_sense_key & 0xf) << 4) | ABRT_ERR;
dev->tf->status = READY_STAT | ERR_STAT;
dev->tf->phase = 3;
dev->tf->pos = 0;
dev->packet_status = PHASE_ERROR;
dev->callback = 50.0 * ZIP_TIME;
zip_set_callback(dev);
ui_sb_update_icon(SB_ZIP | dev->id, 0);
zip_log(dev->log, "[%02X] ERROR: %02X/%02X/%02X\n", dev->current_cdb[0], zip_sense_key,
zip_asc, zip_ascq);
}
static void
zip_unit_attention(zip_t *dev)
{
zip_set_phase(dev, SCSI_PHASE_STATUS);
dev->tf->error = (SENSE_UNIT_ATTENTION << 4) | ABRT_ERR;
dev->tf->status = READY_STAT | ERR_STAT;
dev->tf->phase = 3;
dev->tf->pos = 0;
dev->packet_status = PHASE_ERROR;
dev->callback = 50.0 * ZIP_TIME;
zip_set_callback(dev);
ui_sb_update_icon(SB_ZIP | dev->id, 0);
zip_log(dev->log, "UNIT ATTENTION\n", dev->id);
}
static void
zip_buf_alloc(zip_t *dev, const uint32_t len)
{
zip_log(dev->log, "Allocated buffer length: %i\n", len);
if (dev->buffer == NULL)
dev->buffer = (uint8_t *) malloc(len);
}
static void
zip_buf_free(zip_t *dev)
{
if (dev->buffer != NULL) {
zip_log(dev->log, "ZIP %i: Freeing buffer...\n");
free(dev->buffer);
dev->buffer = NULL;
}
}
static void
zip_bus_master_error(scsi_common_t *sc)
{
zip_t *dev = (zip_t *) sc;
zip_buf_free(dev);
zip_sense_key = zip_asc = zip_ascq = 0;
zip_info = (dev->sector_pos >> 24) |
((dev->sector_pos >> 16) << 8) |
((dev->sector_pos >> 8) << 16) |
( dev->sector_pos << 24);
zip_cmd_error(dev);
}
static void
zip_not_ready(zip_t *dev)
{
zip_sense_key = SENSE_NOT_READY;
zip_asc = ASC_MEDIUM_NOT_PRESENT;
zip_ascq = 0;
zip_info = 0x00000000;
zip_cmd_error(dev);
}
static void
zip_write_protected(zip_t *dev)
{
zip_sense_key = SENSE_UNIT_ATTENTION;
zip_asc = ASC_WRITE_PROTECTED;
zip_ascq = 0;
zip_info = (dev->sector_pos >> 24) |
((dev->sector_pos >> 16) << 8) |
((dev->sector_pos >> 8) << 16) |
( dev->sector_pos << 24);
zip_cmd_error(dev);
}
static void
zip_write_error(zip_t *dev)
{
zip_sense_key = SENSE_MEDIUM_ERROR;
zip_asc = ASC_WRITE_ERROR;
zip_ascq = 0;
zip_info = (dev->sector_pos >> 24) |
((dev->sector_pos >> 16) << 8) |
((dev->sector_pos >> 8) << 16) |
( dev->sector_pos << 24);
zip_cmd_error(dev);
}
static void
zip_read_error(zip_t *dev)
{
zip_sense_key = SENSE_MEDIUM_ERROR;
zip_asc = ASC_UNRECOVERED_READ_ERROR;
zip_ascq = 0;
zip_info = (dev->sector_pos >> 24) |
((dev->sector_pos >> 16) << 8) |
((dev->sector_pos >> 8) << 16) |
( dev->sector_pos << 24);
zip_cmd_error(dev);
}
static void
zip_invalid_lun(zip_t *dev, const uint8_t lun)
{
zip_sense_key = SENSE_ILLEGAL_REQUEST;
zip_asc = ASC_INV_LUN;
zip_ascq = 0;
zip_info = lun << 24;
zip_cmd_error(dev);
}
static void
zip_illegal_opcode(zip_t *dev, const uint8_t opcode)
{
zip_sense_key = SENSE_ILLEGAL_REQUEST;
zip_asc = ASC_ILLEGAL_OPCODE;
zip_ascq = 0;
zip_info = opcode << 24;
zip_cmd_error(dev);
}
static void
zip_lba_out_of_range(zip_t *dev)
{
zip_sense_key = SENSE_ILLEGAL_REQUEST;
zip_asc = ASC_LBA_OUT_OF_RANGE;
zip_ascq = 0;
zip_info = (dev->sector_pos >> 24) |
((dev->sector_pos >> 16) << 8) |
((dev->sector_pos >> 8) << 16) |
( dev->sector_pos << 24);
zip_cmd_error(dev);
}
static void
zip_invalid_field(zip_t *dev, const uint32_t field)
{
zip_sense_key = SENSE_ILLEGAL_REQUEST;
zip_asc = ASC_INV_FIELD_IN_CMD_PACKET;
zip_ascq = 0;
zip_info = (field >> 24) |
((field >> 16) << 8) |
((field >> 8) << 16) |
( field << 24);
zip_cmd_error(dev);
dev->tf->status = 0x53;
}
static void
zip_invalid_field_pl(zip_t *dev, const uint32_t field)
{
zip_sense_key = SENSE_ILLEGAL_REQUEST;
zip_asc = ASC_INV_FIELD_IN_PARAMETER_LIST;
zip_ascq = 0;
zip_info = (field >> 24) |
((field >> 16) << 8) |
((field >> 8) << 16) |
( field << 24);
zip_cmd_error(dev);
dev->tf->status = 0x53;
}
static void
zip_data_phase_error(zip_t *dev, const uint32_t info)
{
zip_sense_key = SENSE_ILLEGAL_REQUEST;
zip_asc = ASC_DATA_PHASE_ERROR;
zip_ascq = 0;
zip_info = (info >> 24) |
((info >> 16) << 8) |
((info >> 8) << 16) |
( info << 24);
zip_cmd_error(dev);
}
static int
zip_blocks(zip_t *dev, int32_t *len, const int out)
{
int ret = 1;
*len = 0;
if (!dev->sector_len)
zip_command_complete(dev);
else {
zip_log(dev->log, "%sing %i blocks starting from %i...\n", out ? "Writ" : "Read",
dev->requested_blocks, dev->sector_pos);
if (dev->sector_pos >= dev->drv->medium_size) {
zip_log(dev->log, "Trying to %s beyond the end of disk\n",
out ? "write" : "read");
zip_lba_out_of_range(dev);
} else {
*len = dev->requested_blocks << 9;
for (int i = 0; i < dev->requested_blocks; i++) {
if (fseek(dev->drv->fp, dev->drv->base + (dev->sector_pos << 9) +
(i << 9), SEEK_SET) == -1) {
if (out)
zip_write_error(dev);
else
zip_read_error(dev);
ret = -1;
} else {
if (feof(dev->drv->fp))
break;
if (out) {
if (fwrite(dev->buffer + (i << 9), 1,
512, dev->drv->fp) != 512) {
zip_log(dev->log, "zip_blocks(): Error writing data\n");
zip_write_error(dev);
ret = -1;
} else
fflush(dev->drv->fp);
} else if (fread(dev->buffer + (i << 9), 1,
512, dev->drv->fp) != 512) {
zip_log(dev->log, "zip_blocks(): Error reading data\n");
zip_read_error(dev);
ret = -1;
}
}
if (ret == -1)
break;
dev->sector_pos++;
}
if (ret == 1) {
zip_log(dev->log, "%s %i bytes of blocks...\n", out ? "Written" :
