Files
86Box/src/chipset/headland.c
2023-07-25 17:59:22 -04:00

791 lines
24 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Implementation of the HEADLAND AT286 chipset.
*
*
*
* Authors: Sarah Walker, <https://pcem-emulator.co.uk/>
* Fred N. van Kempen, <decwiz@yahoo.com>
* Original by GreatPsycho for PCem.
* Miran Grca, <mgrca8@gmail.com>
*
* Copyright 2010-2019 Sarah Walker.
* Copyright 2017-2019 Fred N. van Kempen.
* Copyright 2017-2019 Miran Grca.
* Copyright 2017-2019 GreatPsycho.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <86box/86box.h>
#include "cpu.h"
#include "x86.h"
#include <86box/timer.h>
#include <86box/io.h>
#include <86box/mem.h>
#include <86box/device.h>
#include <86box/fdd.h>
#include <86box/fdc.h>
#include <86box/plat_unused.h>
#include <86box/port_92.h>
#include <86box/chipset.h>
enum {
HEADLAND_GC103 = 0x00,
HEADLAND_GC113 = 0x10,
HEADLAND_HT18_A = 0x11,
HEADLAND_HT18_B = 0x12,
HEADLAND_HT18_C = 0x18,
HEADLAND_HT21_C_D = 0x31,
HEADLAND_HT21_E = 0x32,
};
#define HEADLAND_REV_MASK 0x0F
#define HEADLAND_HAS_CRI 0x10
#define HEADLAND_HAS_SLEEP 0x20
typedef struct headland_mr_t {
uint8_t valid;
uint8_t enabled;
uint16_t mr;
uint32_t virt_base;
struct headland_t *headland;
} headland_mr_t;
typedef struct headland_t {
uint8_t revision;
uint8_t has_cri;
uint8_t has_sleep;
uint8_t cri;
uint8_t cr[7];
uint8_t indx;
uint8_t regs[256];
uint8_t ems_mar;
headland_mr_t null_mr;
headland_mr_t ems_mr[64];
mem_mapping_t low_mapping;
mem_mapping_t ems_mapping[64];
mem_mapping_t mid_mapping;
mem_mapping_t high_mapping;
mem_mapping_t shadow_mapping[2];
mem_mapping_t upper_mapping[24];
} headland_t;
/* TODO - Headland chipset's memory address mapping emulation isn't fully implemented yet,
so memory configuration is hardcoded now. */
static const int mem_conf_cr0[41] = {
0x00, 0x00, 0x20, 0x40, 0x60, 0xA0, 0x40, 0xE0,
0xA0, 0xC0, 0xE0, 0xE0, 0xC0, 0xE0, 0xE0, 0xE0,
0xE0, 0x20, 0x40, 0x40, 0xA0, 0xC0, 0xE0, 0xE0,
0xC0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0,
0x20, 0x40, 0x60, 0x60, 0xC0, 0xE0, 0xE0, 0xE0,
0xE0
};
static const int mem_conf_cr1[41] = {
0x00, 0x40, 0x00, 0x00, 0x00, 0x40, 0x40, 0x40,
0x00, 0x40, 0x40, 0x40, 0x00, 0x00, 0x00, 0x00,
0x00, 0x40, 0x40, 0x40, 0x00, 0x00, 0x00, 0x00,
0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,
0x00, 0x00, 0x40, 0x40, 0x00, 0x00, 0x00, 0x00,
0x40
};
static uint32_t
get_addr(headland_t *dev, uint32_t addr, headland_mr_t *mr)
{
uint32_t bank_base[4];
uint32_t bank_shift[4];
uint32_t shift;
uint32_t other_shift;
uint32_t bank;
if ((addr >= 0x0e0000) && (addr <= 0x0fffff))
return addr;
else if ((addr >= 0xfe0000) && (addr <= 0xffffff))
return addr & 0x0fffff;
if (dev->revision == 8) {
shift = (dev->cr[0] & 0x80) ? 21 : ((dev->cr[6] & 0x01) ? 23 : 19);
other_shift = (dev->cr[0] & 0x80) ? ((dev->cr[6] & 0x01) ? 19 : 23) : 21;
} else {
shift = (dev->cr[0] & 0x80) ? 21 : 19;
other_shift = (dev->cr[0] & 0x80) ? 21 : 19;
}
/* Bank size = 1 << (bank shift + 2) . */
bank_shift[0] = bank_shift[1] = shift;
