Files
86Box/src/chipset/acc2036.c

347 lines
10 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Implementation of the ACC 2036 chipset.
*
* Authors: Miran Grca, <mgrca8@gmail.com>
*
* Copyright 2025 Miran Grca.
*/
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <86box/86box.h>
#include "cpu.h"
#include <86box/timer.h>
#include <86box/io.h>
#include <86box/device.h>
#include <86box/machine.h>
#include <86box/mem.h>
#include <86box/port_92.h>
#include <86box/plat_fallthrough.h>
#include <86box/plat_unused.h>
#include <86box/fdd.h>
#include <86box/fdc.h>
#include <86box/chipset.h>
typedef struct {
uint32_t virt;
uint32_t phys;
mem_mapping_t mapping;
} ram_page_t;
typedef struct {
uint8_t reg;
uint8_t regs[32];
ram_page_t ram_mid_pages[24];
ram_page_t ems_pages[4];
} acc2036_t;
static uint8_t
acc2036_mem_read(uint32_t addr, void *priv)
{
ram_page_t *dev = (ram_page_t *) priv;
uint8_t ret = 0xff;
addr = (addr - dev->virt) + dev->phys;
if (addr < (mem_size << 10))
ret = ram[addr];
return ret;
}
static uint16_t
acc2036_mem_readw(uint32_t addr, void *priv)
{
ram_page_t *dev = (ram_page_t *) priv;
uint16_t ret = 0xffff;
addr = (addr - dev->virt) + dev->phys;
if (addr < (mem_size << 10))
ret = *(uint16_t *) &(ram[addr]);
return ret;
}
static void
acc2036_mem_write(uint32_t addr, uint8_t val, void *priv)
{
ram_page_t *dev = (ram_page_t *) priv;
addr = (addr - dev->virt) + dev->phys;
if (addr < (mem_size << 10))
ram[addr] = val;
}
static void
acc2036_mem_writew(uint32_t addr, uint16_t val, void *priv)
{
ram_page_t *dev = (ram_page_t *) priv;
addr = (addr - dev->virt) + dev->phys;
if (addr < (mem_size << 10))
*(uint16_t *) &(ram[addr]) = val;
}
static void
acc2036_recalc(acc2036_t *dev)
{
uint32_t ems_bases[4] = { 0x000c0000, 0x000c8000, 0x000d0000, 0x000e0000 };
int start_i = (ems_bases[dev->regs[0x0c] & 0x03] - 0x000a0000) >> 14;
int end_i = start_i + 3;
for (int i = 0; i < 24; i++) {
ram_page_t *rp = &dev->ram_mid_pages[i];
mem_mapping_disable(&rp->mapping);
}
for (int i = 0; i < 4; i++) {
ram_page_t *ep = &dev->ems_pages[i];
mem_mapping_disable(&ep->mapping);
}
for (int i = 0; i < 24; i++) {
ram_page_t *rp = &dev->ram_mid_pages[i];
if ((dev->regs[0x03] & 0x08) && (i >= start_i) && (i <= end_i)) {
/* EMS */
ram_page_t *ep = &dev->ems_pages[i - start_i];
mem_mapping_disable(&rp->mapping);
mem_mapping_set_addr(&ep->mapping, ep->virt, 0x000040000);
mem_mapping_set_exec(&ep->mapping, ram + ep->phys);
mem_set_mem_state_both(ep->virt, 0x00004000, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
} else {
int master_write;
int master_read;
int bit;
int ew_flag;
int er_flag;
int flags;
uint8_t val;
mem_mapping_set_addr(&rp->mapping, rp->virt, 0x000040000);
mem_mapping_set_exec(&rp->mapping, ram + rp->phys);
if ((i >= 8) && (i <= 15)) {
/* 0C0000-0DFFFF */
master_write = dev->regs[0x02] & 0x08;
master_read = dev->regs[0x02] & 0x04;
bit = ((i - 8) >> 1);
val = dev->regs[0x0d] & (1 << bit);
if (i >= 12) {
ew_flag = (dev->regs[0x07] & 0x80) ? MEM_WRITE_EXTANY : MEM_WRITE_EXTERNAL;
er_flag = (dev->regs[0x07] & 0x80) ? MEM_READ_EXTANY : MEM_READ_EXTERNAL;
} else {
ew_flag = (dev->regs[0x07] & 0x40) ? MEM_WRITE_EXTANY : MEM_WRITE_EXTERNAL;
er_flag = (dev->regs[0x07] & 0x40) ? MEM_READ_EXTANY : MEM_READ_EXTERNAL;
}
flags = (val && master_write) ? MEM_WRITE_INTERNAL : ew_flag;
flags |= (val && master_read) ? MEM_READ_INTERNAL : er_flag;
mem_set_mem_state_both(rp->virt, 0x00004000, flags);
} else if (i > 15) {
/* 0E0000-0FFFFF */
master_write = dev->regs[0x02] & 0x02;
master_read = dev->regs[0x02] & 0x01;
bit = ((i - 8) >> 2);
val = dev->regs[0x0c] & (1 << bit);
if (i >= 20) {
ew_flag = MEM_WRITE_EXTANY;
er_flag = MEM_READ_EXTANY;
} else {
ew_flag = (dev->regs[0x0c] & 0x10) ? MEM_WRITE_EXTANY : MEM_WRITE_EXTERNAL;
er_flag = (dev->regs[0x0c] & 0x10) ? MEM_READ_EXTANY : MEM_READ_EXTERNAL;
}
flags = (val && master_write) ? MEM_WRITE_INTERNAL : ew_flag;
