Files
86Box/src/disk/hdd_image.c
2020-04-04 12:45:47 +02:00

962 lines
25 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Handling of hard disk image files.
*
*
*
* Authors: Miran Grca, <mgrca8@gmail.com>
* Fred N. van Kempen, <decwiz@yahoo.com>
*
* Copyright 2016-2018 Miran Grca.
* Copyright 2017,2018 Fred N. van Kempen.
*/
#define _LARGEFILE_SOURCE
#define _LARGEFILE64_SOURCE
#define _GNU_SOURCE
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <wchar.h>
#include <errno.h>
#define HAVE_STDARG_H
#include <86box/86box.h>
#include <86box/plat.h>
#include <86box/random.h>
#include <86box/hdd.h>
typedef struct
{
FILE *file;
uint32_t base;
uint32_t pos, last_sector;
uint8_t type;
uint8_t loaded;
} hdd_image_t;
hdd_image_t hdd_images[HDD_NUM];
static char empty_sector[512];
static char *empty_sector_1mb;
#define VHD_OFFSET_COOKIE 0
#define VHD_OFFSET_FEATURES 8
#define VHD_OFFSET_VERSION 12
#define VHD_OFFSET_DATA_OFFSET 16
#define VHD_OFFSET_TIMESTAMP 24
#define VHD_OFFSET_CREATOR 28
#define VHD_OFFSET_CREATOR_VERS 32
#define VHD_OFFSET_CREATOR_HOST 36
#define VHD_OFFSET_ORIG_SIZE 40
#define VHD_OFFSET_CURR_SIZE 48
#define VHD_OFFSET_GEOM_CYL 56
#define VHD_OFFSET_GEOM_HEAD 58
#define VHD_OFFSET_GEOM_SPT 59
#define VHD_OFFSET_TYPE 60
#define VHD_OFFSET_CHECKSUM 64
#define VHD_OFFSET_UUID 68
#define VHD_OFFSET_SAVED_STATE 84
#define VHD_OFFSET_RESERVED 85
#ifdef ENABLE_HDD_IMAGE_LOG
int hdd_image_do_log = ENABLE_HDD_IMAGE_LOG;
static void
hdd_image_log(const char *fmt, ...)
{
va_list ap;
if (hdd_image_do_log) {
va_start(ap, fmt);
pclog_ex(fmt, ap);
va_end(ap);
}
}
#else
#define hdd_image_log(fmt, ...)
#endif
int
image_is_hdi(const wchar_t *s)
{
int len;
wchar_t ext[5] = { 0, 0, 0, 0, 0 };
char *ws = (char *) s;
len = wcslen(s);
if ((len < 4) || (s[0] == L'.'))
return 0;
memcpy(ext, ws + ((len - 4) << 1), 8);
if (! wcscasecmp(ext, L".HDI"))
return 1;
else
return 0;
}
int
image_is_hdx(const wchar_t *s, int check_signature)
{
int len;
FILE *f;
uint64_t filelen;
uint64_t signature;
char *ws = (char *) s;
wchar_t ext[5] = { 0, 0, 0, 0, 0 };
len = wcslen(s);
if ((len < 4) || (s[0] == L'.'))
return 0;
memcpy(ext, ws + ((len - 4) << 1), 8);
if (wcscasecmp(ext, L".HDX") == 0) {
if (check_signature) {
f = plat_fopen((wchar_t *)s, L"rb");
if (!f)
return 0;
if (fseeko64(f, 0, SEEK_END))
fatal("image_is_hdx(): Error while seeking");
filelen = ftello64(f);
if (fseeko64(f, 0, SEEK_SET))
fatal("image_is_hdx(): Error while seeking");
if (filelen < 44) {
if (f != NULL)
fclose(f);
return 0;
}
if (fread(&signature, 1, 8, f) != 8)
fatal("image_is_hdx(): Error reading signature\n");
fclose(f);
if (signature == 0xD778A82044445459ll)
return 1;
else
return 0;
} else
return 1;
} else
return 0;
}
int
image_is_vhd(const wchar_t *s, int check_signature)
{
int len;
FILE *f;
uint64_t filelen;
uint64_t signature;
char *ws = (char *) s;
wchar_t ext[5] = { 0, 0, 0, 0, 0 };
len = wcslen(s);
if ((len < 4) || (s[0] == L'.'))
