Files
86Box/src/video/vid_s3_virge.c

4957 lines
176 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* S3 ViRGE emulation.
*
*
*
* Authors: Sarah Walker, <https://pcem-emulator.co.uk/>
* Miran Grca, <mgrca8@gmail.com>
*
* Copyright 2008-2018 Sarah Walker.
* Copyright 2016-2018 Miran Grca.
*/
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <wchar.h>
#include <stdatomic.h>
#define HAVE_STDARG_H
#include <86box/86box.h>
#include <86box/io.h>
#include <86box/timer.h>
#include <86box/dma.h>
#include <86box/mem.h>
#include <86box/pci.h>
#include <86box/rom.h>
#include <86box/device.h>
#include <86box/plat.h>
#include <86box/thread.h>
#include <86box/video.h>
#include <86box/i2c.h>
#include <86box/vid_ddc.h>
#include <86box/vid_svga.h>
#include <86box/vid_svga_render.h>
#ifdef MIN
#undef MIN
#endif
#ifdef MAX
#undef MAX
#endif
#ifdef CLAMP
#undef CLAMP
#endif
static uint64_t virge_time = 0;
static int dither[4][4] = {
{0, 4, 1, 5},
{6, 2, 7, 3},
{1, 5, 0, 4},
{7, 3, 6, 2}
};
#define ROM_VIRGE_325 "roms/video/s3virge/86c325.bin"
#define ROM_DIAMOND_STEALTH3D_2000 "roms/video/s3virge/s3virge.bin"
#define ROM_DIAMOND_STEALTH3D_3000 "roms/video/s3virge/diamondstealth3000.vbi"
#define ROM_STB_VELOCITY_3D "roms/video/s3virge/stb_velocity3d_110.BIN"
#define ROM_VIRGE_DX "roms/video/s3virge/86c375_1.bin"
#define ROM_DIAMOND_STEALTH3D_2000PRO "roms/video/s3virge/virgedxdiamond.vbi"
#define ROM_VIRGE_GX "roms/video/s3virge/86c375_4.bin"
#define ROM_VIRGE_GX2 "roms/video/s3virge/flagpoint.VBI"
#define ROM_DIAMOND_STEALTH3D_4000 "roms/video/s3virge/86c357.bin"
#define ROM_TRIO3D2X "roms/video/s3virge/TRIO3D2X_8mbsdr.VBI"
#define RB_SIZE 256
#define RB_MASK (RB_SIZE - 1)
#define RB_ENTRIES (virge->s3d_write_idx - virge->s3d_read_idx)
#define RB_FULL (RB_ENTRIES == RB_SIZE)
#define RB_EMPTY (!RB_ENTRIES)
#define FIFO_SIZE 65536
#define FIFO_MASK (FIFO_SIZE - 1)
#define FIFO_ENTRY_SIZE (1 << 31)
#define FIFO_ENTRIES (virge->fifo_write_idx - virge->fifo_read_idx)
#define FIFO_FULL ((virge->fifo_write_idx - virge->fifo_read_idx) >= FIFO_SIZE)
#define FIFO_EMPTY (virge->fifo_read_idx == virge->fifo_write_idx)
#define FIFO_TYPE 0xff000000
#define FIFO_ADDR 0x00ffffff
enum {
S3_VIRGE_325,
S3_DIAMOND_STEALTH3D_2000,
S3_DIAMOND_STEALTH3D_3000,
S3_STB_VELOCITY_3D,
S3_VIRGE_DX,
S3_DIAMOND_STEALTH3D_2000PRO,
S3_VIRGE_GX,
S3_VIRGE_GX2,
S3_DIAMOND_STEALTH3D_4000,
S3_TRIO_3D2X
};
enum {
S3_VIRGE,
S3_VIRGEVX,
S3_VIRGEDX,
S3_VIRGEGX2,
S3_TRIO3D2X
};
enum {
FIFO_INVALID = (0x00 << 24),
FIFO_WRITE_BYTE = (0x01 << 24),
FIFO_WRITE_WORD = (0x02 << 24),
FIFO_WRITE_DWORD = (0x03 << 24)
};
typedef struct {
uint32_t addr_type;
uint32_t val;