"Read", *len);
dev->sector_len -= dev->requested_blocks;
}
}
}
return ret;
}
void
zip_insert(zip_t *dev)
{
if ((dev != NULL) && (dev->drv != NULL)) {
if (dev->drv->fp == NULL) {
dev->unit_attention = 0;
dev->transition = 0;
zip_log(dev->log, "Media removal\n");
} else if (dev->transition) {
dev->unit_attention = 1;
/* Turn off the medium changed status. */
dev->transition = 0;
zip_log(dev->log, "Media insert\n");
} else {
dev->unit_attention = 0;
dev->transition = 1;
zip_log(dev->log, "Media transition\n");
}
}
}
static int
zip_pre_execution_check(zip_t *dev, const uint8_t *cdb)
{
int ready;
if ((cdb[0] != GPCMD_REQUEST_SENSE) && (dev->cur_lun == SCSI_LUN_USE_CDB) &&
(cdb[1] & 0xe0)) {
zip_log(dev->log, "Attempting to execute a unknown command targeted at SCSI LUN %i\n",
((dev->tf->request_length >> 5) & 7));
zip_invalid_lun(dev, cdb[1] >> 5);
return 0;
}
if (!(zip_command_flags[cdb[0]] & IMPLEMENTED)) {
zip_log(dev->log, "Attempting to execute unknown command %02X over %s\n",
cdb[0], (dev->drv->bus_type == ZIP_BUS_SCSI) ?
"SCSI" : "ATAPI");
zip_illegal_opcode(dev, cdb[0]);
return 0;
}
if ((dev->drv->bus_type < ZIP_BUS_SCSI) &&
(zip_command_flags[cdb[0]] & SCSI_ONLY)) {
zip_log(dev->log, "Attempting to execute SCSI-only command %02X "
"over ATAPI\n", cdb[0]);
zip_illegal_opcode(dev, cdb[0]);
return 0;
}
if ((dev->drv->bus_type == ZIP_BUS_SCSI) &&
(zip_command_flags[cdb[0]] & ATAPI_ONLY)) {
zip_log(dev->log, "Attempting to execute ATAPI-only command %02X "
"over SCSI\n", cdb[0]);
zip_illegal_opcode(dev, cdb[0]);
return 0;
}
if (dev->transition) {
if ((cdb[0] == GPCMD_TEST_UNIT_READY) || (cdb[0] == GPCMD_REQUEST_SENSE))
ready = 0;
else {
if (!(zip_command_flags[cdb[0]] & ALLOW_UA)) {
zip_log(dev->log, "(ext_medium_changed != 0): zip_insert()\n");
zip_insert((void *) dev);
}
ready = (dev->drv->fp != NULL);
}
} else
ready = (dev->drv->fp != NULL);
/*
If the drive is not ready, there is no reason to keep the
UNIT ATTENTION condition present, as we only use it to mark
disc changes.
*/
if (!ready && (dev->unit_attention > 0))
dev->unit_attention = 0;
/*
If the UNIT ATTENTION condition is set and the command does not allow
execution under it, error out and report the condition.
*/
if (dev->unit_attention == 1) {
/*
Only increment the unit attention phase if the command can
not pass through it.
*/
if (!(zip_command_flags[cdb[0]] & ALLOW_UA)) {
zip_log(dev->log, "Unit attention now 2\n");
dev->unit_attention++;
zip_log(dev->log, "UNIT ATTENTION: Command %02X not allowed to pass through\n",
cdb[0]);
zip_unit_attention(dev);
return 0;
}
} else if (dev->unit_attention == 2) {
if (cdb[0] != GPCMD_REQUEST_SENSE) {
zip_log(dev->log, "Unit attention now 0\n");
dev->unit_attention = 0;
}
}
/*
Unless the command is REQUEST SENSE, clear the sense. This will *NOT* clear
the UNIT ATTENTION condition if it's set.
*/
if (cdb[0] != GPCMD_REQUEST_SENSE)
zip_sense_clear(dev, cdb[0]);
if (!ready && (zip_command_flags[cdb[0]] & CHECK_READY)) {
zip_log(dev->log, "Not ready (%02X)\n", cdb[0]);
zip_not_ready(dev);
return 0;
}
zip_log(dev->log, "Continuing with command %02X\n", cdb[0]);
return 1;
}
static void
zip_seek(zip_t *dev, const uint32_t pos)
{
dev->sector_pos = pos;
}
static void
zip_rezero(zip_t *dev)
{
dev->sector_pos = dev->sector_len = 0;
zip_seek(dev, 0);
}
void
zip_reset(scsi_common_t *sc)
{
zip_t *dev = (zip_t *) sc;
zip_rezero(dev);
dev->tf->status = 0;
dev->callback = 0.0;
zip_set_callback(dev);
dev->tf->phase = 1;
dev->tf->request_length = 0xEB14;
dev->packet_status = PHASE_NONE;
dev->unit_attention = 0;
dev->cur_lun = SCSI_LUN_USE_CDB;
zip_sense_key = zip_asc = zip_ascq = dev->unit_attention = dev->transition = 0;
zip_info = 0x00000000;
}
static void
zip_request_sense(zip_t *dev, uint8_t *buffer, const uint8_t alloc_length, const int desc)
{
/*Will return 18 bytes of 0*/
if (alloc_length != 0) {
memset(buffer, 0, alloc_length);
if (!desc)
memcpy(buffer, dev->sense, alloc_length);
else {
buffer[1] = zip_sense_key;
buffer[2] = zip_asc;
buffer[3] = zip_ascq;
}
}
buffer[0] = desc ? 0x72 : 0xf0;
if (!desc)
buffer[7] = 10;
if (dev->unit_attention && (zip_sense_key == 0)) {
buffer[desc ? 1 : 2] = SENSE_UNIT_ATTENTION;
buffer[desc ? 2 : 12] = ASC_MEDIUM_MAY_HAVE_CHANGED;
buffer[desc ? 3 : 13] = 0;
}
zip_log(dev->log, "Reporting sense: %02X %02X %02X\n", buffer[2],
buffer[12], buffer[13]);
if (buffer[desc ? 1 : 2] == SENSE_UNIT_ATTENTION) {
/* If the last remaining sense is unit attention, clear
that condition. */
dev->unit_attention = 0;
}
/* Clear the sense stuff as per the spec. */
zip_sense_clear(dev, GPCMD_REQUEST_SENSE);
if (dev->transition) {
zip_log(dev->log, "ZIP_TRANSITION: zip_insert()\n");
zip_insert((void *) dev);
}
}
static void
zip_request_sense_for_scsi(scsi_common_t *sc, uint8_t *buffer, const uint8_t alloc_length)
{
zip_t *dev = (zip_t *) sc;
const int ready = (dev->drv->fp != NULL);
if (!ready && dev->unit_attention) {
/*
If the drive is not ready, there is no reason to keep the UNIT ATTENTION
condition present, as we only use it to mark disc changes.