return 0;
memcpy(ext, ws + ((len - 4) << 1), 8);
if (wcscasecmp(ext, L".VHD") == 0) {
if (check_signature) {
f = plat_fopen((wchar_t *)s, L"rb");
if (!f)
return 0;
fseeko64(f, 0, SEEK_END);
filelen = ftello64(f);
if (fseeko64(f, -512, SEEK_END) == -1) {
fclose(f);
fatal("image_is_vhd(): Error seeking\n");
}
if (filelen < 512) {
if (f != NULL)
fclose(f);
return 0;
}
if (fread(&signature, 1, 8, f) != 8)
fatal("image_is_vhd(): Error reading signature\n");
fclose(f);
if (signature == 0x78697463656E6F63ll)
return 1;
else
return 0;
} else
return 1;
} else
return 0;
}
static uint64_t
be_to_u64(uint8_t *bytes, int start)
{
uint64_t n = ((uint64_t) bytes[start + 7] << 0) |
((uint64_t) bytes[start + 6] << 8) |
((uint64_t) bytes[start + 5] << 16) |
((uint64_t) bytes[start + 4] << 24) |
((uint64_t) bytes[start + 3] << 32) |
((uint64_t) bytes[start + 2] << 40) |
((uint64_t) bytes[start + 1] << 48) |
((uint64_t) bytes[start ] << 56);
return n;
}
static uint32_t
be_to_u32(uint8_t *bytes, int start)
{
uint32_t n = ((uint32_t) bytes[start + 3] << 0) |
((uint32_t) bytes[start + 2] << 8) |
((uint32_t) bytes[start + 1] << 16) |
((uint32_t) bytes[start ] << 24);
return n;
}
static uint16_t
be_to_u16(uint8_t *bytes, int start)
{
uint16_t n = ((uint16_t) bytes[start + 1] << 0) |
((uint16_t) bytes[start ] << 8);
return n;
}
static uint64_t
u64_to_be(uint64_t value, int is_be)
{
uint64_t res = 0;
if (is_be)
res = value;
else {
uint64_t mask = 0xff00000000000000;
res = ((value & (mask >> 0)) >> 56) |
((value & (mask >> 8)) >> 40) |
((value & (mask >> 16)) >> 24) |
((value & (mask >> 24)) >> 8) |
((value & (mask >> 32)) << 8) |
((value & (mask >> 40)) << 24) |
((value & (mask >> 48)) << 40) |
((value & (mask >> 56)) << 56);
}
return res;
}
static uint32_t
u32_to_be(uint32_t value, int is_be)
{
uint32_t res = 0;
if (is_be)
res = value;
else {
uint32_t mask = 0xff000000;
res = ((value & (mask >> 0)) >> 24) |
((value & (mask >> 8)) >> 8) |
((value & (mask >> 16)) << 8) |
((value & (mask >> 24)) << 24);
}
return res;
}
static uint16_t
u16_to_be(uint16_t value, int is_be)
{
uint16_t res = 0;
if (is_be)
res = value;
else
res = (value >> 8) | (value << 8);
return res;
}
static void
mk_guid(uint8_t *guid)
{
int n;
for (n = 0; n < 16; n++)
guid[n] = random_generate();
guid[6] &= 0x0F;
guid[6] |= 0x40; /* Type 4 */
guid[8] &= 0x3F;
guid[8] |= 0x80; /* Variant 1 */
}
static uint32_t
calc_vhd_timestamp()
{
time_t start_time;
time_t curr_time;
double vhd_time;
start_time = 946684800; /* 1 Jan 2000 00:00 */
curr_time = time(NULL);
vhd_time = difftime(curr_time, start_time);
return (uint32_t)vhd_time;
}
void
vhd_footer_from_bytes(vhd_footer_t *vhd, uint8_t *bytes)
{
memcpy(vhd->cookie, bytes + VHD_OFFSET_COOKIE, sizeof(vhd->cookie));
vhd->features = be_to_u32(bytes, VHD_OFFSET_FEATURES);
vhd->version = be_to_u32(bytes, VHD_OFFSET_VERSION);
vhd->offset = be_to_u64(bytes, VHD_OFFSET_DATA_OFFSET);