} fifo_entry_t;
typedef struct s3d_t {
uint32_t cmd_set;
int clip_l;
int clip_r;
int clip_t;
int clip_b;
uint32_t dest_base;
uint32_t dest_str;
uint32_t z_base;
uint32_t z_str;
uint32_t tex_base;
uint32_t tex_bdr_clr;
uint32_t tbv;
uint32_t tbu;
int32_t TdVdX;
int32_t TdUdX;
int32_t TdVdY;
int32_t TdUdY;
uint32_t tus;
uint32_t tvs;
int32_t TdZdX;
int32_t TdZdY;
uint32_t tzs;
int32_t TdWdX;
int32_t TdWdY;
uint32_t tws;
int32_t TdDdX;
int32_t TdDdY;
uint32_t tds;
int16_t TdGdX;
int16_t TdBdX;
int16_t TdRdX;
int16_t TdAdX;
int16_t TdGdY;
int16_t TdBdY;
int16_t TdRdY;
int16_t TdAdY;
uint32_t tgs;
uint32_t tbs;
uint32_t trs;
uint32_t tas;
uint32_t TdXdY12;
uint32_t txend12;
uint32_t TdXdY01;
uint32_t txend01;
uint32_t TdXdY02;
uint32_t txs;
uint32_t tys;
int ty01;
int ty12;
int tlr;
uint8_t fog_r;
uint8_t fog_g;
uint8_t fog_b;
} s3d_t;
typedef struct virge_t {
mem_mapping_t linear_mapping;
mem_mapping_t mmio_mapping;
mem_mapping_t new_mmio_mapping;
rom_t bios_rom;
svga_t svga;
uint8_t bank;
uint8_t ma_ext;
uint8_t virge_id;
uint8_t virge_id_high;
uint8_t virge_id_low;
uint8_t virge_rev;
uint32_t linear_base;
uint32_t linear_size;
uint8_t pci_regs[256];
uint8_t pci_slot;
int chip;
int bilinear_enabled;
int dithering_enabled;
int memory_size;
int pixel_count;
int tri_count;
thread_t * render_thread;
event_t * wake_render_thread;
event_t * wake_main_thread;
event_t * not_full_event;
uint32_t hwc_fg_col;
uint32_t hwc_bg_col;
int hwc_col_stack_pos;
struct {
uint32_t src_base;
uint32_t dest_base;
int clip_l;
int clip_r;
int clip_t;
int clip_b;
int dest_str;
int src_str;
uint32_t mono_pat_0;
uint32_t mono_pat_1;
uint32_t pat_bg_clr;
uint32_t pat_fg_clr;
uint32_t src_bg_clr;
uint32_t src_fg_clr;
uint32_t cmd_set;
int r_width;
int r_height;
int rsrc_x;
int rsrc_y;
int rdest_x;
int rdest_y;
int lxend0;
int lxend1;
int32_t ldx;
uint32_t lxstart;
uint32_t lystart;
int lycnt;
int line_dir;
int src_x;
int src_y;
int dest_x;
int dest_y;
int w;
int h;
uint8_t rop;
int data_left_count;
uint32_t data_left;
uint32_t pattern_8[8 * 8];
uint32_t pattern_16[8 * 8];
uint32_t pattern_24[8 * 8];
uint32_t pattern_32[8 * 8];
uint32_t prdx;
uint32_t prxstart;
uint32_t pldx;
uint32_t plxstart;
uint32_t pystart;
uint32_t pycnt;
uint32_t dest_l, dest_r;
} s3d;
s3d_t s3d_tri;
s3d_t s3d_buffer[RB_SIZE];
int s3d_read_idx;
int s3d_write_idx;
int s3d_busy;
struct {
uint32_t pri_ctrl;
uint32_t chroma_ctrl;
uint32_t sec_ctrl;
uint32_t chroma_upper_bound;
uint32_t sec_filter;
uint32_t blend_ctrl;
uint32_t pri_fb0, pri_fb1;
uint32_t pri_stride;
uint32_t buffer_ctrl;
uint32_t sec_fb0, sec_fb1;
uint32_t sec_stride;
uint32_t overlay_ctrl;
int32_t k1_vert_scale;