*/
dev->unit_attention = 0;
}
/* Do *NOT* advance the unit attention phase. */
zip_request_sense(dev, buffer, alloc_length, 0);
}
static void
zip_set_buf_len(const zip_t *dev, int32_t *BufLen, int32_t *src_len)
{
if (dev->drv->bus_type == ZIP_BUS_SCSI) {
if (*BufLen == -1)
*BufLen = *src_len;
else {
*BufLen = MIN(*src_len, *BufLen);
*src_len = *BufLen;
}
zip_log(dev->log, "Actual transfer length: %i\n", *BufLen);
}
}
static void
zip_command(scsi_common_t *sc, const uint8_t *cdb)
{
zip_t *dev = (zip_t *) sc;
const uint8_t scsi_bus = (dev->drv->scsi_device_id >> 4) & 0x0f;
const uint8_t scsi_id = dev->drv->scsi_device_id & 0x0f;
int pos = 0;
int idx = 0;
int32_t blen = 0;
uint32_t i;
unsigned preamble_len;
int32_t len;
int32_t max_len;
int32_t alloc_length;
int block_desc;
int size_idx;
int32_t * BufLen;
if (dev->drv->bus_type == ZIP_BUS_SCSI) {
BufLen = &scsi_devices[scsi_bus][scsi_id].buffer_length;
dev->tf->status &= ~ERR_STAT;
} else {
BufLen = &blen;
dev->tf->error = 0;
}
dev->packet_len = 0;
dev->request_pos = 0;
memcpy(dev->current_cdb, cdb, 12);
if (cdb[0] != 0) {
zip_log(dev->log, "Command 0x%02X, Sense Key %02X, Asc %02X, Ascq %02X, "
"Unit attention: %i\n",
cdb[0], zip_sense_key, zip_asc, zip_ascq, dev->unit_attention);
zip_log(dev->log, "Request length: %04X\n", dev->tf->request_length);
zip_log(dev->log, "CDB: %02X %02X %02X %02X %02X %02X %02X %02X "
"%02X %02X %02X %02X\n",
cdb[0], cdb[1], cdb[2], cdb[3], cdb[4], cdb[5], cdb[6], cdb[7],
cdb[8], cdb[9], cdb[10], cdb[11]);
}
dev->sector_len = 0;
zip_set_phase(dev, SCSI_PHASE_STATUS);
/*
This handles the Not Ready/Unit Attention check if it has to be handled at
this point.
*/
if (zip_pre_execution_check(dev, cdb) == 0)
return;
switch (cdb[0]) {
case GPCMD_SEND_DIAGNOSTIC:
if (!(cdb[1] & (1 << 2))) {
zip_invalid_field(dev, cdb[1]);
return;
}
fallthrough;
case GPCMD_SCSI_RESERVE:
case GPCMD_SCSI_RELEASE:
case GPCMD_TEST_UNIT_READY:
zip_set_phase(dev, SCSI_PHASE_STATUS);
zip_command_complete(dev);
break;
case GPCMD_FORMAT_UNIT:
if (dev->drv->read_only)
zip_write_protected(dev);
else {
zip_set_phase(dev, SCSI_PHASE_STATUS);
zip_command_complete(dev);
}
break;
case GPCMD_IOMEGA_SENSE:
zip_set_phase(dev, SCSI_PHASE_DATA_IN);
max_len = cdb[4];
zip_buf_alloc(dev, 256);
zip_set_buf_len(dev, BufLen, &max_len);
memset(dev->buffer, 0, 256);
if (cdb[2] == 1) {
/*
This page is related to disk health status - setting
this page to 0 makes disk health read as "marginal".
*/
dev->buffer[0] = 0x58;
dev->buffer[1] = 0x00;
for (i = 0x00; i < 0x58; i++)
dev->buffer[i + 0x02] = 0xff;
} else if (cdb[2] == 2) {
dev->buffer[0] = 0x3d;
dev->buffer[1] = 0x00;
for (i = 0x00; i < 0x13; i++)
dev->buffer[i + 0x02] = 0x00;
dev->buffer[0x15] = 0x00;
if (dev->drv->read_only)
dev->buffer[0x15] |= 0x02;
for (i = 0x00; i < 0x27; i++)
dev->buffer[i + 0x16] = 0x00;
} else {
zip_invalid_field(dev, cdb[2]);
zip_buf_free(dev);
return;
}
zip_data_command_finish(dev, 18, 18, cdb[4], 0);
break;
case GPCMD_REZERO_UNIT:
dev->sector_pos = dev->sector_len = 0;
zip_seek(dev, 0);
zip_set_phase(dev, SCSI_PHASE_STATUS);
break;
case GPCMD_REQUEST_SENSE:
/*
If there's a unit attention condition and there's a buffered not ready, a
standalone REQUEST SENSE should forget about the not ready, and report unit
attention straight away.