vhd->timestamp = be_to_u32(bytes, VHD_OFFSET_TIMESTAMP);
memcpy(vhd->creator, bytes + VHD_OFFSET_CREATOR, sizeof(vhd->creator));
vhd->creator_vers = be_to_u32(bytes, VHD_OFFSET_CREATOR_VERS);
memcpy(vhd->creator_host_os, bytes + VHD_OFFSET_CREATOR_HOST, sizeof(vhd->creator_host_os));
vhd->orig_size = be_to_u64(bytes, VHD_OFFSET_ORIG_SIZE);
vhd->curr_size = be_to_u64(bytes, VHD_OFFSET_CURR_SIZE);
vhd->geom.cyl = be_to_u16(bytes, VHD_OFFSET_GEOM_CYL);
vhd->geom.heads = bytes[VHD_OFFSET_GEOM_HEAD];
vhd->geom.spt = bytes[VHD_OFFSET_GEOM_SPT];
vhd->type = be_to_u32(bytes, VHD_OFFSET_TYPE);
vhd->checksum = be_to_u32(bytes, VHD_OFFSET_CHECKSUM);
memcpy(vhd->uuid, bytes + VHD_OFFSET_UUID, sizeof(vhd->uuid)); /* TODO: handle UUID's properly */
vhd->saved_state = bytes[VHD_OFFSET_SAVED_STATE];
memcpy(vhd->reserved, bytes + VHD_OFFSET_RESERVED, sizeof(vhd->reserved));
}
void
vhd_footer_to_bytes(uint8_t *bytes, vhd_footer_t *vhd)
{
/* Quick endian check */
int is_be = 0;
uint8_t e = 1;
uint8_t *ep = &e;
uint16_t u16;
uint32_t u32;
uint64_t u64;
if (ep[0] == 0)
is_be = 1;
memcpy(bytes + VHD_OFFSET_COOKIE, vhd->cookie, sizeof(vhd->cookie));
u32 = u32_to_be(vhd->features, is_be);
memcpy(bytes + VHD_OFFSET_FEATURES, &u32, sizeof(vhd->features));
u32 = u32_to_be(vhd->version, is_be);
memcpy(bytes + VHD_OFFSET_VERSION, &u32, sizeof(vhd->version));
u64 = u64_to_be(vhd->offset, is_be);
memcpy(bytes + VHD_OFFSET_DATA_OFFSET, &u64, sizeof(vhd->offset));
u32 = u32_to_be(vhd->timestamp, is_be);
memcpy(bytes + VHD_OFFSET_TIMESTAMP, &u32, sizeof(vhd->timestamp));
memcpy(bytes + VHD_OFFSET_CREATOR, vhd->creator, sizeof(vhd->creator));
u32 = u32_to_be(vhd->creator_vers, is_be);
memcpy(bytes + VHD_OFFSET_CREATOR_VERS, &u32, sizeof(vhd->creator_vers));
memcpy(bytes + VHD_OFFSET_CREATOR_HOST, vhd->creator_host_os, sizeof(vhd->creator_host_os));
u64 = u64_to_be(vhd->orig_size, is_be);
memcpy(bytes + VHD_OFFSET_ORIG_SIZE, &u64, sizeof(vhd->orig_size));
u64 = u64_to_be(vhd->curr_size, is_be);
memcpy(bytes + VHD_OFFSET_CURR_SIZE, &u64, sizeof(vhd->curr_size));
u16 = u16_to_be(vhd->geom.cyl, is_be);
memcpy(bytes + VHD_OFFSET_GEOM_CYL, &u16, sizeof(vhd->geom.cyl));
memcpy(bytes + VHD_OFFSET_GEOM_HEAD, &(vhd->geom.heads), sizeof(vhd->geom.heads));
memcpy(bytes + VHD_OFFSET_GEOM_SPT, &(vhd->geom.spt), sizeof(vhd->geom.spt));
u32 = u32_to_be(vhd->type, is_be);
memcpy(bytes + VHD_OFFSET_TYPE, &u32, sizeof(vhd->type));
u32 = u32_to_be(vhd->checksum, is_be);
memcpy(bytes + VHD_OFFSET_CHECKSUM, &u32, sizeof(vhd->checksum));
memcpy(bytes + VHD_OFFSET_UUID, vhd->uuid, sizeof(vhd->uuid));
memcpy(bytes + VHD_OFFSET_SAVED_STATE, &(vhd->saved_state), sizeof(vhd->saved_state));
memcpy(bytes + VHD_OFFSET_RESERVED, vhd->reserved, sizeof(vhd->reserved));
}
void
new_vhd_footer(vhd_footer_t **vhd)
{
uint8_t cookie[8] = {'c', 'o', 'n', 'e', 'c', 't', 'i', 'x'};
