Files
86Box/src/network/net_tulip.c
TC1995 c7b5aa8f04 DEC 21x4 changes of the day (March 24th, 2025)
1. Change the block type of the extended format of the 21143 to 3 and do not issue an IRQ abuse.
2025-03-24 18:51:28 +01:00

1780 lines
52 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Emulation of DECchip "Tulip" 21143 NIC.
*
* Authors: Sven Schnelle, <svens@stackframe.org>
* Cacodemon345,
*
* Copyright 2019-2023 Sven Schnelle.
* Copyright 2023 Cacodemon345.
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include <86box/86box.h>
#include <86box/timer.h>
#include <86box/pci.h>
#include <86box/random.h>
#include <86box/io.h>
#include <86box/mem.h>
#include <86box/rom.h>
#include <86box/dma.h>
#include <86box/device.h>
#include <86box/thread.h>
#include <86box/network.h>
#include <86box/net_eeprom_nmc93cxx.h>
#include <86box/plat_fallthrough.h>
#include <86box/plat_unused.h>
#include <86box/bswap.h>
#define ROM_PATH_DEC21140 "roms/network/dec21140/BIOS13502.BIN"
#define CSR(_x) ((_x) << 3)
#define BIT(x) (1 << x)
#define CSR0_SWR BIT(0)
#define CSR0_BAR BIT(1)
#define CSR0_DSL_SHIFT 2
#define CSR0_DSL_MASK 0x1f
#define CSR0_BLE BIT(7)
#define CSR0_PBL_SHIFT 8
#define CSR0_PBL_MASK 0x3f
#define CSR0_CAC_SHIFT 14
#define CSR0_CAC_MASK 0x3
#define CSR0_DAS 0x10000
#define CSR0_TAP_SHIFT 17
#define CSR0_TAP_MASK 0x7
#define CSR0_DBO 0x100000
#define CSR1_TPD 0x01
#define CSR0_RLE BIT(23)
#define CSR0_WIE BIT(24)
#define CSR2_RPD 0x01
#define CSR5_TI BIT(0)
#define CSR5_TPS BIT(1)
#define CSR5_TU BIT(2)
#define CSR5_TJT BIT(3)
#define CSR5_LNP_ANC BIT(4)
#define CSR5_UNF BIT(5)
#define CSR5_RI BIT(6)
#define CSR5_RU BIT(7)
#define CSR5_RPS BIT(8)
#define CSR5_RWT BIT(9)
#define CSR5_ETI BIT(10)
#define CSR5_GTE BIT(11)
#define CSR5_LNF BIT(12)
#define CSR5_FBE BIT(13)
#define CSR5_ERI BIT(14)
#define CSR5_AIS BIT(15)
#define CSR5_NIS BIT(16)
#define CSR5_RS_SHIFT 17
#define CSR5_RS_MASK 7
#define CSR5_TS_SHIFT 20
#define CSR5_TS_MASK 7
#define CSR5_TS_STOPPED 0
#define CSR5_TS_RUNNING_FETCH 1
#define CSR5_TS_RUNNING_WAIT_EOT 2
#define CSR5_TS_RUNNING_READ_BUF 3
#define CSR5_TS_RUNNING_SETUP 5
#define CSR5_TS_SUSPENDED 6
#define CSR5_TS_RUNNING_CLOSE 7
#define CSR5_RS_STOPPED 0
#define CSR5_RS_RUNNING_FETCH 1
#define CSR5_RS_RUNNING_CHECK_EOR 2
#define CSR5_RS_RUNNING_WAIT_RECEIVE 3
#define CSR5_RS_SUSPENDED 4
#define CSR5_RS_RUNNING_CLOSE 5
#define CSR5_RS_RUNNING_FLUSH 6
#define CSR5_RS_RUNNING_QUEUE 7
#define CSR5_EB_SHIFT 23
#define CSR5_EB_MASK 7
#define CSR5_GPI BIT(26)
#define CSR5_LC BIT(27)
#define CSR6_HP BIT(0)
#define CSR6_SR BIT(1)
#define CSR6_HO BIT(2)
#define CSR6_PB BIT(3)
#define CSR6_IF BIT(4)
#define CSR6_SB BIT(5)
#define CSR6_PR BIT(6)
#define CSR6_PM BIT(7)
#define CSR6_FKD BIT(8)
#define CSR6_FD BIT(9)
#define CSR6_OM_SHIFT 10
#define CSR6_OM_MASK 3
#define CSR6_OM_NORMAL 0
#define CSR6_OM_INT_LOOPBACK 1
#define CSR6_OM_EXT_LOOPBACK 2
#define CSR6_FC BIT(12)
#define CSR6_ST BIT(13)
#define CSR6_TR_SHIFT 14
#define CSR6_TR_MASK 3
#define CSR6_TR_72 0
#define CSR6_TR_96 1
#define CSR6_TR_128 2
#define CSR6_TR_160 3
#define CSR6_CA BIT(17)
#define CSR6_RA BIT(30)
#define CSR6_SC BIT(31)
#define CSR7_TIM BIT(0)
#define CSR7_TSM BIT(1)
#define CSR7_TUM BIT(2)
#define CSR7_TJM BIT(3)
#define CSR7_LPM BIT(4)
#define CSR7_UNM BIT(5)
#define CSR7_RIM BIT(6)
#define CSR7_RUM BIT(7)
#define CSR7_RSM BIT(8)
#define CSR7_RWM BIT(9)
#define CSR7_TMM BIT(11)
#define CSR7_LFM BIT(12)
#define CSR7_SEM BIT(13)
#define CSR7_ERM BIT(14)
#define CSR7_AIM BIT(15)
#define CSR7_NIM BIT(16)
#define CSR8_MISSED_FRAME_OVL BIT(16)
#define CSR8_MISSED_FRAME_CNT_MASK 0xffff
#define CSR9_DATA_MASK 0xff
#define CSR9_SR_CS BIT(0)
#define CSR9_SR_SK BIT(1)
#define CSR9_SR_DI BIT(2)
#define CSR9_SR_DO BIT(3)
#define CSR9_REG BIT(10)
#define CSR9_SR BIT(11)
#define CSR9_BR BIT(12)
#define CSR9_WR BIT(13)
#define CSR9_RD BIT(14)
#define CSR9_MOD BIT(15)
#define CSR9_MDC BIT(16)
#define CSR9_MDO BIT(17)
#define CSR9_MII BIT(18)
#define CSR9_MDI BIT(19)
#define CSR11_CON BIT(16)
#define CSR11_TIMER_MASK 0xffff
#define CSR12_MRA BIT(0)
#define CSR12_LS100 BIT(1)
#define CSR12_LS10 BIT(2)
#define CSR12_APS BIT(3)
#define CSR12_ARA BIT(8)
#define CSR12_TRA BIT(9)
#define CSR12_NSN BIT(10)
#define CSR12_TRF BIT(11)
#define CSR12_ANS_SHIFT 12
#define CSR12_ANS_MASK 7
#define CSR12_LPN BIT(15)
#define CSR12_LPC_SHIFT 16
#define CSR12_LPC_MASK 0xffff
#define CSR13_SRL BIT(0)
#define CSR13_CAC BIT(2)
#define CSR13_AUI BIT(3)
#define CSR13_SDM_SHIFT 4
#define CSR13_SDM_MASK 0xfff
#define CSR14_ECEN BIT(0)
#define CSR14_LBK BIT(1)
#define CSR14_DREN BIT(2)
#define CSR14_LSE BIT(3)
#define CSR14_CPEN_SHIFT 4