*/
zip_set_phase(dev, SCSI_PHASE_DATA_IN);
max_len = cdb[4];
if (!max_len) {
zip_set_phase(dev, SCSI_PHASE_STATUS);
dev->packet_status = PHASE_COMPLETE;
dev->callback = 20.0 * ZIP_TIME;
zip_set_callback(dev);
break;
}
zip_buf_alloc(dev, 256);
zip_set_buf_len(dev, BufLen, &max_len);
len = (cdb[1] & 1) ? 8 : 18;
zip_request_sense(dev, dev->buffer, max_len, cdb[1] & 1);
zip_data_command_finish(dev, len, len, cdb[4], 0);
break;
case GPCMD_MECHANISM_STATUS:
zip_set_phase(dev, SCSI_PHASE_DATA_IN);
len = (cdb[8] << 8) | cdb[9];
zip_buf_alloc(dev, 8);
zip_set_buf_len(dev, BufLen, &len);
memset(dev->buffer, 0, 8);
dev->buffer[5] = 1;
zip_data_command_finish(dev, 8, 8, len, 0);
break;
case GPCMD_READ_6:
case GPCMD_READ_10:
case GPCMD_READ_12:
zip_set_phase(dev, SCSI_PHASE_DATA_IN);
alloc_length = 512;
switch (cdb[0]) {
case GPCMD_READ_6:
dev->sector_len = cdb[4];
/*
For READ (6) and WRITE (6), a length of 0 indicates a
transfer of 256 sectors.
*/
if (dev->sector_len == 0)
dev->sector_len = 256;
dev->sector_pos = ((((uint32_t) cdb[1]) & 0x1f) << 16) |
(((uint32_t) cdb[2]) << 8) | ((uint32_t) cdb[3]);
zip_log(dev->log, "Length: %i, LBA: %i\n", dev->sector_len, dev->sector_pos);
break;
case GPCMD_READ_10:
dev->sector_len = (cdb[7] << 8) | cdb[8];
dev->sector_pos = (cdb[2] << 24) | (cdb[3] << 16) |
(cdb[4] << 8) | cdb[5];
zip_log(dev->log, "Length: %i, LBA: %i\n", dev->sector_len, dev->sector_pos);
break;
case GPCMD_READ_12:
dev->sector_len = (((uint32_t) cdb[6]) << 24) |
(((uint32_t) cdb[7]) << 16) |
(((uint32_t) cdb[8]) << 8) | ((uint32_t) cdb[9]);
dev->sector_pos = (((uint32_t) cdb[2]) << 24) |
(((uint32_t) cdb[3]) << 16) |
(((uint32_t) cdb[4]) << 8) | ((uint32_t) cdb[5]);
break;
default:
break;
}
if (dev->sector_pos >= dev->drv->medium_size)
zip_lba_out_of_range(dev);
else if (dev->sector_len) {
max_len = dev->sector_len;
dev->requested_blocks = max_len;
dev->packet_len = max_len * alloc_length;
zip_buf_alloc(dev, dev->packet_len);
int ret = 0;
if (dev->sector_len > 0)
ret = zip_blocks(dev, &alloc_length, 0);
if (ret > 0) {
dev->requested_blocks = max_len;
dev->packet_len = alloc_length;
zip_set_buf_len(dev, BufLen, (int32_t *) &dev->packet_len);
zip_data_command_finish(dev, alloc_length, 512,
alloc_length, 0);
ui_sb_update_icon(SB_ZIP | dev->id,
dev->packet_status != PHASE_COMPLETE);
} else {
zip_set_phase(dev, SCSI_PHASE_STATUS);
dev->packet_status = (ret < 0) ? PHASE_ERROR : PHASE_COMPLETE;
dev->callback = 20.0 * ZIP_TIME;
zip_set_callback(dev);
zip_buf_free(dev);
}
} else {
zip_set_phase(dev, SCSI_PHASE_STATUS);
/* zip_log(dev->log, "All done - callback set\n"); */
dev->packet_status = PHASE_COMPLETE;
dev->callback = 20.0 * ZIP_TIME;
zip_set_callback(dev);
break;
}
break;
case GPCMD_VERIFY_6:
case GPCMD_VERIFY_10:
case GPCMD_VERIFY_12:
if (!(cdb[1] & 2)) {
zip_set_phase(dev, SCSI_PHASE_STATUS);
zip_command_complete(dev);
break;
}
fallthrough;
case GPCMD_WRITE_6:
case GPCMD_WRITE_10:
case GPCMD_WRITE_AND_VERIFY_10:
case GPCMD_WRITE_12:
case GPCMD_WRITE_AND_VERIFY_12:
zip_set_phase(dev, SCSI_PHASE_DATA_OUT);
alloc_length = 512;
if (dev->drv->read_only) {
zip_write_protected(dev);
break;
}
switch (cdb[0]) {
case GPCMD_VERIFY_6:
case GPCMD_WRITE_6:
dev->sector_len = cdb[4];
/*
For READ (6) and WRITE (6), a length of 0 indicates a
transfer of 256 sectors.
*/
if (dev->sector_len == 0)
dev->sector_len = 256;
dev->sector_pos = ((((uint32_t) cdb[1]) & 0x1f) << 16) |
(((uint32_t) cdb[2]) << 8) | ((uint32_t) cdb[3]);
break;
case GPCMD_VERIFY_10:
case GPCMD_WRITE_10:
case GPCMD_WRITE_AND_VERIFY_10:
dev->sector_len = (cdb[7] << 8) | cdb[8];
dev->sector_pos = (cdb[2] << 24) | (cdb[3] << 16) |
(cdb[4] << 8) | cdb[5];
zip_log(dev->log, "Length: %i, LBA: %i\n",
dev->sector_len, dev->sector_pos);
break;
case GPCMD_VERIFY_12:
case GPCMD_WRITE_12:
case GPCMD_WRITE_AND_VERIFY_12:
dev->sector_len = (((uint32_t) cdb[6]) << 24) |
(((uint32_t) cdb[7]) << 16) |
(((uint32_t) cdb[8]) << 8) | ((uint32_t) cdb[9]);
dev->sector_pos = (((uint32_t) cdb[2]) << 24) |
(((uint32_t) cdb[3]) << 16) |
(((uint32_t) cdb[4]) << 8) | ((uint32_t) cdb[5]);
break;
default:
break;
}
if (dev->sector_pos >= dev->drv->medium_size)
zip_lba_out_of_range(dev);
if (dev->sector_len) {
max_len = dev->sector_len;
dev->requested_blocks = max_len;
dev->packet_len = max_len * alloc_length;
zip_buf_alloc(dev, dev->packet_len);
dev->requested_blocks = max_len;
dev->packet_len = max_len << 9;
zip_set_buf_len(dev, BufLen, (int32_t *) &dev->packet_len);
zip_data_command_finish(dev, dev->packet_len, 512,
dev->packet_len, 1);
ui_sb_update_icon(SB_ZIP | dev->id,
dev->packet_status != PHASE_COMPLETE);
} else {
zip_set_phase(dev, SCSI_PHASE_STATUS);
/* zip_log(dev->log, "All done - callback set\n"); */
dev->packet_status = PHASE_COMPLETE;