int32_t k2_vert_scale;
int32_t dda_vert_accumulator;
int32_t k1_horiz_scale;
int32_t k2_horiz_scale;
int32_t dda_horiz_accumulator;
uint32_t fifo_ctrl;
uint32_t pri_start;
uint32_t pri_size;
uint32_t sec_start;
uint32_t sec_size;
int sdif;
int pri_x;
int pri_y;
int pri_w;
int pri_h;
int sec_x;
int sec_y;
int sec_w;
int sec_h;
} streams;
fifo_entry_t fifo[FIFO_SIZE];
volatile int fifo_read_idx, fifo_write_idx;
volatile int fifo_thread_run, render_thread_run;
thread_t * fifo_thread;
event_t *wake_fifo_thread;
event_t * fifo_not_full_event;
int virge_busy;
uint8_t subsys_stat;
uint8_t subsys_cntl;
int local;
uint8_t serialport;
uint8_t irq_state;
uint8_t advfunc_cntl;
void *i2c, *ddc;
int onboard;
int fifo_slots_num;
uint32_t vram_mask;
uint8_t reg6b;
uint8_t lfb_bios;
uint8_t int_line;
uint8_t cmd_dma;
uint32_t cmd_dma_base;
uint32_t dma_ptr;
int pci;
int is_agp;
} virge_t;
static __inline void
wake_fifo_thread(virge_t *virge) {
/* Wake up FIFO thread if moving from idle */
thread_set_event(virge->wake_fifo_thread);
}
static virge_t *reset_state = NULL;
static video_timings_t timing_diamond_stealth3d_2000_pci = { .type = VIDEO_PCI, .write_b = 2, .write_w = 2, .write_l = 3, .read_b = 28, .read_w = 28, .read_l = 45 };
static video_timings_t timing_diamond_stealth3d_3000_pci = { .type = VIDEO_PCI, .write_b = 2, .write_w = 2, .write_l = 4, .read_b = 26, .read_w = 26, .read_l = 42 };
static video_timings_t timing_virge_dx_pci = { .type = VIDEO_PCI, .write_b = 2, .write_w = 2, .write_l = 3, .read_b = 28, .read_w = 28, .read_l = 45 };
static video_timings_t timing_virge_agp = { .type = VIDEO_AGP, .write_b = 2, .write_w = 2, .write_l = 3, .read_b = 28, .read_w = 28, .read_l = 45 };
static void queue_triangle(virge_t *virge);
static void s3_virge_recalctimings(svga_t *svga);
static void s3_virge_updatemapping(virge_t *virge);
static void s3_virge_bitblt(virge_t *virge, int count, uint32_t cpu_dat);
static uint8_t s3_virge_mmio_read(uint32_t addr, void *priv);
static uint16_t s3_virge_mmio_read_w(uint32_t addr, void *priv);
static uint32_t s3_virge_mmio_read_l(uint32_t addr, void *priv);
static void s3_virge_mmio_write(uint32_t addr, uint8_t val, void *priv);
static void s3_virge_mmio_write_w(uint32_t addr, uint16_t val, void *priv);
static void s3_virge_mmio_write_l(uint32_t addr, uint32_t val, void *priv);
enum {
CMD_SET_AE = 1,
CMD_SET_HC = (1 << 1),
CMD_SET_FORMAT_MASK = (7 << 2),
CMD_SET_FORMAT_8 = (0 << 2),
CMD_SET_FORMAT_16 = (1 << 2),
CMD_SET_FORMAT_24 = (2 << 2),
CMD_SET_MS = (1 << 6),
CMD_SET_IDS = (1 << 7),
CMD_SET_MP = (1 << 8),
CMD_SET_TP = (1 << 9),
CMD_SET_ITA_MASK = (3 << 10),
CMD_SET_ITA_BYTE = (0 << 10),