#define CSR14_CPEN_MASK 3
#define CSR14_MBO BIT(6)
#define CSR14_ANE BIT(7)
#define CSR14_RSQ BIT(8)
#define CSR14_CSQ BIT(9)
#define CSR14_CLD BIT(10)
#define CSR14_SQE BIT(11)
#define CSR14_LTE BIT(12)
#define CSR14_APE BIT(13)
#define CSR14_SPP BIT(14)
#define CSR14_TAS BIT(15)
#define CSR15_JBD BIT(0)
#define CSR15_HUJ BIT(1)
#define CSR15_JCK BIT(2)
#define CSR15_ABM BIT(3)
#define CSR15_RWD BIT(4)
#define CSR15_RWR BIT(5)
#define CSR15_LE1 BIT(6)
#define CSR15_LV1 BIT(7)
#define CSR15_TSCK BIT(8)
#define CSR15_FUSQ BIT(9)
#define CSR15_FLF BIT(10)
#define CSR15_LSD BIT(11)
#define CSR15_DPST BIT(12)
#define CSR15_FRL BIT(13)
#define CSR15_LE2 BIT(14)
#define CSR15_LV2 BIT(15)
#define RDES0_OF BIT(0)
#define RDES0_CE BIT(1)
#define RDES0_DB BIT(2)
#define RDES0_RJ BIT(4)
#define RDES0_FT BIT(5)
#define RDES0_CS BIT(6)
#define RDES0_TL BIT(7)
#define RDES0_LS BIT(8)
#define RDES0_FS BIT(9)
#define RDES0_MF BIT(10)
#define RDES0_RF BIT(11)
#define RDES0_DT_SHIFT 12
#define RDES0_DT_MASK 3
#define RDES0_DE BIT(14)
#define RDES0_ES BIT(15)
#define RDES0_FL_SHIFT 16
#define RDES0_FL_MASK 0x3fff
#define RDES0_FF BIT(30)
#define RDES0_OWN BIT(31)
#define RDES1_BUF1_SIZE_SHIFT 0
#define RDES1_BUF1_SIZE_MASK 0x7ff
#define RDES1_BUF2_SIZE_SHIFT 11
#define RDES1_BUF2_SIZE_MASK 0x7ff
#define RDES1_RCH BIT(24)
#define RDES1_RER BIT(25)
#define TDES0_DE BIT(0)
#define TDES0_UF BIT(1)
#define TDES0_LF BIT(2)
#define TDES0_CC_SHIFT 3
#define TDES0_CC_MASK 0xf
#define TDES0_HF BIT(7)
#define TDES0_EC BIT(8)
#define TDES0_LC BIT(9)
#define TDES0_NC BIT(10)
#define TDES0_LO BIT(11)
#define TDES0_TO BIT(14)
#define TDES0_ES BIT(15)
#define TDES0_OWN BIT(31)
#define TDES1_BUF1_SIZE_SHIFT 0
#define TDES1_BUF1_SIZE_MASK 0x7ff
#define TDES1_BUF2_SIZE_SHIFT 11
#define TDES1_BUF2_SIZE_MASK 0x7ff
#define TDES1_FT0 BIT(22)
#define TDES1_DPD BIT(23)
#define TDES1_TCH BIT(24)
#define TDES1_TER BIT(25)
#define TDES1_AC BIT(26)
#define TDES1_SET BIT(27)
#define TDES1_FT1 BIT(28)
#define TDES1_FS BIT(29)
#define TDES1_LS BIT(30)
#define TDES1_IC BIT(31)
#define ETH_ALEN 6
static bar_t tulip_pci_bar[3];
struct tulip_descriptor {
uint32_t status;
uint32_t control;
uint32_t buf_addr1;
uint32_t buf_addr2;
};
struct TULIPState {
uint8_t pci_slot;
uint8_t irq_state;
int PCIBase;
int MMIOBase;
const device_t *device_info;
uint16_t subsys_id;
uint16_t subsys_ven_id;
mem_mapping_t memory;
rom_t bios_rom;
netcard_t *nic;
nmc93cxx_eeprom_t *eeprom;
uint32_t csr[16];
uint8_t pci_conf[256];
uint16_t mii_regs[32];
uint8_t eeprom_data[128];
/* state for MII */
uint32_t old_csr9;
uint32_t mii_word;
uint32_t mii_bitcnt;
/* 21040 ROM read address. */
uint8_t rom_read_addr;
uint32_t current_rx_desc;
uint32_t current_tx_desc;
uint8_t rx_frame[2048];
uint8_t tx_frame[2048];
uint16_t tx_frame_len;
uint16_t rx_frame_len;
uint16_t rx_frame_size;
uint32_t rx_status;
uint32_t bios_addr;
uint8_t filter[16][6];
int has_bios;
};
typedef struct TULIPState TULIPState;
static void
tulip_desc_read(TULIPState *s, uint32_t p,
struct tulip_descriptor *desc)
{
desc->status = mem_readl_phys(p);
desc->control = mem_readl_phys(p + 4);
desc->buf_addr1 = mem_readl_phys(p + 8);
desc->buf_addr2 = mem_readl_phys(p + 12);
if (s->csr[0] & CSR0_DBO) {
bswap32s(&desc->status);
bswap32s(&desc->control);
bswap32s(&desc->buf_addr1);
bswap32s(&desc->buf_addr2);
}
}
static void
tulip_desc_write(TULIPState *s, uint32_t p,
struct tulip_descriptor *desc)
{
if (s->csr[0] & CSR0_DBO) {
mem_writel_phys(p, bswap32(desc->status));
mem_writel_phys(p + 4, bswap32(desc->control));
mem_writel_phys(p + 8, bswap32(desc->buf_addr1));
mem_writel_phys(p + 12, bswap32(desc->buf_addr2));
} else {
mem_writel_phys(p, desc->status);
mem_writel_phys(p + 4, desc->control);
mem_writel_phys(p + 8, desc->buf_addr1);
mem_writel_phys(p + 12, desc->buf_addr2);
}
}
static void
tulip_update_int(TULIPState *s)
{
uint32_t ie = s->csr[5] & s->csr[7];
bool assert = false;
s->csr[5] &= ~(CSR5_AIS | CSR5_NIS);
if (ie & (CSR5_TI | CSR5_TU | CSR5_RI | CSR5_GTE | CSR5_ERI)) {
s->csr[5] |= CSR5_NIS;
}
if (ie & (CSR5_LC | CSR5_GPI | CSR5_FBE | CSR5_LNF | CSR5_ETI | CSR5_RWT | CSR5_RPS | CSR5_RU | CSR5_UNF | CSR5_LNP_ANC | CSR5_TJT | CSR5_TPS)) {
s->csr[5] |= CSR5_AIS;
}
assert = s->csr[5] & s->csr[7] & (CSR5_AIS | CSR5_NIS);
if (!assert)
pci_clear_irq(s->pci_slot, PCI_INTA, &s->irq_state);
else
pci_set_irq(s->pci_slot, PCI_INTA, &s->irq_state);
}
static bool
tulip_rx_stopped(TULIPState *s)
{
return ((s->csr[5] >> CSR5_RS_SHIFT) & CSR5_RS_MASK) == CSR5_RS_STOPPED;
}
static void
tulip_next_rx_descriptor(TULIPState *s,
struct tulip_descriptor *desc)
{
if (desc->control & RDES1_RER) {
s->current_rx_desc = s->csr[3];