dev->callback = 20.0 * ZIP_TIME;
zip_set_callback(dev);
}
break;
case GPCMD_WRITE_SAME_10:
alloc_length = 512;
if ((cdb[1] & 6) == 6)
zip_invalid_field(dev, cdb[1]);
else {
if (dev->drv->read_only)
zip_write_protected(dev);
else {
dev->sector_len = (cdb[7] << 8) | cdb[8];
dev->sector_pos = (cdb[2] << 24) | (cdb[3] << 16) |
(cdb[4] << 8) | cdb[5];
if (dev->sector_pos >= dev->drv->medium_size)
zip_lba_out_of_range(dev);
else if (dev->sector_len) {
zip_buf_alloc(dev, alloc_length);
zip_set_buf_len(dev, BufLen, (int32_t *) &dev->packet_len);
max_len = 1;
dev->requested_blocks = 1;
dev->packet_len = alloc_length;
zip_set_phase(dev, SCSI_PHASE_DATA_OUT);
zip_data_command_finish(dev, 512, 512,
alloc_length, 1);
ui_sb_update_icon(SB_ZIP | dev->id,
dev->packet_status != PHASE_COMPLETE);
} else {
zip_set_phase(dev, SCSI_PHASE_STATUS);
/* zip_log(dev->log, "All done - callback set\n"); */
dev->packet_status = PHASE_COMPLETE;
dev->callback = 20.0 * ZIP_TIME;
zip_set_callback(dev);
}
}
}
break;
case GPCMD_MODE_SENSE_6:
case GPCMD_MODE_SENSE_10:
zip_set_phase(dev, SCSI_PHASE_DATA_IN);
if (dev->drv->bus_type == ZIP_BUS_SCSI)
block_desc = ((cdb[1] >> 3) & 1) ? 0 : 1;
else
block_desc = 0;
if (cdb[0] == GPCMD_MODE_SENSE_6) {
len = cdb[4];
zip_buf_alloc(dev, 256);
} else {
len = (cdb[8] | (cdb[7] << 8));
zip_buf_alloc(dev, 65536);
}
if (zip_mode_sense_page_flags & (1LL << (uint64_t) (cdb[2] & 0x3f))) {
memset(dev->buffer, 0, len);
alloc_length = len;
if (cdb[0] == GPCMD_MODE_SENSE_6) {
len = zip_mode_sense(dev, dev->buffer, 4, cdb[2],
block_desc);
len = MIN(len, alloc_length);
dev->buffer[0] = len - 1;
dev->buffer[1] = 0;
if (block_desc)
dev->buffer[3] = 8;
} else {
len = zip_mode_sense(dev, dev->buffer, 8, cdb[2],
block_desc);
len = MIN(len, alloc_length);
dev->buffer[0] = (len - 2) >> 8;
dev->buffer[1] = (len - 2) & 255;
dev->buffer[2] = 0;
if (block_desc) {
dev->buffer[6] = 0;
dev->buffer[7] = 8;
}
}
zip_set_buf_len(dev, BufLen, &len);
zip_log(dev->log, "Reading mode page: %02X...\n", cdb[2]);
zip_data_command_finish(dev, len, len, alloc_length, 0);
} else {
zip_invalid_field(dev, cdb[2]);
zip_buf_free(dev);
}
break;
case GPCMD_MODE_SELECT_6:
case GPCMD_MODE_SELECT_10:
zip_set_phase(dev, SCSI_PHASE_DATA_OUT);
if (cdb[0] == GPCMD_MODE_SELECT_6) {
len = cdb[4];
zip_buf_alloc(dev, 256);
} else {
len = (cdb[7] << 8) | cdb[8];
zip_buf_alloc(dev, 65536);
}
zip_set_buf_len(dev, BufLen, &len);
dev->total_length = len;
dev->do_page_save = cdb[1] & 1;
zip_data_command_finish(dev, len, len, len, 1);
return;
case GPCMD_START_STOP_UNIT:
zip_set_phase(dev, SCSI_PHASE_STATUS);
switch (cdb[4] & 3) {
case 0: /* Stop the disc. */
zip_eject(dev->id); /* The Iomega Windows 9x drivers require this. */
break;
case 1: /* Start the disc and read the TOC. */
break;
case 2: /* Eject the disc if possible. */
#if 0
zip_eject(dev->id);
#endif
break;
case 3: /* Load the disc (close tray). */
zip_reload(dev->id);
break;
default:
break;
}
zip_command_complete(dev);
break;
case GPCMD_INQUIRY:
zip_set_phase(dev, SCSI_PHASE_DATA_IN);
max_len = cdb[3];
max_len <<= 8;
max_len |= cdb[4];
zip_buf_alloc(dev, 65536);
if (cdb[1] & 1) {
preamble_len = 4;
size_idx = 3;
dev->buffer[idx++] = 0;
dev->buffer[idx++] = cdb[2];
dev->buffer[idx++] = 0;
idx++;
switch (cdb[2]) {
case 0x00:
dev->buffer[idx++] = 0x00;
dev->buffer[idx++] = 0x83;
break;
case 0x83:
if (idx + 24 > max_len) {
zip_data_phase_error(dev, cdb[2]);
zip_buf_free(dev);
return;
}
dev->buffer[idx++] = 0x02;
dev->buffer[idx++] = 0x00;
dev->buffer[idx++] = 0x00;
dev->buffer[idx++] = 20;
ide_padstr8(dev->buffer + idx, 20, "53R141"); /* Serial */
idx += 20;
if (idx + 72 > cdb[4])
goto atapi_out;
dev->buffer[idx++] = 0x02;
dev->buffer[idx++] = 0x01;
dev->buffer[idx++] = 0x00;
dev->buffer[idx++] = 68;
/* Vendor */
ide_padstr8(dev->buffer + idx, 8, "IOMEGA ");
idx += 8;
/* Product */
if (dev->drv->is_250)
ide_padstr8(dev->buffer + idx, 40, "ZIP 250 ");
else
ide_padstr8(dev->buffer + idx, 40, "ZIP 100 ");
idx += 40;
ide_padstr8(dev->buffer + idx, 20, "53R141");
idx += 20;
break;
default:
zip_log(dev->log, "INQUIRY: Invalid page: %02X\n", cdb[2]);
zip_invalid_field(dev, cdb[2]);
zip_buf_free(dev);
return;
}
} else {
preamble_len = 5;
size_idx = 4;
memset(dev->buffer, 0, 8);
if ((cdb[1] & 0xe0) || ((dev->cur_lun > 0x00) && (dev->cur_lun < 0xff)))
dev->buffer[0] = 0x7f; /* No physical device on this LUN */
else
dev->buffer[0] = 0x00; /* Hard disk */
dev->buffer[1] = 0x80; /* Removable */
/* SCSI-2 compliant */
dev->buffer[2] = (dev->drv->bus_type == ZIP_BUS_SCSI) ? 0x02 : 0x00;
dev->buffer[3] = (dev->drv->bus_type == ZIP_BUS_SCSI) ? 0x02 : 0x21;
#if 0
dev->buffer[4] = 31;
#endif
dev->buffer[4] = 0;
if (dev->drv->bus_type == ZIP_BUS_SCSI) {