bank_base[0] = 0x00000000;
bank_base[1] = bank_base[0] + (1 << shift);
bank_base[2] = bank_base[1] + (1 << shift);
if ((dev->revision > 0) && (dev->revision < 8) && (dev->cr[1] & 0x40)) {
bank_shift[2] = bank_shift[3] = other_shift;
bank_base[3] = bank_base[2] + (1 << other_shift);
/* First address after the memory is bank_base[3] + (1 << other_shift) */
} else {
bank_shift[2] = bank_shift[3] = shift;
bank_base[3] = bank_base[2] + (1 << shift);
/* First address after the memory is bank_base[3] + (1 << shift) */
}
if (mr && mr->valid && (dev->cr[0] & 2) && (mr->mr & 0x200)) {
addr = (addr & 0x3fff) | ((mr->mr & 0x1F) << 14);
bank = (mr->mr >> 7) & 3;
if (bank_shift[bank] >= 21)
addr |= (mr->mr & 0x060) << 14;
if ((dev->revision == 8) && (bank_shift[bank] == 23))
addr |= (mr->mr & 0xc00) << 11;
addr |= bank_base[(mr->mr >> 7) & 3];
} else if (((mr == NULL) || !mr->valid) && (mem_size >= 1024) && (addr >= 0x100000) && ((dev->cr[0] & 4) == 0))
addr -= 0x60000;
return addr;
}
static void
hl_ems_disable(headland_t *dev, uint8_t mar, uint32_t base_addr, uint8_t indx)
{
if (base_addr < (mem_size << 10))
mem_mapping_set_exec(&dev->ems_mapping[mar & 0x3f], ram + base_addr);
else
mem_mapping_set_exec(&dev->ems_mapping[mar & 0x3f], NULL);
mem_mapping_disable(&dev->ems_mapping[mar & 0x3f]);
if (indx < 24) {
mem_set_mem_state(base_addr, 0x4000, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
mem_mapping_enable(&dev->upper_mapping[indx]);
} else
mem_set_mem_state(base_addr, 0x4000, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
}
static void
hl_ems_update(headland_t *dev, uint8_t mar)
{
uint32_t base_addr;
uint32_t virt_addr;
uint8_t indx = mar & 0x1f;
base_addr = (indx + 16) << 14;
if (indx >= 24)
base_addr += 0x20000;
hl_ems_disable(dev, mar, base_addr, indx);
dev->ems_mr[mar & 0x3f].enabled = 0;
dev->ems_mr[mar & 0x3f].virt_base = base_addr;
if ((dev->cr[0] & 2) && ((dev->cr[0] & 1) == ((mar & 0x20) >> 5)) && (dev->ems_mr[mar & 0x3f].mr & 0x200)) {
mem_set_mem_state(base_addr, 0x4000, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
virt_addr = get_addr(dev, base_addr, &dev->ems_mr[mar & 0x3f]);
dev->ems_mr[mar & 0x3f].enabled = 1;
dev->ems_mr[mar & 0x3f].virt_base = virt_addr;
if (indx < 24)
mem_mapping_disable(&dev->upper_mapping[indx]);
if (virt_addr < (mem_size << 10))
mem_mapping_set_exec(&dev->ems_mapping[mar & 0x3f], ram + virt_addr);
else
mem_mapping_set_exec(&dev->ems_mapping[mar & 0x3f], NULL);
mem_mapping_enable(&dev->ems_mapping[mar & 0x3f]);
}
flushmmucache();
}
static void
set_global_EMS_state(headland_t *dev, UNUSED(int state))
{
for (uint8_t i = 0; i < 32; i++) {
hl_ems_update(dev, i | (((dev->cr[0] & 0x01) << 5) ^ 0x20));
hl_ems_update(dev, i | ((dev->cr[0] & 0x01) << 5));
}
}
static void
memmap_state_default(headland_t *dev, uint8_t ht_romcs)
{
mem_mapping_disable(&dev->mid_mapping);
if (ht_romcs)
mem_set_mem_state(0x0e0000, 0x20000, MEM_READ_ROMCS | MEM_WRITE_ROMCS);
else
mem_set_mem_state(0x0e0000, 0x20000, MEM_READ_EXTERNAL | MEM_WRITE_EXTERNAL);