} else if (desc->control & RDES1_RCH) {
s->current_rx_desc = desc->buf_addr2;
} else {
s->current_rx_desc += sizeof(struct tulip_descriptor) + (((s->csr[0] >> CSR0_DSL_SHIFT) & CSR0_DSL_MASK) << 2);
}
s->current_rx_desc &= ~3ULL;
}
static void
tulip_copy_rx_bytes(TULIPState *s, struct tulip_descriptor *desc)
{
int len1 = (desc->control >> RDES1_BUF1_SIZE_SHIFT) & RDES1_BUF1_SIZE_MASK;
int len2 = (desc->control >> RDES1_BUF2_SIZE_SHIFT) & RDES1_BUF2_SIZE_MASK;
int len;
if (s->rx_frame_len && len1) {
if (s->rx_frame_len > len1) {
len = len1;
} else {
len = s->rx_frame_len;
}
dma_bm_write(desc->buf_addr1, s->rx_frame + (s->rx_frame_size - s->rx_frame_len), len, 4);
s->rx_frame_len -= len;
}
if (s->rx_frame_len && len2) {
if (s->rx_frame_len > len2) {
len = len2;
} else {
len = s->rx_frame_len;
}
dma_bm_write(desc->buf_addr2, s->rx_frame + (s->rx_frame_size - s->rx_frame_len), len, 4);
s->rx_frame_len -= len;
}
}
static bool
tulip_filter_address(TULIPState *s, const uint8_t *addr)
{
#ifdef BLOCK_BROADCAST
static const char broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
#endif
bool ret = false;
for (uint8_t i = 0; i < 16 && ret == false; i++) {
if (!memcmp(&s->filter[i], addr, ETH_ALEN)) {
ret = true;
}
}
/*
Do not block broadcast packets - needed for connections to the guest
to succeed when using SLiRP.
*/
#ifdef BLOCK_BROADCAST
if (!memcmp(addr, broadcast, ETH_ALEN)) {
return true;
}
#endif
if (s->csr[6] & (CSR6_PR | CSR6_RA)) {
/* Promiscuous mode enabled */
s->rx_status |= RDES0_FF;
return true;
}
if ((s->csr[6] & CSR6_PM) && (addr[0] & 1)) {
/* Pass all Multicast enabled */
s->rx_status |= RDES0_MF;
return true;
}
if (s->csr[6] & CSR6_IF) {
ret ^= true;
}
return ret;
}
static int
tulip_receive(void *priv, uint8_t *buf, int size)
{
struct tulip_descriptor desc;
TULIPState *s = (TULIPState *) priv;
int first = 1;
if (size < 14 || size > sizeof(s->rx_frame) - 4
|| s->rx_frame_len || tulip_rx_stopped(s))
return 0;
if (!tulip_filter_address(s, buf)) {
//pclog("Not a filter address.\n");
return 1;
}
//pclog("Size = %d, FrameLen = %d, Buffer[%02x:%02x:%02x:%02x:%02x:%02x].\n", size, s->rx_frame_len, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
do {
tulip_desc_read(s, s->current_rx_desc, &desc);
if (!(desc.status & RDES0_OWN)) {
s->csr[5] |= CSR5_RU;
tulip_update_int(s);
if (first)
/* Stop at the very beginning, tell the host 0 bytes have been received. */
return 0;
else
return (s->rx_frame_size - s->rx_frame_len) % s->rx_frame_size;
}
desc.status = 0;
if (!s->rx_frame_len) {
s->rx_frame_size = size + 4;
s->rx_status = RDES0_LS | ((s->rx_frame_size & RDES0_FL_MASK) << RDES0_FL_SHIFT);
desc.status |= RDES0_FS;
memcpy(s->rx_frame, buf, size);
s->rx_frame_len = s->rx_frame_size;
}
tulip_copy_rx_bytes(s, &desc);
if (!s->rx_frame_len) {
desc.status |= s->rx_status;
s->csr[5] |= CSR5_RI;
tulip_update_int(s);
}
tulip_desc_write(s, s->current_rx_desc, &desc);
tulip_next_rx_descriptor(s, &desc);
first = 0;
} while (s->rx_frame_len);
return 1;
}
static void
tulip_update_rs(TULIPState *s, int state)
{
s->csr[5] &= ~(CSR5_RS_MASK << CSR5_RS_SHIFT);
s->csr[5] |= (state & CSR5_RS_MASK) << CSR5_RS_SHIFT;
}
static const uint16_t tulip_mdi_default[] = {
/* MDI Registers 0 - 6, 7 */
0x3100,
0xf02c,
0x7810,
0x0000,
0x0501,
0x4181,
0x0000,
0x0000,
/* MDI Registers 8 - 15 */
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x3800,
0x0000,
/* MDI Registers 16 - 31 */
0x0003,
0x0600,
0x0001,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
};
/* Readonly mask for MDI (PHY) registers */
extern uint16_t l80225_mii_readw(uint16_t* regs, uint16_t addr);
extern void l80225_mii_writew(uint16_t* regs, uint16_t addr, uint16_t val);
static uint16_t
tulip_mii_read(TULIPState *s, int phy, int reg)
{
uint16_t ret = 0;
if (phy == 1) {
ret = l80225_mii_readw(s->mii_regs, reg);
}
//pclog("MII read phy = %02x, regs = %x, reg = %x, ret = %04x.\n", phy, s->mii_regs, reg, ret);
return ret;
}
static void
tulip_mii_write(TULIPState *s, int phy, int reg, uint16_t data)
{
if (phy != 1) {
return;
}
return l80225_mii_writew(s->mii_regs, reg, data);
}
static void
tulip_mii(TULIPState *s)
{
uint32_t changed = s->old_csr9 ^ s->csr[9];
uint16_t data;
int op;
int phy;
int reg;
if (!(changed & CSR9_MDC)) {
//pclog("No Change.\n");
return;
}
if (!(s->csr[9] & CSR9_MDC)) {
//pclog("No Change to MDC.\n");
return;
}
s->mii_bitcnt++;
s->mii_word <<= 1;
if ((s->csr[9] & CSR9_MDO) && (s->mii_bitcnt < 16 || !(s->csr[9] & CSR9_MII))) {
/* write op or address bits */
s->mii_word |= 1;
//pclog("WriteOp.\n");
}
if ((s->mii_bitcnt >= 16) && (s->csr[9] & CSR9_MII)) {
if (s->mii_word & 0x8000) {
s->csr[9] |= CSR9_MDI;
//pclog("CSR9 MDI set.\n");
} else {
s->csr[9] &= ~CSR9_MDI;