dev->buffer[6] = 1; /* 16-bit transfers supported */
dev->buffer[7] = 0x20; /* Wide bus supported */
}
dev->buffer[7] |= 0x02;
ide_padstr8(dev->buffer + 8, 8, "IOMEGA "); /* Vendor */
if (dev->drv->is_250) {
/* Product */
ide_padstr8(dev->buffer + 16, 16, "ZIP 250 ");
/* Revision */
ide_padstr8(dev->buffer + 32, 4, "42.S");
/* Date? */
if (max_len >= 44)
ide_padstr8(dev->buffer + 36, 8, "08/08/01");
if (max_len >= 122)
ide_padstr8(dev->buffer + 96, 26, "(c) Copyright IOMEGA 2000 "); /* Copyright string */
} else {
/* Product */
ide_padstr8(dev->buffer + 16, 16, "ZIP 100 ");
/* Revision */
ide_padstr8(dev->buffer + 32, 4, "E.08");
}
idx = 36;
if (max_len == 96) {
dev->buffer[4] = 91;
idx = 96;
} else if (max_len == 128) {
dev->buffer[4] = 0x75;
idx = 128;
}
}
atapi_out:
dev->buffer[size_idx] = idx - preamble_len;
len = idx;
len = MIN(len, max_len);
zip_set_buf_len(dev, BufLen, &len);
zip_data_command_finish(dev, len, len, max_len, 0);
break;
case GPCMD_PREVENT_REMOVAL:
zip_set_phase(dev, SCSI_PHASE_STATUS);
zip_command_complete(dev);
break;
case GPCMD_SEEK_6:
case GPCMD_SEEK_10:
zip_set_phase(dev, SCSI_PHASE_STATUS);
switch (cdb[0]) {
case GPCMD_SEEK_6:
pos = (cdb[2] << 8) | cdb[3];
break;
case GPCMD_SEEK_10:
pos = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
break;
default:
break;
}
zip_seek(dev, pos);
zip_command_complete(dev);
break;
case GPCMD_READ_CDROM_CAPACITY:
zip_set_phase(dev, SCSI_PHASE_DATA_IN);
zip_buf_alloc(dev, 8);
/* IMPORTANT: What's returned is the last LBA block. */
max_len = dev->drv->medium_size - 1;
memset(dev->buffer, 0, 8);
dev->buffer[0] = (max_len >> 24) & 0xff;
dev->buffer[1] = (max_len >> 16) & 0xff;
dev->buffer[2] = (max_len >> 8) & 0xff;
dev->buffer[3] = max_len & 0xff;
dev->buffer[6] = 2; /* 512 = 0x0200 */
len = 8;
zip_set_buf_len(dev, BufLen, &len);
zip_data_command_finish(dev, len, len, len, 0);
break;
case GPCMD_IOMEGA_EJECT:
zip_set_phase(dev, SCSI_PHASE_STATUS);
zip_eject(dev->id);
zip_command_complete(dev);
break;
case GPCMD_READ_FORMAT_CAPACITIES:
len = (cdb[7] << 8) | cdb[8];
zip_buf_alloc(dev, len);
memset(dev->buffer, 0, len);
pos = 0;
/* List header */
dev->buffer[pos++] = 0;
dev->buffer[pos++] = 0;
dev->buffer[pos++] = 0;
if (dev->drv->fp != NULL)
dev->buffer[pos++] = 16;
else
dev->buffer[pos++] = 8;
/* Current/Maximum capacity header */
if (dev->drv->is_250) {
/* ZIP 250 also supports ZIP 100 media, so if the medium is inserted,
we return the inserted medium's size, otherwise, the ZIP 250 size. */
if (dev->drv->fp != NULL) {
dev->buffer[pos++] = (dev->drv->medium_size >> 24) & 0xff;
dev->buffer[pos++] = (dev->drv->medium_size >> 16) & 0xff;
dev->buffer[pos++] = (dev->drv->medium_size >> 8) & 0xff;
dev->buffer[pos++] = dev->drv->medium_size & 0xff;
dev->buffer[pos++] = 2; /* Current medium capacity */
} else {
dev->buffer[pos++] = (ZIP_250_SECTORS >> 24) & 0xff;
dev->buffer[pos++] = (ZIP_250_SECTORS >> 16) & 0xff;
dev->buffer[pos++] = (ZIP_250_SECTORS >> 8) & 0xff;
dev->buffer[pos++] = ZIP_250_SECTORS & 0xff;
dev->buffer[pos++] = 3; /* Maximum medium capacity */
}
} else {
/* ZIP 100 only supports ZIP 100 media as well, so we always return
the ZIP 100 size. */
dev->buffer[pos++] = (ZIP_SECTORS >> 24) & 0xff;
dev->buffer[pos++] = (ZIP_SECTORS >> 16) & 0xff;
dev->buffer[pos++] = (ZIP_SECTORS >> 8) & 0xff;
dev->buffer[pos++] = ZIP_SECTORS & 0xff;
if (dev->drv->fp != NULL)
dev->buffer[pos++] = 2;
else
dev->buffer[pos++] = 3;
}
dev->buffer[pos++] = 512 >> 16;
dev->buffer[pos++] = 512 >> 8;
dev->buffer[pos++] = 512 & 0xff;
if (dev->drv->fp != NULL) {
/* Formattable capacity descriptor */
dev->buffer[pos++] = (dev->drv->medium_size >> 24) & 0xff;
dev->buffer[pos++] = (dev->drv->medium_size >> 16) & 0xff;
dev->buffer[pos++] = (dev->drv->medium_size >> 8) & 0xff;
dev->buffer[pos++] = dev->drv->medium_size & 0xff;
dev->buffer[pos++] = 0;
dev->buffer[pos++] = 512 >> 16;
dev->buffer[pos++] = 512 >> 8;
dev->buffer[pos++] = 512 & 0xff;
}
zip_set_buf_len(dev, BufLen, &len);
zip_data_command_finish(dev, len, len, len, 0);
break;
default:
zip_illegal_opcode(dev, cdb[0]);
break;
}
#if 0
zip_log(dev->log, "Phase: %02X, request length: %i\n",
dev->tf->phase, dev->tf->request_length);
#endif
if ((dev->packet_status == PHASE_COMPLETE) || (dev->packet_status == PHASE_ERROR))
zip_buf_free(dev);
}
static void
zip_command_stop(scsi_common_t *sc)
{
zip_t *dev = (zip_t *) sc;
zip_command_complete(dev);
zip_buf_free(dev);
}
/* The command second phase function, needed for Mode Select. */
static uint8_t
zip_phase_data_out(scsi_common_t *sc)
{
zip_t *dev = (zip_t *) sc;
int len = 0;
uint8_t error = 0;
uint32_t last_to_write;
uint32_t i;
uint16_t block_desc_len;
uint16_t pos;
uint16_t param_list_len;
uint8_t hdr_len;
uint8_t val;