flags |= (val && master_read) ? MEM_READ_INTERNAL : er_flag;
mem_set_mem_state_both(rp->virt, 0x00004000, flags);
}
}
}
if (dev->regs[0x00] & 0x40)
mem_set_mem_state_both(0x00fe0000, 0x00010000, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
else
mem_set_mem_state_both(0x00fe0000, 0x00010000, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
for (int i = 0x01; i <= 0x06; i++) {
uint32_t base = 0x00fe0000 - (i * 0x00010000);
if (dev->regs[i] & 0x40)
mem_set_mem_state_both(base, 0x00008000, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
else
mem_set_mem_state_both(base, 0x00008000, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
if (dev->regs[i] & 0x80)
mem_set_mem_state_both(base + 0x00008000, 0x00008000, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
else
mem_set_mem_state_both(base + 0x00008000, 0x00008000, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
}
mem_remap_top(0);
if (dev->regs[0x03] & 0x10) {
if (dev->regs[0x02] & 0x0c)
mem_remap_top(128);
else if (dev->regs[0x02] & 0x03)
mem_remap_top(256);
else
mem_remap_top(384);
}
flushmmucache_nopc();
}
static uint8_t
acc2036_in(uint16_t port, void *priv) {
acc2036_t *dev = (acc2036_t *) priv;
uint8_t reg = dev->reg - 0x20;
uint8_t ret = 0xff;
if (port & 0x0001) switch (dev->reg) {
default:
break;
case 0x20 ... 0x2e:
case 0x31 ... 0x3f:
ret = dev->regs[reg];
break;
} else
ret = dev->reg;
return ret;
}
static void
acc2036_out(uint16_t port, uint8_t val, void *priv) {
acc2036_t *dev = (acc2036_t *) priv;
uint8_t reg = dev->reg - 0x20;
if (port & 0x0001) switch (dev->reg) {
default:
break;
case 0x20 ... 0x23:
dev->regs[reg] = val;
acc2036_recalc(dev);
break;
case 0x24 ... 0x2b:
dev->regs[reg] = val;
dev->ems_pages[(reg - 0x04) >> 1].phys = ((dev->regs[reg & 0xfe] & 0x1f) << 19) |
((dev->regs[reg | 0x01] & 0x1f) << 14);
acc2036_recalc(dev);
break;
case 0x2c: case 0x2d:
dev->regs[reg] = val;
acc2036_recalc(dev);
break;
case 0x2e:
dev->regs[reg] = val | 0x10;
break;
case 0x31:
dev->regs[reg] = val;
mem_a20_alt = (val & 0x01);
mem_a20_recalc();
flushmmucache();
if (val & 0x02) {
softresetx86(); /* Pulse reset! */
cpu_set_edx();
flushmmucache();
}
break;
case 0x32 ... 0x3f:
dev->regs[reg] = val;
break;
} else
dev->reg = val;
}
static void
acc2036_close(void *priv)
{
acc2036_t *dev = (acc2036_t *) priv;
free(dev);
}
static void *
acc2036_init(UNUSED(const device_t *info))
{
acc2036_t *dev = (acc2036_t *) calloc(1, sizeof(acc2036_t));
for (int i = 0; i < 24; i++) {
ram_page_t *rp = &dev->ram_mid_pages[i];
rp->virt = 0x000a0000 + (i << 14);
rp->phys = 0x000a0000 + (i << 14);
mem_mapping_add(&rp->mapping, rp->virt, 0x00004000,
acc2036_mem_read, acc2036_mem_readw, NULL,
acc2036_mem_write, acc2036_mem_writew, NULL,
ram + rp->phys, MEM_MAPPING_INTERNAL, rp);
}
for (int i = 0; i < 4; i++) {
ram_page_t *ep = &dev->ems_pages[i];
ep->virt = 0x000d0000 + (i << 14);
ep->phys = 0x00000000 + (i << 14);
mem_mapping_add(&ep->mapping, ep->virt, 0x00004000,
acc2036_mem_read, acc2036_mem_readw, NULL,
acc2036_mem_write, acc2036_mem_writew, NULL,
ram + ep->phys, MEM_MAPPING_INTERNAL, ep);
mem_mapping_disable(&ep->mapping);
}
mem_mapping_disable(&ram_mid_mapping);
dev->regs[0x00] = 0x02;
dev->regs[0x0e] = 0x10;
dev->regs[0x11] = 0x01;
dev->regs[0x13] = 0x40;
dev->regs[0x15] = 0x40;
dev->regs[0x17] = 0x40;
dev->regs[0x19] = 0x40;
dev->regs[0x1b] = 0x40;
dev->regs[0x1c] = 0x22;
dev->regs[0x1d] = 0xc4;
dev->regs[0x1f] = 0x30;
acc2036_recalc(dev);
mem_a20_alt = 0x01;
mem_a20_recalc();
flushmmucache();
io_sethandler(0x00f2, 0x0002,
acc2036_in, NULL, NULL, acc2036_out, NULL, NULL, dev);
device_add(&port_92_device);
return dev;
}
const device_t acc2036_device = {
.name = "ACC 2036",
.internal_name = "acc2036",
.flags = 0,
.local = 0,
.init = acc2036_init,
.close = acc2036_close,
.reset = NULL,
.available = NULL,
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};