//pclog("CSR9 MDI cleared.\n");
}
}
if (s->mii_word == 0xffffffff) {
s->mii_bitcnt = 0;
//pclog("BitCnt = 0.\n");
} else if (s->mii_bitcnt == 16) {
op = (s->mii_word >> 12) & 0x0f;
phy = (s->mii_word >> 7) & 0x1f;
reg = (s->mii_word >> 2) & 0x1f;
//pclog("BitCnt = 16, op=%d, phy=%x, reg=%x.\n");
if (op == 6) {
s->mii_word = tulip_mii_read(s, phy, reg);
}
} else if (s->mii_bitcnt == 32) {
op = (s->mii_word >> 28) & 0x0f;
phy = (s->mii_word >> 23) & 0x1f;
reg = (s->mii_word >> 18) & 0x1f;
data = s->mii_word & 0xffff;
//pclog("BitCnt = 32, op=%d, phy=%x, reg=%x.\n");
if (op == 5) {
tulip_mii_write(s, phy, reg, data);
}
}
}
static uint32_t
tulip_csr9_read(TULIPState *s)
{
if (s->device_info->local == 3) {
return s->eeprom_data[s->rom_read_addr++];
}
if (s->csr[9] & CSR9_SR) {
if (nmc93cxx_eeprom_read(s->eeprom)) {
s->csr[9] |= CSR9_SR_DO;
} else {
s->csr[9] &= ~CSR9_SR_DO;
}
}
tulip_mii(s);
return s->csr[9];
}
static void
tulip_update_ts(TULIPState *s, int state)
{
s->csr[5] &= ~(CSR5_TS_MASK << CSR5_TS_SHIFT);
s->csr[5] |= (state & CSR5_TS_MASK) << CSR5_TS_SHIFT;
}
static uint32_t
tulip_read(uint32_t addr, void *opaque)
{
TULIPState *s = opaque;
uint32_t data = 0;
addr &= 127;
switch (addr) {
case CSR(9):
data = tulip_csr9_read(s);
break;
case CSR(12):
if (s->device_info->local == 3) {
data = 0;
break;
}
/* Fake autocompletion complete until we have PHY emulation */
data = 5 << CSR12_ANS_SHIFT;
break;
default:
if (!(addr & 7))
data = s->csr[addr >> 3];
break;
}
//pclog("[%04X:%08X]: CSR9 read %02x, data = %08x.\n", CS, cpu_state.pc, addr, data);
return data;
}
static void
tulip_tx(TULIPState *s, struct tulip_descriptor *desc)
{
//pclog("TX FrameLen = %d.\n", s->tx_frame_len);
if (s->tx_frame_len) {
if ((s->csr[6] >> CSR6_OM_SHIFT) & CSR6_OM_MASK) {
/* Internal or external Loopback */
tulip_receive(s, s->tx_frame, s->tx_frame_len);
} else if (s->tx_frame_len <= sizeof(s->tx_frame)) {
//pclog("Transmit!.\n");
network_tx(s->nic, s->tx_frame, s->tx_frame_len);
}
}
if (desc->control & TDES1_IC) {
s->csr[5] |= CSR5_TI;
tulip_update_int(s);
}
}
static int
tulip_copy_tx_buffers(TULIPState *s, struct tulip_descriptor *desc)
{
int len1 = (desc->control >> TDES1_BUF1_SIZE_SHIFT) & TDES1_BUF1_SIZE_MASK;
int len2 = (desc->control >> TDES1_BUF2_SIZE_SHIFT) & TDES1_BUF2_SIZE_MASK;
if (s->tx_frame_len + len1 > sizeof(s->tx_frame)) {
return -1;
}
if (len1) {
dma_bm_read(desc->buf_addr1,
s->tx_frame + s->tx_frame_len, len1, 4);
s->tx_frame_len += len1;
}
if (s->tx_frame_len + len2 > sizeof(s->tx_frame)) {
return -1;
}
if (len2) {
dma_bm_read(desc->buf_addr2,
s->tx_frame + s->tx_frame_len, len2, 4);
s->tx_frame_len += len2;
}
desc->status = (len1 + len2) ? 0 : 0x7fffffff;
return 0;
}
static void
tulip_setup_filter_addr(TULIPState *s, uint8_t *buf, int n)
{
int offset = n * 12;
s->filter[n][0] = buf[offset];
s->filter[n][1] = buf[offset + 1];
s->filter[n][2] = buf[offset + 4];
s->filter[n][3] = buf[offset + 5];
s->filter[n][4] = buf[offset + 8];
s->filter[n][5] = buf[offset + 9];
}
static void
tulip_setup_frame(TULIPState *s,
struct tulip_descriptor *desc)
{
uint8_t buf[4096];
int len = (desc->control >> TDES1_BUF1_SIZE_SHIFT) & TDES1_BUF1_SIZE_MASK;
if (len == 192) {
dma_bm_read(desc->buf_addr1, buf, len, 4);
for (uint8_t i = 0; i < 16; i++) {
tulip_setup_filter_addr(s, buf, i);
}
}
desc->status = 0x7fffffff;
if (desc->control & TDES1_IC) {
s->csr[5] |= CSR5_TI;
tulip_update_int(s);
}
}
static void
tulip_next_tx_descriptor(TULIPState *s,
struct tulip_descriptor *desc)
{
if (desc->control & TDES1_TER) {
s->current_tx_desc = s->csr[4];
} else if (desc->control & TDES1_TCH) {
s->current_tx_desc = desc->buf_addr2;
} else {
s->current_tx_desc += sizeof(struct tulip_descriptor) + (((s->csr[0] >> CSR0_DSL_SHIFT) & CSR0_DSL_MASK) << 2);
}
s->current_tx_desc &= ~3ULL;
}
static uint32_t
tulip_ts(TULIPState *s)
{
return (s->csr[5] >> CSR5_TS_SHIFT) & CSR5_TS_MASK;
}
static void
tulip_xmit_list_update(TULIPState *s)
{
#define TULIP_DESC_MAX 128
struct tulip_descriptor desc;
if (tulip_ts(s) != CSR5_TS_SUSPENDED) {
return;
}
for (uint8_t i = 0; i < TULIP_DESC_MAX; i++) {
tulip_desc_read(s, s->current_tx_desc, &desc);
if (!(desc.status & TDES0_OWN)) {
tulip_update_ts(s, CSR5_TS_SUSPENDED);
s->csr[5] |= CSR5_TU;
tulip_update_int(s);
return;
}
if (desc.control & TDES1_SET) {
tulip_setup_frame(s, &desc);
} else {
if (desc.control & TDES1_FS) {
s->tx_frame_len = 0;
}
if (!tulip_copy_tx_buffers(s, &desc)) {
if (desc.control & TDES1_LS) {
tulip_tx(s, &desc);
}
}
}
tulip_desc_write(s, s->current_tx_desc, &desc);
tulip_next_tx_descriptor(s, &desc);
}
}
static void
tulip_csr9_write(TULIPState *s, UNUSED(uint32_t old_val),
uint32_t new_val)