switch (dev->current_cdb[0]) {
case GPCMD_VERIFY_6:
case GPCMD_VERIFY_10:
case GPCMD_VERIFY_12:
break;
case GPCMD_WRITE_6:
case GPCMD_WRITE_10:
case GPCMD_WRITE_AND_VERIFY_10:
case GPCMD_WRITE_12:
case GPCMD_WRITE_AND_VERIFY_12:
if (dev->requested_blocks > 0)
zip_blocks(dev, &len, 1);
break;
case GPCMD_WRITE_SAME_10:
if (!dev->current_cdb[7] && !dev->current_cdb[8]) {
last_to_write = (dev->drv->medium_size - 1);
} else
last_to_write = dev->sector_pos + dev->sector_len - 1;
for (i = dev->sector_pos; i <= last_to_write; i++) {
if (dev->current_cdb[1] & 2) {
dev->buffer[0] = (i >> 24) & 0xff;
dev->buffer[1] = (i >> 16) & 0xff;
dev->buffer[2] = (i >> 8) & 0xff;
dev->buffer[3] = i & 0xff;
} else if (dev->current_cdb[1] & 4) {
/* CHS are 96, 1, 2048 (ZIP 100) and 239, 1, 2048 (ZIP 250) */
const uint32_t s = (i % 2048);
const uint32_t h = ((i - s) / 2048) % 1;
const uint32_t c = ((i - s) / 2048) / 1;
dev->buffer[0] = (c >> 16) & 0xff;
dev->buffer[1] = (c >> 8) & 0xff;
dev->buffer[2] = c & 0xff;
dev->buffer[3] = h & 0xff;
dev->buffer[4] = (s >> 24) & 0xff;
dev->buffer[5] = (s >> 16) & 0xff;
dev->buffer[6] = (s >> 8) & 0xff;
dev->buffer[7] = s & 0xff;
}
if (fseek(dev->drv->fp, dev->drv->base + (i << 9),
SEEK_SET) == -1)
log_fatal(dev->log, "zip_phase_data_out(): Error seeking\n");
if (fwrite(dev->buffer, 1, 512, dev->drv->fp) != 512)
log_fatal(dev->log, "zip_phase_data_out(): Error writing data\n");
}
fflush(dev->drv->fp);
break;
case GPCMD_MODE_SELECT_6:
case GPCMD_MODE_SELECT_10:
if (dev->current_cdb[0] == GPCMD_MODE_SELECT_10) {
hdr_len = 8;
param_list_len = dev->current_cdb[7];
param_list_len <<= 8;
param_list_len |= dev->current_cdb[8];
} else {
hdr_len = 4;
param_list_len = dev->current_cdb[4];
}
if (dev->drv->bus_type == ZIP_BUS_SCSI) {
if (dev->current_cdb[0] == GPCMD_MODE_SELECT_6) {
block_desc_len = dev->buffer[2];
block_desc_len <<= 8;
block_desc_len |= dev->buffer[3];
} else {
block_desc_len = dev->buffer[6];
block_desc_len <<= 8;
block_desc_len |= dev->buffer[7];
}
} else
block_desc_len = 0;
pos = hdr_len + block_desc_len;
while (1) {
if (pos >= param_list_len) {
zip_log(dev->log, "Buffer has only block descriptor\n");
break;
}
const uint8_t page = dev->buffer[pos] & 0x3f;
const uint8_t page_len = dev->buffer[pos + 1];
pos += 2;
if (!(zip_mode_sense_page_flags & (1LL << ((uint64_t) page))))
error |= 1;
else for (i = 0; i < page_len; i++) {
const uint8_t old_val = dev->ms_pages_saved.pages[page][i + 2];
const uint8_t ch = zip_mode_sense_pages_changeable.pages[page][i + 2];
val = dev->buffer[pos + i];
if (val != old_val) {
if (ch)
dev->ms_pages_saved.pages[page][i + 2] = val;
else {
error |= 1;
zip_invalid_field_pl(dev, val);
}
}
}
pos += page_len;
if (dev->drv->bus_type == ZIP_BUS_SCSI)
val = zip_mode_sense_pages_default_scsi.pages[page][0] & 0x80;
else
val = zip_mode_sense_pages_default.pages[page][0] & 0x80;
if (dev->do_page_save && val)
zip_mode_sense_save(dev);
if (pos >= dev->total_length)
break;
}
if (error) {
zip_buf_free(dev);
return 0;
}
break;
default:
break;
}
zip_command_stop((scsi_common_t *) dev);
return 1;
}
/* Peform a master init on the entire module. */
void
zip_global_init(void)
{
/* Clear the global data. */
memset(zip_drives, 0x00, sizeof(zip_drives));
}
static int
zip_get_max(const ide_t *ide, const int ide_has_dma, const int type)
{
int ret;
switch (type) {
case TYPE_PIO:
ret = ide_has_dma ? 3 : 0;
break;
case TYPE_SDMA:
default:
ret = -1;
break;
case TYPE_MDMA:
ret = ide_has_dma ? 1 : -1;
break;
case TYPE_UDMA:
ret = ide_has_dma ? 5 : -1;
break;
}
return ret;
}
static int
zip_get_timings(const ide_t *ide, const int ide_has_dma, const int type)
{
int ret;
switch (type) {
case TIMINGS_DMA:
ret = ide_has_dma ? 0x96 : 0;
break;
case TIMINGS_PIO:
ret = ide_has_dma ? 0xb4 : 0;
break;
case TIMINGS_PIO_FC:
ret = ide_has_dma ? 0xb4 : 0;
break;
default:
ret = 0;
break;
}
return ret;
}
static void
zip_100_identify(const ide_t *ide)
{
ide_padstr((char *) (ide->buffer + 23), "E.08", 8); /* Firmware */
ide_padstr((char *) (ide->buffer + 27), "IOMEGA ZIP 100 ATAPI", 40); /* Model */
}
static void
zip_250_identify(const ide_t *ide, const int ide_has_dma)
{
/* Firmware */
ide_padstr((char *) (ide->buffer + 23), "42.S", 8);
/* Model */
ide_padstr((char *) (ide->buffer + 27), "IOMEGA ZIP 250 ATAPI", 40);
if (ide_has_dma) {
ide->buffer[80] = 0x70; /* Supported ATA versions : ATA/ATAPI-4 ATA/ATAPI-6 */
/* Maximum ATA revision supported : ATA/ATAPI-6 T13 1410D revision 3a */
ide->buffer[81] = 0x19;
}
}
static void
zip_identify(const ide_t *ide, const int ide_has_dma)
{
const zip_t *zip = (zip_t *) ide->sc;
/*
ATAPI device, direct-access device, removable media, interrupt DRQ:
Using (2 << 5) below makes the ASUS P/I-P54TP4XE misdentify the ZIP drive
as a LS-120.