uint8_t creator[4] = {'8', '6', 'b', 'x'};
uint8_t cr_host_os[4] = {'W', 'i', '2', 'k'};
if (*vhd == NULL)
*vhd = (vhd_footer_t *) malloc(sizeof(vhd_footer_t));
memcpy((*vhd)->cookie, cookie, 8);
(*vhd)->features = 0x00000002;
(*vhd)->version = 0x00010000;
(*vhd)->offset = 0xffffffffffffffff; /* fixed disk */
(*vhd)->timestamp = calc_vhd_timestamp();
memcpy((*vhd)->creator, creator, 4);
(*vhd)->creator_vers = 0x00010000;
memcpy((*vhd)->creator_host_os, cr_host_os, 4);
(*vhd)->type = 2; /* fixed disk */
mk_guid((*vhd)->uuid);
(*vhd)->saved_state = 0;
memset((*vhd)->reserved, 0, 427);
}
void
generate_vhd_checksum(vhd_footer_t *vhd)
{
uint32_t chk = 0;
int i;
for (i = 0; i < sizeof(vhd_footer_t); i++) {
/* We don't include the checksum field in the checksum */
if ((i < VHD_OFFSET_CHECKSUM) || (i >= VHD_OFFSET_UUID))
chk += ((uint8_t*)vhd)[i];
}
vhd->checksum = ~chk;
}
void
hdd_image_calc_chs(uint32_t *c, uint32_t *h, uint32_t *s, uint32_t size)
{
/* Calculate the geometry from size (in MB), using the algorithm provided in
"Virtual Hard Disk Image Format Specification, Appendix: CHS Calculation" */
uint64_t ts = ((uint64_t) size) << 11LL;
uint32_t spt, heads, cyl, cth;
if (ts > 65535 * 16 * 255)
ts = 65535 * 16 * 255;
if (ts >= 65535 * 16 * 63) {
spt = 255;
heads = 16;
cth = (uint32_t) (ts / spt);
} else {
spt = 17;
cth = (uint32_t) (ts / spt);
heads = (cth +1023) / 1024;
if (heads < 4)
heads = 4;
if ((cth >= (heads * 1024)) || (heads > 16)) {
spt = 31;
heads = 16;
cth = (uint32_t) (ts / spt);
}
if (cth >= (heads * 1024)) {
spt = 63;
heads = 16;
cth = (uint32_t) (ts / spt);
}
}
cyl = cth / heads;
*c = cyl;
*h = heads;
*s = spt;
}
static int
prepare_new_hard_disk(uint8_t id, uint64_t full_size)
{
uint64_t target_size = (full_size + hdd_images[id].base) - ftello64(hdd_images[id].file);
uint32_t size;
uint32_t t, i;
t = (uint32_t) (target_size >> 20); /* Amount of 1 MB blocks. */
size = (uint32_t) (target_size & 0xfffff); /* 1 MB mask. */
empty_sector_1mb = (char *) malloc(1048576);
memset(empty_sector_1mb, 0, 1048576);
/* Temporarily switch off suppression of seen messages so that the
progress gets displayed. */
pclog_toggle_suppr();
pclog("Writing image sectors: [");
/* First, write all the 1 MB blocks. */
if (t > 0) {
for (i = 0; i < t; i++) {
fseek(hdd_images[id].file, 0, SEEK_END);
fwrite(empty_sector_1mb, 1, 1048576, hdd_images[id].file);
pclog("#");
}
}
/* Then, write the remainder. */
if (size > 0) {
fseek(hdd_images[id].file, 0, SEEK_END);
fwrite(empty_sector_1mb, 1, size, hdd_images[id].file);
pclog("#");
}
pclog("]\n");
/* Switch the suppression of seen messages back on. */
pclog_toggle_suppr();
free(empty_sector_1mb);
hdd_images[id].last_sector = (uint32_t) (full_size >> 9) - 1;
hdd_images[id].loaded = 1;
return 1;
}
void
hdd_image_init(void)
{
int i;
for (i = 0; i < HDD_NUM; i++)
memset(&hdd_images[i], 0, sizeof(hdd_image_t));