{
if (new_val & CSR9_SR) {
nmc93cxx_eeprom_write(s->eeprom,
!!(new_val & CSR9_SR_CS),
!!(new_val & CSR9_SR_SK),
!!(new_val & CSR9_SR_DI));
}
}
static void
tulip_reset(void *priv)
{
TULIPState *s = (TULIPState *) priv;
const uint16_t *eeprom_data = nmc93cxx_eeprom_data(s->eeprom);
s->csr[0] = 0xfe000000;
s->csr[1] = 0xffffffff;
s->csr[2] = 0xffffffff;
s->csr[5] = 0xfc000000;
s->csr[6] = 0x32000040;
s->csr[7] = 0xfffe0000;
s->csr[8] = 0x00000000;
s->csr[9] = 0xfff483ff;
s->csr[11] = 0xfffe0000;
s->csr[12] = 0xfffffec6;
s->csr[13] = 0xffff0000;
s->csr[14] = 0xffffffff;
s->csr[15] = 0x8ff00000;
if (s->device_info->local != 3) {
s->subsys_id = eeprom_data[1];
s->subsys_ven_id = eeprom_data[0];
}
}
static void
tulip_write(uint32_t addr, uint32_t data, void *opaque)
{
TULIPState *s = opaque;
addr &= 127;
//pclog("[%04X:%08X]: Tulip Write >> 3: %02x, val=%08x.\n", CS, cpu_state.pc, addr >> 3, data);
switch (addr) {
case CSR(0):
s->csr[0] = data;
if (data & CSR0_SWR) {
tulip_reset(s);
tulip_update_int(s);
}
break;
case CSR(1):
tulip_xmit_list_update(s);
break;
case CSR(2):
break;
case CSR(3):
s->csr[3] = data & ~3ULL;
s->current_rx_desc = s->csr[3];
break;
case CSR(4):
s->csr[4] = data & ~3ULL;
s->current_tx_desc = s->csr[4];
tulip_xmit_list_update(s);
break;
case CSR(5):
/* Status register, write clears bit */
s->csr[5] &= ~(data & (CSR5_TI | CSR5_TPS | CSR5_TU | CSR5_TJT | CSR5_LNP_ANC | CSR5_UNF | CSR5_RI | CSR5_RU | CSR5_RPS | CSR5_RWT | CSR5_ETI | CSR5_GTE | CSR5_LNF | CSR5_FBE | CSR5_ERI | CSR5_AIS | CSR5_NIS | CSR5_GPI | CSR5_LC));
tulip_update_int(s);
break;
case CSR(6):
s->csr[6] = data;
if (s->csr[6] & CSR6_SR) {
tulip_update_rs(s, CSR5_RS_RUNNING_WAIT_RECEIVE);
} else {
tulip_update_rs(s, CSR5_RS_STOPPED);
}
if (s->csr[6] & CSR6_ST) {
tulip_update_ts(s, CSR5_TS_SUSPENDED);
tulip_xmit_list_update(s);
} else {
tulip_update_ts(s, CSR5_TS_STOPPED);
s->csr[5] |= CSR5_TPS;
}
break;
case CSR(7):
s->csr[7] = data;
if (s->device_info->local)
tulip_update_int(s);
break;
case CSR(8):
s->csr[8] = data;
break;
case CSR(9):
if (s->device_info->local != 3) {
tulip_csr9_write(s, s->csr[9], data);
/* don't clear MII read data */
s->csr[9] &= CSR9_MDI;
s->csr[9] |= (data & ~CSR9_MDI);
tulip_mii(s);
s->old_csr9 = s->csr[9];
} else {
s->rom_read_addr = 0;
}
break;
case CSR(10):
s->csr[10] = data;
break;
case CSR(11):
s->csr[11] = data;
break;
case CSR(12):
/* SIA Status register, some bits are cleared by writing 1 */
s->csr[12] &= ~(data & (CSR12_MRA | CSR12_TRA | CSR12_ARA));
break;
case CSR(13):
s->csr[13] = data;
if ((s->device_info->local == 3) && (data & 0x4)) {
s->csr[13] = 0x8f01;
s->csr[14] = 0xfffd;
s->csr[15] = 0;
}
break;
case CSR(14):
s->csr[14] = data;
break;
case CSR(15):
s->csr[15] = data;
break;
default:
pclog("%s: write to CSR at unknown address "
"0x%u\n",
__func__, addr);
break;
}
}
static void
tulip_writeb_io(uint16_t addr, uint8_t data, void *opaque)
{
return tulip_write(addr, data, opaque);
}
static void
tulip_writew_io(uint16_t addr, uint16_t data, void *opaque)
{
return tulip_write(addr, data, opaque);
}
static void
tulip_writel_io(uint16_t addr, uint32_t data, void *opaque)
{
return tulip_write(addr, data, opaque);
}
static void
tulip_mem_writeb(uint32_t addr, uint8_t data, void *opaque)
{
if ((addr & 0xfff) < 0x100)
tulip_write(addr, data, opaque);
}
static void
tulip_mem_writew(uint32_t addr, uint16_t data, void *opaque)
{
if ((addr & 0xfff) < 0x100)
tulip_write(addr, data, opaque);
}
static void
tulip_mem_writel(uint32_t addr, uint32_t data, void *opaque)
{
if ((addr & 0xfff) < 0x100)
tulip_write(addr, data, opaque);
}
static uint8_t
tulip_mem_readb(uint32_t addr, void *opaque)
{
uint8_t ret = 0xff;
if ((addr & 0xfff) < 0x100)
ret = tulip_read(addr, opaque);
return ret;
}
static uint16_t
tulip_mem_readw(uint32_t addr, void *opaque)
{
uint16_t ret = 0xffff;
if ((addr & 0xfff) < 0x100)
ret = tulip_read(addr, opaque);
return ret;
}
static uint32_t
tulip_mem_readl(uint32_t addr, void *opaque)
{
uint32_t ret = 0xffffffff;
if ((addr & 0xfff) < 0x100)
ret = tulip_read(addr, opaque);
return ret;
}
static uint8_t
tulip_readb_io(uint16_t addr, void *opaque)
{
return tulip_read(addr, opaque);
}
static uint16_t
tulip_readw_io(uint16_t addr, void *opaque)
{
return tulip_read(addr, opaque);
}
static uint32_t
tulip_readl_io(uint16_t addr, void *opaque)
{
return tulip_read(addr, opaque);
}
static void
tulip_idblock_crc(uint16_t *srom)
{
unsigned char bitval;
unsigned char crc;
const int len = 9;
crc = -1;
for (int word = 0; word < len; word++) {
for (int8_t bit = 15; bit >= 0; bit--) {
if ((word == (len - 1)) && (bit == 7)) {
/*
* Insert the correct CRC result into input data stream
* in place.