mem_set_mem_state(0xfe0000, 0x20000, MEM_READ_ROMCS | MEM_WRITE_ROMCS);
mem_mapping_disable(&dev->shadow_mapping[0]);
mem_mapping_disable(&dev->shadow_mapping[1]);
}
static void
memmap_state_update(headland_t *dev)
{
uint32_t addr;
uint8_t ht_cr0 = dev->cr[0];
uint8_t ht_romcs = !(dev->cr[4] & 0x01);
if (dev->revision <= 1)
ht_romcs = 1;
if (!(dev->cr[0] & 0x04))
ht_cr0 &= ~0x18;
for (uint8_t i = 0; i < 24; i++) {
addr = get_addr(dev, 0x40000 + (i << 14), NULL);
mem_mapping_set_exec(&dev->upper_mapping[i], addr < (mem_size << 10) ? ram + addr : NULL);
}
memmap_state_default(dev, ht_romcs);
if (mem_size > 640) {
if (ht_cr0 & 0x04) {
mem_mapping_set_addr(&dev->mid_mapping, 0xA0000, 0x40000);
mem_mapping_set_exec(&dev->mid_mapping, ram + 0xA0000);
mem_mapping_disable(&dev->mid_mapping);
if (mem_size > 1024) {
mem_set_mem_state((mem_size << 10), 0x60000, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
mem_mapping_set_addr(&dev->high_mapping, 0x100000, (mem_size - 1024) << 10);
mem_mapping_set_exec(&dev->high_mapping, ram + 0x100000);
}
} else {
/* 1 MB - 1 MB + 384k: RAM pointing to A0000-FFFFF
1 MB + 384k: Any ram pointing 1 MB onwards. */
/* First, do the addresses above 1 MB. */
mem_mapping_set_addr(&dev->mid_mapping, 0x100000, mem_size > 1024 ? 0x60000 : (mem_size - 640) << 10);
mem_mapping_set_exec(&dev->mid_mapping, ram + 0xA0000);
if (mem_size > 1024) {
/* We have ram above 1 MB, we need to relocate that. */
mem_set_mem_state((mem_size << 10), 0x60000, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
mem_mapping_set_addr(&dev->high_mapping, 0x160000, (mem_size - 1024) << 10);
mem_mapping_set_exec(&dev->high_mapping, ram + 0x100000);
}
}
}
switch (ht_cr0) {
case 0x18:
if ((mem_size << 10) > 0xe0000) {
mem_set_mem_state(0x0e0000, 0x20000, MEM_READ_INTERNAL | MEM_WRITE_DISABLED);
mem_set_mem_state(0xfe0000, 0x20000, MEM_READ_INTERNAL | MEM_WRITE_DISABLED);
mem_mapping_set_addr(&dev->shadow_mapping[0], 0x0e0000, 0x20000);
mem_mapping_set_exec(&dev->shadow_mapping[0], ram + 0xe0000);
mem_mapping_set_addr(&dev->shadow_mapping[1], 0xfe0000, 0x20000);
mem_mapping_set_exec(&dev->shadow_mapping[1], ram + 0xe0000);
} else {
mem_mapping_disable(&dev->shadow_mapping[0]);
mem_mapping_disable(&dev->shadow_mapping[1]);
}
break;
case 0x10:
if ((mem_size << 10) > 0xf0000) {
mem_set_mem_state(0x0f0000, 0x10000, MEM_READ_INTERNAL | MEM_WRITE_DISABLED);
mem_set_mem_state(0xff0000, 0x10000, MEM_READ_INTERNAL | MEM_WRITE_DISABLED);
mem_mapping_set_addr(&dev->shadow_mapping[0], 0x0f0000, 0x10000);
mem_mapping_set_exec(&dev->shadow_mapping[0], ram + 0xf0000);
mem_mapping_set_addr(&dev->shadow_mapping[1], 0xff0000, 0x10000);
mem_mapping_set_exec(&dev->shadow_mapping[1], ram + 0xf0000);
} else {
mem_mapping_disable(&dev->shadow_mapping[0]);
mem_mapping_disable(&dev->shadow_mapping[1]);
}
break;
case 0x08:
if ((mem_size << 10) > 0xe0000) {
mem_set_mem_state(0x0e0000, 0x10000, MEM_READ_INTERNAL | MEM_WRITE_DISABLED);
mem_set_mem_state(0xfe0000, 0x10000, MEM_READ_INTERNAL | MEM_WRITE_DISABLED);