}
static void
hdd_image_gen_vft(int id, vhd_footer_t **vft, uint64_t full_size)
{
/* Generate new footer. */
new_vhd_footer(vft);
(*vft)->orig_size = (*vft)->curr_size = full_size;
(*vft)->geom.cyl = hdd[id].tracks;
(*vft)->geom.heads = hdd[id].hpc;
(*vft)->geom.spt = hdd[id].spt;
generate_vhd_checksum(*vft);
vhd_footer_to_bytes((uint8_t *) empty_sector, *vft);
fseeko64(hdd_images[id].file, 0, SEEK_END);
fwrite(empty_sector, 1, 512, hdd_images[id].file);
free(*vft);
*vft = NULL;
hdd_images[id].type = 3;
}
int
hdd_image_load(int id)
{
uint32_t sector_size = 512;
uint32_t zero = 0;
uint64_t signature = 0xD778A82044445459ll;
uint64_t full_size = 0;
uint64_t spt = 0, hpc = 0, tracks = 0;
int c, ret;
uint64_t s = 0;
wchar_t *fn = hdd[id].fn;
int is_hdx[2] = { 0, 0 };
int is_vhd[2] = { 0, 0 };
vhd_footer_t *vft = NULL;
memset(empty_sector, 0, sizeof(empty_sector));
hdd_images[id].base = 0;
if (hdd_images[id].loaded) {
if (hdd_images[id].file) {
fclose(hdd_images[id].file);
hdd_images[id].file = NULL;
}
hdd_images[id].loaded = 0;
}
is_hdx[0] = image_is_hdx(fn, 0);
is_hdx[1] = image_is_hdx(fn, 1);
is_vhd[0] = image_is_vhd(fn, 0);
is_vhd[1] = image_is_vhd(fn, 1);
hdd_images[id].pos = 0;
/* Try to open existing hard disk image */
if (fn[0] == '.') {
hdd_image_log("File name starts with .\n");
memset(hdd[id].fn, 0, sizeof(hdd[id].fn));
return 0;
}
hdd_images[id].file = plat_fopen(fn, L"rb+");
if (hdd_images[id].file == NULL) {
/* Failed to open existing hard disk image */
if (errno == ENOENT) {
/* Failed because it does not exist,
so try to create new file */
if (hdd[id].wp) {
hdd_image_log("A write-protected image must exist\n");
memset(hdd[id].fn, 0, sizeof(hdd[id].fn));
return 0;
}
hdd_images[id].file = plat_fopen(fn, L"wb+");
if (hdd_images[id].file == NULL) {
hdd_image_log("Unable to open image\n");
memset(hdd[id].fn, 0, sizeof(hdd[id].fn));
return 0;
} else {
if (image_is_hdi(fn)) {
full_size = ((uint64_t) hdd[id].spt) *
((uint64_t) hdd[id].hpc) *
((uint64_t) hdd[id].tracks) << 9LL;
hdd_images[id].base = 0x1000;
fwrite(&zero, 1, 4, hdd_images[id].file);
fwrite(&zero, 1, 4, hdd_images[id].file);
fwrite(&(hdd_images[id].base), 1, 4, hdd_images[id].file);
fwrite(&full_size, 1, 4, hdd_images[id].file);
fwrite(&sector_size, 1, 4, hdd_images[id].file);
fwrite(&(hdd[id].spt), 1, 4, hdd_images[id].file);
fwrite(&(hdd[id].hpc), 1, 4, hdd_images[id].file);
fwrite(&(hdd[id].tracks), 1, 4, hdd_images[id].file);
for (c = 0; c < 0x3f8; c++)
fwrite(&zero, 1, 4, hdd_images[id].file);
hdd_images[id].type = 1;
} else if (is_hdx[0]) {
full_size = ((uint64_t) hdd[id].spt) *
((uint64_t) hdd[id].hpc) *
((uint64_t) hdd[id].tracks) << 9LL;
hdd_images[id].base = 0x28;
fwrite(&signature, 1, 8, hdd_images[id].file);
fwrite(&full_size, 1, 8, hdd_images[id].file);
fwrite(&sector_size, 1, 4, hdd_images[id].file);
fwrite(&(hdd[id].spt), 1, 4, hdd_images[id].file);