*/
srom[len - 1] = (srom[len - 1] & 0xff00) | (unsigned short) crc;
break;
}
bitval = ((srom[word] >> bit) & 1) ^ ((crc >> 7) & 1);
crc = crc << 1;
if (bitval == 1) {
crc ^= 6;
crc |= 0x01;
}
}
}
}
static uint16_t
tulip_srom_crc(uint8_t *eeprom)
{
unsigned long crc = 0xffffffff;
unsigned long flippedcrc = 0;
unsigned char currentbyte;
unsigned int msb;
unsigned int bit;
for (size_t i = 0; i < 126; i++) {
currentbyte = eeprom[i];
for (bit = 0; bit < 8; bit++) {
msb = (crc >> 31) & 1;
crc <<= 1;
if (msb ^ (currentbyte & 1)) {
crc ^= 0x04c11db6;
crc |= 0x00000001;
}
currentbyte >>= 1;
}
}
for (uint8_t i = 0; i < 32; i++) {
flippedcrc <<= 1;
bit = crc & 1;
crc >>= 1;
flippedcrc += bit;
}
return (flippedcrc ^ 0xffffffff) & 0xffff;
}
static uint8_t
tulip_pci_read(UNUSED(int func), int addr, void *priv)
{
const TULIPState *s = (TULIPState *) priv;
uint8_t ret = 0;
switch (addr) {
case 0x00:
ret = 0x11;
break;
case 0x01:
ret = 0x10;
break;
case 0x02:
if (s->device_info->local == 3)
ret = 0x02;
else if (s->device_info->local)
ret = 0x09;
else
ret = 0x19;
break;
case 0x03:
ret = 0x00;
break;
case 0x04:
ret = s->pci_conf[0x04];
break;
case 0x05:
ret = s->pci_conf[0x05];
break;
case 0x06:
ret = 0x80;
break;
case 0x07:
ret = 0x02;
break;
case 0x08:
ret = 0x20;
break;
case 0x09:
ret = 0x00;
break;
case 0x0A:
ret = 0x00;
break;
case 0x0B:
ret = 0x02;
break;
case 0x10:
ret = (tulip_pci_bar[0].addr_regs[0] & 0x80) | 0x01;
break;
case 0x11:
ret = tulip_pci_bar[0].addr_regs[1];
break;
case 0x12:
ret = tulip_pci_bar[0].addr_regs[2];
break;
case 0x13:
ret = tulip_pci_bar[0].addr_regs[3];
break;
#ifdef USE_128_BYTE_BAR
case 0x14:
ret = (tulip_pci_bar[1].addr_regs[0] & 0x80);
break;
#endif
case 0x15:
#ifdef USE_128_BYTE_BAR
ret = tulip_pci_bar[1].addr_regs[1];
#else
ret = tulip_pci_bar[1].addr_regs[1] & 0xf0;
#endif
break;
case 0x16:
ret = tulip_pci_bar[1].addr_regs[2];
break;
case 0x17:
ret = tulip_pci_bar[1].addr_regs[3];
break;
case 0x2C:
ret = s->subsys_ven_id & 0xFF;
break;
case 0x2D:
ret = s->subsys_ven_id >> 8;
break;
case 0x2E:
ret = s->subsys_id & 0xFF;
break;
case 0x2F:
ret = s->subsys_id >> 8;
break;
case 0x30:
ret = (tulip_pci_bar[2].addr_regs[0] & 0x01);
break;
case 0x31:
ret = tulip_pci_bar[2].addr_regs[1];
break;
case 0x32:
ret = tulip_pci_bar[2].addr_regs[2];
break;
case 0x33:
ret = tulip_pci_bar[2].addr_regs[3];
break;
case 0x3C:
ret = s->pci_conf[0x3C];
break;
case 0x3D:
ret = PCI_INTA;
break;
case 0x3E:
case 0x3F:
case 0x41:
ret = s->pci_conf[addr & 0xff];
break;
}
//pclog("PCI read=%02x, ret=%02x.\n", addr, ret);
return ret;
}
static void
tulip_pci_write(UNUSED(int func), int addr, uint8_t val, void *priv)
{
TULIPState *s = (TULIPState *) priv;
//pclog("PCI write=%02x, ret=%02x.\n", addr, val);
switch (addr) {
case 0x04:
s->pci_conf[0x04] = val & 0x07;
//pclog("PCI write cmd: IOBase=%04x, MMIOBase=%08x, val=%02x.\n", s->PCIBase, s->MMIOBase, s->pci_conf[0x04]);
io_removehandler(s->PCIBase, 128,
tulip_readb_io, tulip_readw_io, tulip_readl_io,
tulip_writeb_io, tulip_writew_io, tulip_writel_io,
priv);
if ((s->PCIBase != 0) && (val & PCI_COMMAND_IO))
io_sethandler(s->PCIBase, 128,
tulip_readb_io, tulip_readw_io, tulip_readl_io,
tulip_writeb_io, tulip_writew_io, tulip_writel_io,
priv);
//pclog("PCI write cmd: IOBase=%04x, MMIOBase=%08x, val=%02x.\n", s->PCIBase, s->MMIOBase, s->pci_conf[0x04]);
mem_mapping_disable(&s->memory);
if ((s->MMIOBase != 0) && (val & PCI_COMMAND_MEM))
mem_mapping_enable(&s->memory);
break;
case 0x05:
s->pci_conf[0x05] = val & 1;
break;
case 0x10:
case 0x11:
case 0x12:
case 0x13:
io_removehandler(s->PCIBase, 128,
tulip_readb_io, tulip_readw_io, tulip_readl_io,
tulip_writeb_io, tulip_writew_io, tulip_writel_io,
priv);
tulip_pci_bar[0].addr_regs[addr & 3] = val;
tulip_pci_bar[0].addr &= 0xffffff80;
s->PCIBase = tulip_pci_bar[0].addr;
if (s->pci_conf[0x4] & PCI_COMMAND_IO) {
//pclog("PCI write=%02x, base=%04x, io?=%x.\n", addr, s->PCIBase, s->pci_conf[0x4] & PCI_COMMAND_IO);
if (s->PCIBase != 0)
io_sethandler(s->PCIBase, 128,
tulip_readb_io, tulip_readw_io, tulip_readl_io,
tulip_writeb_io, tulip_writew_io, tulip_writel_io,
priv);
}
break;
#ifndef USE_128_BYTE_BAR
case 0x14:
#endif
case 0x15:
case 0x16:
case 0x17:
mem_mapping_disable(&s->memory);
tulip_pci_bar[1].addr_regs[addr & 3] = val;
#ifdef USE_128_BYTE_BAR
tulip_pci_bar[1].addr &= 0xffffff80;
#else
tulip_pci_bar[1].addr &= 0xfffff000;
#endif
s->MMIOBase = tulip_pci_bar[1].addr;
if (s->pci_conf[0x4] & PCI_COMMAND_MEM) {
//pclog("PCI write=%02x, mmiobase=%08x, mmio?=%x.\n", addr, s->PCIBase, s->pci_conf[0x4] & PCI_COMMAND_MEM);
if (s->MMIOBase != 0)
#ifdef USE_128_BYTE_BAR
mem_mapping_set_addr(&s->memory, s->MMIOBase, 128);
#else
mem_mapping_set_addr(&s->memory, s->MMIOBase, 4096);
#endif
}
break;
case 0x30: /* PCI_ROMBAR */
case 0x31: /* PCI_ROMBAR */
case 0x32: /* PCI_ROMBAR */
case 0x33: /* PCI_ROMBAR */
if (!s->has_bios)
return;