*/
ide->buffer[0] = 0x8000 | (0 << 8) | 0x80 | (1 << 5);
ide_padstr((char *) (ide->buffer + 10), "", 20); /* Serial Number */
ide->buffer[49] = 0x200; /* LBA supported */
/* Interpret zero byte count limit as maximum length */
ide->buffer[126] = 0xfffe;
if (zip_drives[zip->id].is_250)
zip_250_identify(ide, ide_has_dma);
else
zip_100_identify(ide);
}
static void
zip_drive_reset(const int c)
{
const uint8_t scsi_bus = (zip_drives[c].scsi_device_id >> 4) & 0x0f;
const uint8_t scsi_id = zip_drives[c].scsi_device_id & 0x0f;
if (zip_drives[c].priv == NULL) {
zip_drives[c].priv = (zip_t *) calloc(1, sizeof(zip_t));
zip_t *dev = (zip_t *) zip_drives[c].priv;
char n[1024] = { 0 };
sprintf(n, "ZIP %i", c + 1);
dev->log = log_open(n);
}
zip_t *dev = (zip_t *) zip_drives[c].priv;
dev->id = c;
dev->cur_lun = SCSI_LUN_USE_CDB;
if (zip_drives[c].bus_type == ZIP_BUS_SCSI) {
if (dev->tf == NULL)
dev->tf = (ide_tf_t *) calloc(1, sizeof(ide_tf_t));
/* SCSI ZIP, attach to the SCSI bus. */
scsi_device_t *sd = &scsi_devices[scsi_bus][scsi_id];
sd->sc = (scsi_common_t *) dev;
sd->command = zip_command;
sd->request_sense = zip_request_sense_for_scsi;
sd->reset = zip_reset;
sd->phase_data_out = zip_phase_data_out;
sd->command_stop = zip_command_stop;
sd->type = SCSI_REMOVABLE_DISK;
} else if (zip_drives[c].bus_type == ZIP_BUS_ATAPI) {
/* ATAPI CD-ROM, attach to the IDE bus. */
ide_t *id = ide_get_drive(zip_drives[c].ide_channel);
/* If the IDE channel is initialized, we attach to it,
otherwise, we do nothing - it's going to be a drive
that's not attached to anything. */
if (id) {
id->sc = (scsi_common_t *) dev;
dev->tf = id->tf;
IDE_ATAPI_IS_EARLY = 0;
id->get_max = zip_get_max;
id->get_timings = zip_get_timings;
id->identify = zip_identify;
id->stop = NULL;
id->packet_command = zip_command;
id->device_reset = zip_reset;
id->phase_data_out = zip_phase_data_out;
id->command_stop = zip_command_stop;
id->bus_master_error = zip_bus_master_error;
id->interrupt_drq = 1;
ide_atapi_attach(id);
}
}
}
void
zip_hard_reset(void)
{
for (uint8_t c = 0; c < ZIP_NUM; c++) {
if ((zip_drives[c].bus_type == ZIP_BUS_ATAPI) || (zip_drives[c].bus_type == ZIP_BUS_SCSI)) {
if (zip_drives[c].bus_type == ZIP_BUS_SCSI) {
const uint8_t scsi_bus = (zip_drives[c].scsi_device_id >> 4) & 0x0f;
const uint8_t scsi_id = zip_drives[c].scsi_device_id & 0x0f;
/* Make sure to ignore any SCSI ZIP drive that has an out of range SCSI bus. */
if (scsi_bus >= SCSI_BUS_MAX)
continue;
/* Make sure to ignore any SCSI ZIP drive that has an out of range ID. */
if (scsi_id >= SCSI_ID_MAX)
continue;
}
/* Make sure to ignore any ATAPI ZIP drive that has an out of range IDE channel. */
if ((zip_drives[c].bus_type == ZIP_BUS_ATAPI) && (zip_drives[c].ide_channel > 7))
continue;
zip_drive_reset(c);
zip_t *dev = (zip_t *) zip_drives[c].priv;
zip_log(dev->log, "ZIP hard_reset drive=%d\n", c);
if (dev->tf == NULL)
continue;
dev->id = c;
dev->drv = &zip_drives[c];
zip_init(dev);
if (strlen(zip_drives[c].image_path))
zip_load(dev, zip_drives[c].image_path, 0);
zip_mode_sense_load(dev);
if (zip_drives[c].bus_type == ZIP_BUS_SCSI)
zip_log(dev->log, "SCSI ZIP drive %i attached to SCSI ID %i\n",
c, zip_drives[c].scsi_device_id);
else if (zip_drives[c].bus_type == ZIP_BUS_ATAPI)
zip_log(dev->log, "ATAPI ZIP drive %i attached to IDE channel %i\n",
c, zip_drives[c].ide_channel);
}
}
}
void
zip_close(void)
{
for (uint8_t c = 0; c < ZIP_NUM; c++) {
if (zip_drives[c].bus_type == ZIP_BUS_SCSI) {
const uint8_t scsi_bus = (zip_drives[c].scsi_device_id >> 4) & 0x0f;
const uint8_t scsi_id = zip_drives[c].scsi_device_id & 0x0f;
memset(&scsi_devices[scsi_bus][scsi_id], 0x00, sizeof(scsi_device_t));
}
zip_t *dev = (zip_t *) zip_drives[c].priv;
if (dev) {
zip_disk_unload(dev);
if (dev->tf)
free(dev->tf);
if (dev->log != NULL) {
zip_log(dev->log, "Log closed\n");
log_close(dev->log);
dev->log = NULL;
}
free(dev);
zip_drives[c].priv = NULL;
}
}
}