fwrite(&(hdd[id].hpc), 1, 4, hdd_images[id].file);
fwrite(&(hdd[id].tracks), 1, 4, hdd_images[id].file);
fwrite(&zero, 1, 4, hdd_images[id].file);
fwrite(&zero, 1, 4, hdd_images[id].file);
hdd_images[id].type = 2;
}
else
hdd_images[id].type = 0;
hdd_images[id].last_sector = 0;
}
s = full_size = ((uint64_t) hdd[id].spt) *
((uint64_t) hdd[id].hpc) *
((uint64_t) hdd[id].tracks) << 9LL;
ret = prepare_new_hard_disk(id, full_size);
if (is_vhd[0]) {
/* VHD image. */
hdd_image_gen_vft(id, &vft, full_size);
}
return ret;
} else {
/* Failed for another reason */
hdd_image_log("Failed for another reason\n");
memset(hdd[id].fn, 0, sizeof(hdd[id].fn));
return 0;
}
} else {
if (image_is_hdi(fn)) {
if (fseeko64(hdd_images[id].file, 0x8, SEEK_SET) == -1)
fatal("hdd_image_load(): HDI: Error seeking to offset 0x8\n");
if (fread(&(hdd_images[id].base), 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDI: Error reading base offset\n");
if (fseeko64(hdd_images[id].file, 0xC, SEEK_SET) == -1)
fatal("hdd_image_load(): HDI: Error seeking to offest 0xC\n");
full_size = 0LL;
if (fread(&full_size, 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDI: Error reading full size\n");
if (fseeko64(hdd_images[id].file, 0x10, SEEK_SET) == -1)
fatal("hdd_image_load(): HDI: Error seeking to offset 0x10\n");
if (fread(&sector_size, 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDI: Error reading sector size\n");
if (sector_size != 512) {
/* Sector size is not 512 */
hdd_image_log("HDI: Sector size is not 512\n");
fclose(hdd_images[id].file);
hdd_images[id].file = NULL;
memset(hdd[id].fn, 0, sizeof(hdd[id].fn));
return 0;
}
if (fread(&spt, 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDI: Error reading sectors per track\n");
if (fread(&hpc, 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDI: Error reading heads per cylinder\n");
if (fread(&tracks, 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDI: Error reading number of tracks\n");
hdd[id].spt = spt;
hdd[id].hpc = hpc;
hdd[id].tracks = tracks;
hdd_images[id].type = 1;
} else if (is_hdx[1]) {
hdd_images[id].base = 0x28;
if (fseeko64(hdd_images[id].file, 8, SEEK_SET) == -1)
fatal("hdd_image_load(): HDX: Error seeking to offset 0x8\n");
if (fread(&full_size, 1, 8, hdd_images[id].file) != 8)
fatal("hdd_image_load(): HDX: Error reading full size\n");
if (fseeko64(hdd_images[id].file, 0x10, SEEK_SET) == -1)
fatal("hdd_image_load(): HDX: Error seeking to offset 0x10\n");
if (fread(&sector_size, 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDX: Error reading sector size\n");
if (sector_size != 512) {
/* Sector size is not 512 */
hdd_image_log("HDX: Sector size is not 512\n");
fclose(hdd_images[id].file);
hdd_images[id].file = NULL;
memset(hdd[id].fn, 0, sizeof(hdd[id].fn));
return 0;
}
if (fread(&spt, 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDI: Error reading sectors per track\n");