mem_mapping_disable(&s->bios_rom.mapping);
tulip_pci_bar[2].addr_regs[addr & 3] = val;
tulip_pci_bar[2].addr &= 0xffff0001;
s->bios_addr = tulip_pci_bar[2].addr & 0xffff0000;
if (tulip_pci_bar[2].addr_regs[0] & 0x01) {
if (s->bios_addr != 0)
mem_mapping_set_addr(&s->bios_rom.mapping, s->bios_addr, 0x10000);
}
return;
case 0x3C:
s->pci_conf[0x3c] = val;
return;
case 0x3E:
case 0x3F:
case 0x41:
s->pci_conf[addr & 0xff] = val;
return;
}
}
static void *
nic_init(const device_t *info)
{
nmc93cxx_eeprom_params_t params;
TULIPState *s = calloc(1, sizeof(TULIPState));
char filename[1024] = { 0 };
uint32_t mac;
uint8_t *eeprom_data;
if (!s)
return NULL;
if (info->local && (info->local != 3)) {
s->bios_addr = 0xD0000;
s->has_bios = device_get_config_int("bios");
} else {
s->bios_addr = 0;
s->has_bios = 0;
}
#ifdef USE_128_BYTE_BAR
mem_mapping_add(&s->memory, 0x0fffff00, 128, tulip_mem_readb, tulip_mem_readw, tulip_mem_readl, tulip_mem_writeb, tulip_mem_writew, tulip_mem_writel, NULL, MEM_MAPPING_EXTERNAL, s);
#else
mem_mapping_add(&s->memory, 0x0ffff000, 4096, tulip_mem_readb, tulip_mem_readw, tulip_mem_readl, tulip_mem_writeb, tulip_mem_writew, tulip_mem_writel, NULL, MEM_MAPPING_EXTERNAL, s);
#endif
mem_mapping_disable(&s->memory);
s->device_info = info;
if (info->local != 3) {
if (info->local == 2) {
/*Subsystem Vendor ID*/
s->eeprom_data[0] = 0x00;
s->eeprom_data[1] = 0x0a;
/*Subsystem ID*/
s->eeprom_data[2] = 0x14;
s->eeprom_data[3] = 0x21;
} else {
/*Subsystem Vendor ID*/
s->eeprom_data[0] = info->local ? 0x25 : 0x11;
s->eeprom_data[1] = 0x10;
/*Subsystem ID*/
s->eeprom_data[2] = info->local ? 0x10 : 0x0a;
s->eeprom_data[3] = info->local ? 0x03 : 0x50;
}
/*Cardbus CIS Pointer low*/
s->eeprom_data[4] = 0x00;
s->eeprom_data[5] = 0x00;
/*Cardbus CIS Pointer high*/
s->eeprom_data[6] = 0x00;
s->eeprom_data[7] = 0x00;
/*ID Reserved1*/
for (int i = 0; i < 7; i++)
s->eeprom_data[8 + i] = 0x00;
/*MiscHwOptions*/
s->eeprom_data[15] = 0x00;
/*ID_BLOCK_CRC*/
tulip_idblock_crc((uint16_t *) s->eeprom_data);
/*Func0_HwOptions*/
s->eeprom_data[17] = 0x00;
/*SROM Format Version 1, compatible with older guests*/
s->eeprom_data[18] = 0x01;
/*Controller Count*/
s->eeprom_data[19] = 0x01;
/*DEC OID*/
s->eeprom_data[20] = 0x00;
s->eeprom_data[21] = 0x00;
s->eeprom_data[22] = 0xf8;
if (info->local == 2) {
/* Microsoft VPC DEC Tulip. */
s->eeprom_data[20] = 0x00;
s->eeprom_data[21] = 0x03;
s->eeprom_data[22] = 0x0f;
}
/* See if we have a local MAC address configured. */
mac = device_get_config_mac("mac", -1);
/* Set up our BIA. */
if (mac & 0xff000000) {
/* Generate new local MAC. */
s->eeprom_data[23] = random_generate();
s->eeprom_data[24] = random_generate();
s->eeprom_data[25] = random_generate();
mac = (((int) s->eeprom_data[23]) << 16);
mac |= (((int) s->eeprom_data[24]) << 8);
mac |= ((int) s->eeprom_data[25]);
device_set_config_mac("mac", mac);
} else {
s->eeprom_data[23] = (mac >> 16) & 0xff;
s->eeprom_data[24] = (mac >> 8) & 0xff;
s->eeprom_data[25] = (mac & 0xff);
}
/*Controller_0 Device_Number*/
s->eeprom_data[26] = 0x00;
/*Controller_0 Info Leaf_Offset*/
s->eeprom_data[27] = 0x1e;
s->eeprom_data[28] = 0x00;
/*Selected Connection Type, Powerup AutoSense and Dynamic AutoSense if the board supports it*/
s->eeprom_data[30] = 0x00;
s->eeprom_data[31] = 0x08;
if (info->local) {
/*General Purpose Control*/
s->eeprom_data[32] = 0xff;
/*Block Count*/
s->eeprom_data[33] = 0x01;
/*Extended Format (first part)*/
/*Length (0:6) and Format Indicator (7)*/
s->eeprom_data[34] = 0x81;
/*Block Type (first part)*/
s->eeprom_data[35] = 0x01;
/*Extended Format (second part) - Block Type 0 for 21140*/
/*Length (0:6) and Format Indicator (7)*/
s->eeprom_data[36] = 0x85;
/*Block Type (second part)*/
s->eeprom_data[37] = 0x00;
/*Media Code (0:5), EXT (6), Reserved (7)*/
s->eeprom_data[38] = 0x01;
/*General Purpose Data*/
s->eeprom_data[39] = 0x00;
/*Command*/
s->eeprom_data[40] = 0x00;
s->eeprom_data[41] = 0x00;
} else {
/*SROM Format Version 3*/
s->eeprom_data[18] = 0x03;
/*Block Count*/
s->eeprom_data[32] = 0x01;
/*Extended Format - Block Type 3 for 21142/21143*/
/*Length (0:6) and Format Indicator (7)*/
s->eeprom_data[33] = 0x8d;
/*Block Type*/
s->eeprom_data[34] = 0x03;
/*PHY Number*/
s->eeprom_data[35] = 0x00;
/*GPR Length*/
s->eeprom_data[36] = 0x00;
/*Reset Length*/
s->eeprom_data[37] = 0x00;
/*Media Capabilities*/
s->eeprom_data[38] = 0x00;
s->eeprom_data[39] = 0x78;
/*Nway Advertisement*/
s->eeprom_data[40] = 0xe0;
s->eeprom_data[41] = 0x01;
/*FDX Bit Map*/
s->eeprom_data[42] = 0x00;
s->eeprom_data[43] = 0x50;
/*TTM Bit Map*/
s->eeprom_data[44] = 0x00;
s->eeprom_data[45] = 0x18;
/*MII PHY Insertion/removal Indication*/
s->eeprom_data[46] = 0x00;
}
s->eeprom_data[126] = tulip_srom_crc(s->eeprom_data) & 0xff;
s->eeprom_data[127] = tulip_srom_crc(s->eeprom_data) >> 8;
} else {
uint32_t checksum = 0;
/* 21040 is supposed to only have MAC address in its serial ROM if Linux is correct. */