mem_mapping_set_addr(&dev->shadow_mapping[0], 0x0e0000, 0x10000);
mem_mapping_set_exec(&dev->shadow_mapping[0], ram + 0xe0000);
mem_mapping_set_addr(&dev->shadow_mapping[1], 0xfe0000, 0x10000);
mem_mapping_set_exec(&dev->shadow_mapping[1], ram + 0xe0000);
} else {
mem_mapping_disable(&dev->shadow_mapping[0]);
mem_mapping_disable(&dev->shadow_mapping[1]);
}
break;
case 0x00:
default:
mem_mapping_disable(&dev->shadow_mapping[0]);
mem_mapping_disable(&dev->shadow_mapping[1]);
break;
}
set_global_EMS_state(dev, ht_cr0 & 3);
}
static void
hl_write(uint16_t addr, uint8_t val, void *priv)
{
headland_t *dev = (headland_t *) priv;
switch (addr) {
case 0x01ec:
dev->ems_mr[dev->ems_mar & 0x3f].mr = val | 0xff00;
hl_ems_update(dev, dev->ems_mar & 0x3f);
if (dev->ems_mar & 0x80)
dev->ems_mar++;
break;
case 0x01ed:
if (dev->has_cri)
dev->cri = val;
break;
case 0x01ee:
dev->ems_mar = val;
break;
case 0x01ef:
switch (dev->cri & 0x07) {
case 0:
dev->cr[0] = (val & 0x1f) | mem_conf_cr0[(mem_size > 640 ? mem_size : mem_size - 128) >> 9];
memmap_state_update(dev);
break;
case 1:
dev->cr[1] = (val & 0xbf) | mem_conf_cr1[(mem_size > 640 ? mem_size : mem_size - 128) >> 9];
memmap_state_update(dev);
break;
case 2:
case 3:
dev->cr[dev->cri] = val;
memmap_state_update(dev);
break;
case 5:
if (dev->has_sleep)
dev->cr[dev->cri] = val;
else
dev->cr[dev->cri] = val & 0x0f;
memmap_state_update(dev);
break;
case 4:
dev->cr[4] = (dev->cr[4] & 0xf0) | (val & 0x0f);
memmap_state_update(dev);
break;
case 6:
if (dev->revision == 8) {
dev->cr[dev->cri] = (val & 0xfe) | (mem_size > 8192 ? 1 : 0);
memmap_state_update(dev);
}
break;
default:
break;
}
break;
default:
break;
}
}
static void
hl_writew(uint16_t addr, uint16_t val, void *priv)
{
headland_t *dev = (headland_t *) priv;
switch (addr) {
case 0x01ec:
dev->ems_mr[dev->ems_mar & 0x3f].mr = val;
hl_ems_update(dev, dev->ems_mar & 0x3f);
if (dev->ems_mar & 0x80)
dev->ems_mar++;
break;
default:
break;
}
}
static void
hl_writel(uint16_t addr, uint32_t val, void *priv)
{
hl_writew(addr, val, priv);
hl_writew(addr + 2, val >> 16, priv);
}
static uint8_t
hl_read(uint16_t addr, void *priv)
{
headland_t *dev = (headland_t *) priv;
uint8_t ret = 0xff;
switch (addr) {
case 0x01ec:
ret = (uint8_t) dev->ems_mr[dev->ems_mar & 0x3f].mr;
if (dev->ems_mar & 0x80)
dev->ems_mar++;
break;
case 0x01ed:
if (dev->has_cri)
ret = dev->cri;
break;
case 0x01ee:
ret = dev->ems_mar;
break;
case 0x01ef:
switch (dev->cri & 0x07) {
case 0:
ret = (dev->cr[0] & 0x1f) | mem_conf_cr0[(mem_size > 640 ? mem_size : mem_size - 128) >> 9];
break;
case 1:
ret = (dev->cr[1] & 0xbf) | mem_conf_cr1[(mem_size > 640 ? mem_size : mem_size - 128) >> 9];
break;
case 6:
if (dev->revision == 8)
ret = (dev->cr[6] & 0xfe) | (mem_size > 8192 ? 1 : 0);
else
ret = 0;
break;
default:
ret = dev->cr[dev->cri];
break;
}
break;
default:
break;
}
return ret;
}
static uint16_t
hl_readw(uint16_t addr, void *priv)
{
headland_t *dev = (headland_t *) priv;
uint16_t ret = 0xffff;
switch (addr) {
case 0x01ec:
ret = dev->ems_mr[dev->ems_mar & 0x3f].mr | ((dev->cr[4] & 0x80) ? 0xf000 : 0xfc00);
if (dev->ems_mar & 0x80)
dev->ems_mar++;
break;
default:
break;
}
return ret;
}
static uint32_t
hl_readl(uint16_t addr, void *priv)
{
uint32_t ret = 0xffffffff;
ret = hl_readw(addr, priv);
ret |= (hl_readw(addr + 2, priv) << 16);
return ret;
}
static uint8_t
mem_read_b(uint32_t addr, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
uint8_t ret = 0xff;
addr = get_addr(dev, addr, mr);
if (addr < (mem_size << 10))
ret = ram[addr];
return ret;
}
static uint16_t
mem_read_w(uint32_t addr, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
uint16_t ret = 0xffff;
addr = get_addr(dev, addr, mr);
if (addr < (mem_size << 10))
ret = *(uint16_t *) &ram[addr];
return ret;
}
static uint32_t
mem_read_l(uint32_t addr, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
uint32_t ret = 0xffffffff;
addr = get_addr(dev, addr, mr);
if (addr < (mem_size << 10))
ret = *(uint32_t *) &ram[addr];
return ret;
}
static void
mem_write_b(uint32_t addr, uint8_t val, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
addr = get_addr(dev, addr, mr);
if (addr < (mem_size << 10))
ram[addr] = val;
}
static void
mem_write_w(uint32_t addr, uint16_t val, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
addr = get_addr(dev, addr, mr);
if (addr < (mem_size << 10))
*(uint16_t *) &ram[addr] = val;
}
static void
mem_write_l(uint32_t addr, uint32_t val, void *priv)
{
headland_mr_t *mr = (headland_mr_t *) priv;
headland_t *dev = mr->headland;
addr = get_addr(dev, addr, mr);
if (addr < (mem_size << 10))
*(uint32_t *) &ram[addr] = val;
}
static void
headland_close(void *priv)
{
headland_t *dev = (headland_t *) priv;
free(dev);
}
static void *
headland_init(const device_t *info)
{
headland_t *dev;
int ht386 = 0;
dev = (headland_t *) malloc(sizeof(headland_t));
memset(dev, 0x00, sizeof(headland_t));
dev->has_cri = (info->local & HEADLAND_HAS_CRI);
dev->has_sleep = (info->local & HEADLAND_HAS_SLEEP);
dev->revision = info->local & HEADLAND_REV_MASK;
if (dev->revision > 0)
ht386 = 1;
dev->cr[0] = 0x04;
dev->cr[4] = dev->revision << 4;
if (ht386)
device_add(&port_92_inv_device);
io_sethandler(0x01ec, 4,
hl_read, hl_readw, hl_readl, hl_write, hl_writew, hl_writel, dev);
dev->null_mr.valid = 0;
dev->null_mr.mr = 0xff;
dev->null_mr.headland = dev;
for (uint8_t i = 0; i < 64; i++) {
dev->ems_mr[i].valid = 1;
dev->ems_mr[i].mr = 0x00;
dev->ems_mr[i].headland = dev;
}
/* Turn off mem.c mappings. */
mem_mapping_disable(&ram_low_mapping);
mem_mapping_disable(&ram_mid_mapping);
mem_mapping_disable(&ram_high_mapping);
mem_mapping_add(&dev->low_mapping, 0, 0x40000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
ram, MEM_MAPPING_INTERNAL, &dev->null_mr);
if (mem_size > 640) {
mem_mapping_add(&dev->mid_mapping, 0xa0000, 0x60000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
ram + 0xa0000, MEM_MAPPING_INTERNAL, &dev->null_mr);
mem_mapping_disable(&dev->mid_mapping);
}
if (mem_size > 1024) {