if (fread(&hpc, 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDI: Error reading heads per cylinder\n");
if (fread(&tracks, 1, 4, hdd_images[id].file) != 4)
fatal("hdd_image_load(): HDX: Error reading number of tracks\n");
hdd[id].spt = spt;
hdd[id].hpc = hpc;
hdd[id].tracks = tracks;
hdd_images[id].type = 2;
} else if (is_vhd[1]) {
if (fseeko64(hdd_images[id].file, -512, SEEK_END) == -1)
fatal("hdd_image_load(): VHD: Error seeking to 512 bytes before the end of file\n");
if (fread(empty_sector, 1, 512, hdd_images[id].file) != 512)
fatal("hdd_image_load(): HDX: Error reading the footer\n");
new_vhd_footer(&vft);
vhd_footer_from_bytes(vft, (uint8_t *) empty_sector);
if (vft->type != 2) {
/* VHD is not fixed size */
hdd_image_log("VHD: Image is not fixed size\n");
free(vft);
vft = NULL;
fclose(hdd_images[id].file);
hdd_images[id].file = NULL;
memset(hdd[id].fn, 0, sizeof(hdd[id].fn));
return 0;
}
full_size = vft->orig_size;
hdd[id].tracks = vft->geom.cyl;
hdd[id].hpc = vft->geom.heads;
hdd[id].spt = vft->geom.spt;
free(vft);
vft = NULL;
hdd_images[id].type = 3;
/* If we're here, this means there is a valid VHD footer in the
image, which means that by definition, all valid sectors
are there. */
hdd_images[id].last_sector = (uint32_t) (full_size >> 9) - 1;
hdd_images[id].loaded = 1;
return 1;
} else {
full_size = ((uint64_t) hdd[id].spt) *
((uint64_t) hdd[id].hpc) *
((uint64_t) hdd[id].tracks) << 9LL;
hdd_images[id].type = 0;
}
}
if (fseeko64(hdd_images[id].file, 0, SEEK_END) == -1)
fatal("hdd_image_load(): Error seeking to the end of file\n");
s = ftello64(hdd_images[id].file);
if (s < (full_size + hdd_images[id].base))
ret = prepare_new_hard_disk(id, full_size);
else {
hdd_images[id].last_sector = (uint32_t) (full_size >> 9) - 1;
hdd_images[id].loaded = 1;
ret = 1;
}
if (is_vhd[0]) {
if (fseeko64(hdd_images[id].file, 0, SEEK_END) == -1)
fatal("hdd_image_load(): VHD: Error seeking to the end of file\n");
s = ftello64(hdd_images[id].file);
if (s == (full_size + hdd_images[id].base)) {
/* VHD image. */
hdd_image_gen_vft(id, &vft, full_size);
}
}
return ret;
}
void
hdd_image_seek(uint8_t id, uint32_t sector)
{
off64_t addr = sector;
addr = (uint64_t)sector << 9LL;
hdd_images[id].pos = sector;
if (fseeko64(hdd_images[id].file, addr + hdd_images[id].base, SEEK_SET) == -1)
fatal("hdd_image_seek(): Error seeking\n");
}
void
hdd_image_read(uint8_t id, uint32_t sector, uint32_t count, uint8_t *buffer)
{
int i;
if (fseeko64(hdd_images[id].file, ((uint64_t)(sector) << 9LL) + hdd_images[id].base, SEEK_SET) == -1) {
fatal("Hard disk image %i: Read error during seek\n", id);
return;
}
for (i = 0; i < count; i++) {
if (feof(hdd_images[id].file))
break;
hdd_images[id].pos = sector + i;
fread(buffer + (i << 9), 1, 512, hdd_images[id].file);
}
}
uint32_t
hdd_sectors(uint8_t id)
{
fseeko64(hdd_images[id].file, 0, SEEK_END);