memset(s->eeprom_data, 0, sizeof(s->eeprom_data));
/* See if we have a local MAC address configured. */
mac = device_get_config_mac("mac", -1);
/*DEC OID*/
s->eeprom_data[0] = 0x00;
s->eeprom_data[1] = 0x00;
s->eeprom_data[2] = 0xF8;
if (mac & 0xff000000) {
/* Generate new local MAC. */
s->eeprom_data[3] = random_generate();
s->eeprom_data[4] = random_generate();
s->eeprom_data[5] = random_generate();
mac = (((int) s->eeprom_data[3]) << 16);
mac |= (((int) s->eeprom_data[4]) << 8);
mac |= ((int) s->eeprom_data[5]);
device_set_config_mac("mac", mac);
} else {
s->eeprom_data[3] = (mac >> 16) & 0xff;
s->eeprom_data[4] = (mac >> 8) & 0xff;
s->eeprom_data[5] = (mac & 0xff);
}
/* Generate checksum. */
checksum = (s->eeprom_data[0] * 256) | s->eeprom_data[1];
checksum *= 2;
if (checksum > 65535)
checksum = checksum % 65535;
/* 2nd pair. */
checksum += (s->eeprom_data[2] * 256) | s->eeprom_data[3];
if (checksum > 65535)
checksum = checksum % 65535;
checksum *= 2;
if (checksum > 65535)
checksum = checksum % 65535;
/* 3rd pair. */
checksum += (s->eeprom_data[4] * 256) | s->eeprom_data[5];
if (checksum > 65535)
checksum = checksum % 65535;
if (checksum >= 65535)
checksum = 0;
s->eeprom_data[6] = (checksum >> 8) & 0xFF;
s->eeprom_data[7] = checksum & 0xFF;
}
if (info->local != 3) {
params.nwords = 64;
params.default_content = (uint16_t *) s->eeprom_data;
params.filename = filename;
snprintf(filename, sizeof(filename), "nmc93cxx_eeprom_%s_%d.nvr", info->internal_name, device_get_instance());
s->eeprom = device_add_params(&nmc93cxx_device, &params);
if (s->eeprom == NULL) {
free(s);
return NULL;
}
}
tulip_pci_bar[0].addr_regs[0] = 1;
tulip_pci_bar[1].addr_regs[0] = 0;
s->pci_conf[0x04] = 7;
/* Enable our BIOS space in PCI, if needed. */
if (s->has_bios) {
rom_init(&s->bios_rom, ROM_PATH_DEC21140, s->bios_addr, 0x10000, 0xffff, 0, MEM_MAPPING_EXTERNAL);
tulip_pci_bar[2].addr = 0xffff0000;
} else
tulip_pci_bar[2].addr = 0;
mem_mapping_disable(&s->bios_rom.mapping);
eeprom_data = (info->local == 3) ? s->eeprom_data : (uint8_t *) &nmc93cxx_eeprom_data(s->eeprom)[0];
//pclog("EEPROM Data Format=%02x, Count=%02x, MAC=%02x:%02x:%02x:%02x:%02x:%02x.\n", eeprom_data[0x12], eeprom_data[0x13], eeprom_data[0x14], eeprom_data[0x15], eeprom_data[0x16], eeprom_data[0x17], eeprom_data[0x18], eeprom_data[0x19]);
memcpy(s->mii_regs, tulip_mdi_default, sizeof(tulip_mdi_default));
s->nic = network_attach(s, &eeprom_data[(info->local == 3) ? 0 : 20], tulip_receive, NULL);
pci_add_card(PCI_ADD_NORMAL, tulip_pci_read, tulip_pci_write, s, &s->pci_slot);
tulip_reset(s);
return s;
}
static void
nic_close(void *priv)
{
free(priv);
}
// clang-format off
static const device_config_t dec_tulip_21143_config[] = {
{
.name = "mac",
.description = "MAC Address",
.type = CONFIG_MAC,
.default_string = NULL,
.default_int = -1,
.file_filter = NULL,
.spinner = { 0 },
.selection = { { 0 } },
.bios = { { 0 } }
},
{ .name = "", .description = "", .type = CONFIG_END }
};
static const device_config_t dec_tulip_21140_config[] = {
{
.name = "bios",
.description = "Enable BIOS",
.type = CONFIG_BINARY,
.default_string = NULL,
.default_int = 0,
.file_filter = NULL,
.spinner = { 0 },
.selection = { { 0 } },
.bios = { { 0 } }
},
{
.name = "mac",
.description = "MAC Address",
.type = CONFIG_MAC,
.default_string = NULL,
.default_int = -1,
.file_filter = NULL,
.spinner = { 0 },
.selection = { { 0 } },
.bios = { { 0 } }
},
{ .name = "", .description = "", .type = CONFIG_END }
};
// clang-format on
const device_t dec_tulip_device = {
.name = "DEC DE-500A Fast Ethernet (DECchip 21143 \"Tulip\")",
.internal_name = "dec_21143_tulip",
.flags = DEVICE_PCI,
.local = 0,
.init = nic_init,
.close = nic_close,
.reset = tulip_reset,
.available = NULL,
.speed_changed = NULL,
.force_redraw = NULL,
.config = dec_tulip_21143_config
};
const device_t dec_tulip_21140_device = {
.name = "DEC 21140 Fast Ethernet (DECchip 21140 \"Tulip FasterNet\")",
.internal_name = "dec_21140_tulip",
.flags = DEVICE_PCI,
.local = 1,
.init = nic_init,
.close = nic_close,
.reset = tulip_reset,
.available = NULL,
.speed_changed = NULL,
.force_redraw = NULL,
.config = dec_tulip_21140_config
};
const device_t dec_tulip_21140_vpc_device = {
.name = "Microsoft Virtual PC Network (DECchip 21140 \"Tulip FasterNet\")",
.internal_name = "dec_21140_tulip_vpc",
.flags = DEVICE_PCI,
.local = 2,
.init = nic_init,
.close = nic_close,
.reset = tulip_reset,
.available = NULL,
.speed_changed = NULL,
.force_redraw = NULL,
.config = dec_tulip_21140_config
};
const device_t dec_tulip_21040_device = {
.name = "DEC DE-435 EtherWorks Turbo (DECchip 21040 \"Tulip\")",
.internal_name = "dec_21040_tulip",
.flags = DEVICE_PCI,
.local = 3,
.init = nic_init,
.close = nic_close,
.reset = tulip_reset,
.available = NULL,
.speed_changed = NULL,
.force_redraw = NULL,
.config = dec_tulip_21143_config
};