mem_mapping_add(&dev->high_mapping, 0x100000, ((mem_size - 1024) * 1024),
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
ram + 0x100000, MEM_MAPPING_INTERNAL, &dev->null_mr);
mem_mapping_enable(&dev->high_mapping);
}
for (uint8_t i = 0; i < 24; i++) {
mem_mapping_add(&dev->upper_mapping[i],
0x40000 + (i << 14), 0x4000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
mem_size > (256 + (i << 4)) ? (ram + 0x40000 + (i << 14)) : NULL,
MEM_MAPPING_INTERNAL, &dev->null_mr);
mem_mapping_enable(&dev->upper_mapping[i]);
}
mem_mapping_add(&dev->shadow_mapping[0],
0xe0000, 0x20000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
((mem_size << 10) > 0xe0000) ? (ram + 0xe0000) : NULL,
MEM_MAPPING_INTERNAL, &dev->null_mr);
mem_mapping_disable(&dev->shadow_mapping[0]);
mem_mapping_add(&dev->shadow_mapping[1],
0xfe0000, 0x20000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
((mem_size << 10) > 0xe0000) ? (ram + 0xe0000) : NULL,
MEM_MAPPING_INTERNAL, &dev->null_mr);
mem_mapping_disable(&dev->shadow_mapping[1]);
for (uint8_t i = 0; i < 64; i++) {
dev->ems_mr[i].mr = 0x00;
mem_mapping_add(&dev->ems_mapping[i],
((i & 31) + ((i & 31) >= 24 ? 24 : 16)) << 14, 0x04000,
mem_read_b, mem_read_w, mem_read_l,
mem_write_b, mem_write_w, mem_write_l,
ram + (((i & 31) + ((i & 31) >= 24 ? 24 : 16)) << 14),
MEM_MAPPING_INTERNAL, &dev->ems_mr[i]);
mem_mapping_disable(&dev->ems_mapping[i]);
}
memmap_state_update(dev);
return dev;
}
const device_t headland_gc10x_device = {
.name = "Headland GC101/102/103",
.internal_name = "headland_gc10x",
.flags = 0,
.local = HEADLAND_GC103,
.init = headland_init,
.close = headland_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t headland_gc113_device = {
.name = "Headland GC101/102/113",
.internal_name = "headland_gc113",
.flags = 0,
.local = HEADLAND_GC113,
.init = headland_init,
.close = headland_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t headland_ht18a_device = {
.name = "Headland HT18 Rev. A",
.internal_name = "headland_ht18a",
.flags = 0,
.local = HEADLAND_HT18_A,
.init = headland_init,
.close = headland_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t headland_ht18b_device = {
.name = "Headland HT18 Rev. B",
.internal_name = "headland_ht18b",
.flags = 0,
.local = HEADLAND_HT18_B,
.init = headland_init,
.close = headland_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t headland_ht18c_device = {
.name = "Headland HT18 Rev. C",
.internal_name = "headland_ht18c",
.flags = 0,
.local = HEADLAND_HT18_C,
.init = headland_init,
.close = headland_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t headland_ht21c_d_device = {
.name = "Headland HT21 Rev. C/D",
.internal_name = "headland_ht21cd",
.flags = 0,
.local = HEADLAND_HT21_C_D,
.init = headland_init,
.close = headland_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t headland_ht21e_device = {
.name = "Headland HT21 Rev. E",
.internal_name = "headland_ht21",
.flags = 0,
.local = HEADLAND_HT21_E,
.init = headland_init,
.close = headland_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};