return (uint32_t) ((ftello64(hdd_images[id].file) - hdd_images[id].base) >> 9);
}
int
hdd_image_read_ex(uint8_t id, uint32_t sector, uint32_t count, uint8_t *buffer)
{
uint32_t transfer_sectors = count;
uint32_t sectors = hdd_sectors(id);
if ((sectors - sector) < transfer_sectors)
transfer_sectors = sectors - sector;
hdd_image_read(id, sector, transfer_sectors, buffer);
if (count != transfer_sectors)
return 1;
return 0;
}
void
hdd_image_write(uint8_t id, uint32_t sector, uint32_t count, uint8_t *buffer)
{
int i;
if (fseeko64(hdd_images[id].file, ((uint64_t)(sector) << 9LL) + hdd_images[id].base, SEEK_SET) == -1) {
fatal("Hard disk image %i: Write error during seek\n", id);
return;
}
for (i = 0; i < count; i++) {
if (feof(hdd_images[id].file))
break;
hdd_images[id].pos = sector + i;
fwrite(buffer + (i << 9), 512, 1, hdd_images[id].file);
}
}
int
hdd_image_write_ex(uint8_t id, uint32_t sector, uint32_t count, uint8_t *buffer)
{
uint32_t transfer_sectors = count;
uint32_t sectors = hdd_sectors(id);
if ((sectors - sector) < transfer_sectors)
transfer_sectors = sectors - sector;
hdd_image_write(id, sector, transfer_sectors, buffer);
if (count != transfer_sectors)
return 1;
return 0;
}
void
hdd_image_zero(uint8_t id, uint32_t sector, uint32_t count)
{
uint32_t i = 0;
memset(empty_sector, 0, 512);
if (fseeko64(hdd_images[id].file, ((uint64_t)(sector) << 9LL) + hdd_images[id].base, SEEK_SET) == -1) {
fatal("Hard disk image %i: Zero error during seek\n", id);
return;
}
for (i = 0; i < count; i++) {
if (feof(hdd_images[id].file))
break;
hdd_images[id].pos = sector + i;
fwrite(empty_sector, 512, 1, hdd_images[id].file);
}
}
int
hdd_image_zero_ex(uint8_t id, uint32_t sector, uint32_t count)
{
uint32_t transfer_sectors = count;
uint32_t sectors = hdd_sectors(id);
if ((sectors - sector) < transfer_sectors)
transfer_sectors = sectors - sector;
hdd_image_zero(id, sector, transfer_sectors);
if (count != transfer_sectors)
return 1;
return 0;
}
uint32_t
hdd_image_get_last_sector(uint8_t id)
{
return hdd_images[id].last_sector;
}
uint32_t
hdd_image_get_pos(uint8_t id)
{
return hdd_images[id].pos;
}
uint8_t
hdd_image_get_type(uint8_t id)
{
return hdd_images[id].type;
}
void
hdd_image_unload(uint8_t id, int fn_preserve)
{
if (wcslen(hdd[id].fn) == 0)
return;
if (hdd_images[id].loaded) {
if (hdd_images[id].file != NULL) {
fclose(hdd_images[id].file);
hdd_images[id].file = NULL;
}
hdd_images[id].loaded = 0;
}
hdd_images[id].last_sector = -1;
memset(hdd[id].prev_fn, 0, sizeof(hdd[id].prev_fn));
if (fn_preserve)
wcscpy(hdd[id].prev_fn, hdd[id].fn);
memset(hdd[id].fn, 0, sizeof(hdd[id].fn));
}
void
hdd_image_close(uint8_t id)
{
hdd_image_log("hdd_image_close(%i)\n", id);
if (!hdd_images[id].loaded)
return;
if (hdd_images[id].file != NULL) {
fclose(hdd_images[id].file);
hdd_images[id].file = NULL;
}
memset(&hdd_images[id], 0, sizeof(hdd_image_t));
hdd_images[id].loaded = 0;
}