CMD_SET_ITA_WORD = (1 << 10),
CMD_SET_ITA_DWORD = (2 << 10),
CMD_SET_ZUP = (1 << 23),
CMD_SET_ZB_MODE = (3 << 24),
CMD_SET_XP = (1 << 25),
CMD_SET_YP = (1 << 26),
CMD_SET_COMMAND_MASK = (15 << 27)
};
#define CMD_SET_FE (1 << 17)
#define CMD_SET_ABC_SRC (1 << 18)
#define CMD_SET_ABC_ENABLE (1 << 19)
#define CMD_SET_TWE (1 << 26)
enum {
CMD_SET_COMMAND_BITBLT = (0 << 27),
CMD_SET_COMMAND_RECTFILL = (2 << 27),
CMD_SET_COMMAND_LINE = (3 << 27),
CMD_SET_COMMAND_POLY = (5 << 27),
CMD_SET_COMMAND_NOP = (15 << 27)
};
#define INT_VSY (1 << 0)
#define INT_S3D_DONE (1 << 1)
#define INT_FIFO_OVF (1 << 2)
#define INT_FIFO_EMP (1 << 3)
#define INT_3DF_EMP (1 << 6)
#define INT_MASK 0xff
#define SERIAL_PORT_SCW (1 << 0)
#define SERIAL_PORT_SDW (1 << 1)
#define SERIAL_PORT_SCR (1 << 2)
#define SERIAL_PORT_SDR (1 << 3)
static void
s3_virge_update_irqs(virge_t *virge) {
if ((virge->svga.crtc[0x32] & 0x10) && (virge->subsys_stat & virge->subsys_cntl & INT_MASK))
pci_set_irq(virge->pci_slot, PCI_INTA, &virge->irq_state);
else
pci_clear_irq(virge->pci_slot, PCI_INTA, &virge->irq_state);
}
static void
s3_virge_out(uint16_t addr, uint8_t val, void *priv) {
virge_t *virge = (virge_t *) priv;
svga_t * svga = &virge->svga;
uint8_t old;
uint32_t cursoraddr;
if (((addr & 0xfff0) == 0x3d0 || (addr & 0xfff0) == 0x3b0) && !(svga->miscout & 1))
addr ^= 0x60;
switch (addr) {
case 0x3c5:
if (svga->seqaddr >= 0x10) {
svga->seqregs[svga->seqaddr & 0x1f] = val;
svga_recalctimings(svga);
return;
}
if (svga->seqaddr == 4) { /*Chain-4 - update banking*/
if (val & 8)
svga->write_bank = svga->read_bank = virge->bank << 16;
else
svga->write_bank = svga->read_bank = virge->bank << 14;
} else if (svga->seqaddr == 0x08) {
svga->seqregs[svga->seqaddr] = val & 0x0f;
return;
} else if ((svga->seqaddr == 0x0d) && (svga->seqregs[0x08] == 0x06)) {
svga->seqregs[svga->seqaddr] = val;
svga->dpms = (svga->seqregs[0x0d] & 0x50) || (svga->crtc[0x56] & 0x06);
svga_recalctimings(svga);
return;
}
break;
case 0x3d4:
svga->crtcreg = val;
return;
case 0x3d5:
if ((svga->crtcreg < 7) && (svga->crtc[0x11] & 0x80))
return;
if ((svga->crtcreg == 7) && (svga->crtc[0x11] & 0x80))
val = (svga->crtc[7] & ~0x10) | (val & 0x10);
if ((svga->crtcreg >= 0x20) && (svga->crtcreg < 0x40) &&
(svga->crtcreg != 0x36) && (svga->crtcreg != 0x38) &&
(svga->crtcreg != 0x39) && ((svga->crtc[0x38] & 0xcc) != 0x48))
return;
if ((svga->crtcreg >= 0x40) && ((svga->crtc[0x39] & 0xe0) != 0xa0))
return;
if ((svga->crtcreg == 0x36) && (svga->crtc[0x39] != 0xa5))
return;
if (svga->crtcreg >= 0x80)
return;
old = svga->crtc[svga->crtcreg];
svga->crtc[svga->crtcreg] = val;
switch (svga->crtcreg) {
case 0x31:
virge->ma_ext = (virge->ma_ext & 0x1c) | ((val & 0x30) >> 4);
break;
case 0x32:
s3_virge_update_irqs(virge);
break;
case 0x69:
virge->ma_ext = val & 0x1f;
break;
case 0x35:
virge->bank = (virge->bank & 0x70) | (val & 0xf);
if (svga->chain4)
svga->write_bank = svga->read_bank = virge->bank << 16;
else
svga->write_bank = svga->read_bank = virge->bank << 14;
break;
case 0x51:
virge->bank = (virge->bank & 0x4f) | ((val & 0xc) << 2);
if (svga->chain4)
svga->write_bank = svga->read_bank = virge->bank << 16;
else
svga->write_bank = svga->read_bank = virge->bank << 14;
virge->ma_ext = (virge->ma_ext & ~0xc) | ((val & 3) << 2);
break;
case 0x6a:
virge->bank = val;
if (svga->chain4)
svga->write_bank = svga->read_bank = virge->bank << 16;
else
svga->write_bank = svga->read_bank = virge->bank << 14;
break;
case 0x3a:
if (val & 0x10)
svga->gdcreg[5] |= 0x40; /*Horrible cheat*/
break;
case 0x45:
svga->hwcursor.ena = val & 1;
break;
case 0x46:
case 0x47:
case 0x48:
case 0x49:
case 0x4c:
case 0x4d:
case 0x4e:
case 0x4f:
svga->hwcursor.x = ((svga->crtc[0x46] << 8) | svga->crtc[0x47]) & 0x7ff;
svga->hwcursor.y = ((svga->crtc[0x48] << 8) | svga->crtc[0x49]) & 0x7ff;
svga->hwcursor.xoff = svga->crtc[0x4e] & 0x3f;
svga->hwcursor.yoff = svga->crtc[0x4f] & 0x3f;
cursoraddr = (virge->memory_size == 8) ? 0x1fff : 0x0fff;
svga->hwcursor.addr = ((((svga->crtc[0x4c] << 8) |
svga->crtc[0x4d]) & cursoraddr) * 1024) + (svga->hwcursor.yoff * 16);
break;
case 0x4a:
switch (virge->hwc_col_stack_pos) {
case 0:
virge->hwc_fg_col = (virge->hwc_fg_col & 0xffff00) | val;
break;
case 1:
virge->hwc_fg_col = (virge->hwc_fg_col & 0xff00ff) | (val << 8);
break;
case 2:
virge->hwc_fg_col = (virge->hwc_fg_col & 0x00ffff) | (val << 16);
break;
default:
break;
}
virge->hwc_col_stack_pos = (virge->hwc_col_stack_pos + 1) & 3;
break;
case 0x4b:
switch (virge->hwc_col_stack_pos) {
case 0:
virge->hwc_bg_col = (virge->hwc_bg_col & 0xffff00) | val;
break;
case 1:
virge->hwc_bg_col = (virge->hwc_bg_col & 0xff00ff) | (val << 8);
break;
case 2:
virge->hwc_bg_col = (virge->hwc_bg_col & 0x00ffff) | (val << 16);
break;
default:
break;
}
virge->hwc_col_stack_pos = (virge->hwc_col_stack_pos + 1) & 3;
break;
case 0x53:
case 0x58:
case 0x59:
case 0x5a:
s3_virge_updatemapping(virge);
break;
case 0x56:
svga->dpms = (svga->seqregs[0x0d] & 0x50) || (svga->crtc[0x56] & 0x06);
old = ~val; /* force recalc */
break;
case 0x5c:
if ((val & 0xa0) == 0x80)
i2c_gpio_set(virge->i2c, !!(val & 0x40), !!(val & 0x10));
break;
case 0x67:
switch (val >> 4) {
case 2:
case 3:
svga->bpp = 15;
break;
case 4:
case 5:
svga->bpp = 16;
break;
case 7:
svga->bpp = 24;
break;
case 13:
svga->bpp = (virge->chip == S3_VIRGEVX) ? 24 : 32;
break;
default:
svga->bpp = 8;
break;
}
break;
case 0xaa:
i2c_gpio_set(virge->i2c, !!(val & SERIAL_PORT_SCW), !!(val & SERIAL_PORT_SDW));
break;
default:
break;
}
if (old != val) {
if (svga->crtcreg < 0xe || svga->crtcreg > 0x10) {
if ((svga->crtcreg == 0xc) || (svga->crtcreg == 0xd)) {
svga->fullchange = 3;
svga->ma_latch = ((svga->crtc[0xc] << 8) | svga->crtc[0xd]) +
((svga->crtc[8] & 0x60) >> 5);
if ((svga->crtc[0x67] & 0xc) != 0xc)
svga->ma_latch |= (virge->ma_ext << 16);
} else {
svga->fullchange = changeframecount;
svga_recalctimings(svga);
}
}
}
break;
default:
break;
}
svga_out(addr, val, svga);
}
static uint8_t
s3_virge_in(uint16_t addr, void *priv) {
virge_t *virge = (virge_t *) priv;
svga_t * svga = &virge->svga;
uint8_t ret;
if (((addr & 0xfff0) == 0x3d0 || (addr & 0xfff0) == 0x3b0) && !(svga->miscout & 1))
addr ^= 0x60;
switch (addr) {
case 0x3c1:
if (svga->attraddr > 0x14)
ret = 0xff;
else
ret = svga_in(addr, svga);
break;
case 0x3c5:
if (svga->seqaddr >= 8)
ret = svga->seqregs[svga->seqaddr & 0x1f];
else if (svga->seqaddr <= 4)
ret = svga_in(addr, svga);
else
ret = 0xff;
break;
case 0x3d4:
ret = svga->crtcreg;
break;
case 0x3d5:
switch (svga->crtcreg) {
case 0x2d:
ret = virge->virge_id_high;
break; /*Extended chip ID*/
case 0x2e:
ret = virge->virge_id_low;
break; /*New chip ID*/
case 0x2f:
ret = virge->virge_rev;
break;
case 0x30:
ret = virge->virge_id;
break; /*Chip ID*/
case 0x31:
ret = (svga->crtc[0x31] & 0xcf) | ((virge->ma_ext & 3) << 4);
break;
case 0x33:
ret = (svga->crtc[0x33] | 0x04);
break;
case 0x35:
ret = (svga->crtc[0x35] & 0xf0) | (virge->bank & 0xf);
break;
case 0x36:
ret = (svga->crtc[0x36] & 0xfc) | 2;
break; /*PCI bus*/
case 0x45:
virge->hwc_col_stack_pos = 0;
ret = svga->crtc[0x45];
break;
case 0x51:
ret = (svga->crtc[0x51] & 0xf0) | ((virge->bank >> 2) & 0xc) | ((virge->ma_ext >> 2) & 3);
break;
case 0x5c: /* General Output Port Register */
ret = svga->crtc[svga->crtcreg] & 0xa0;
if (((svga->miscout >> 2) & 3) == 3)
ret |= svga->crtc[0x42] & 0x0f;
else
ret |= ((svga->miscout >> 2) & 3);
if ((ret & 0xa0) == 0xa0) {
if ((svga->crtc[0x5c] & 0x40) && i2c_gpio_get_scl(virge->i2c))
ret |= 0x40;
if ((svga->crtc[0x5c] & 0x10) && i2c_gpio_get_sda(virge->i2c))
ret |= 0x10;
}
break;
case 0x69:
ret = virge->ma_ext;
break;
case 0x6a:
ret = virge->bank;
break;
case 0xaa: /* DDC */
if (virge->chip >= S3_VIRGEGX2) {
ret = svga->crtc[0xaa] & ~(SERIAL_PORT_SCR | SERIAL_PORT_SDR);
if ((svga->crtc[0xaa] & SERIAL_PORT_SCW) && i2c_gpio_get_scl(virge->i2c))
ret |= SERIAL_PORT_SCR;
if ((svga->crtc[0xaa] & SERIAL_PORT_SDW) && i2c_gpio_get_sda(virge->i2c))
ret |= SERIAL_PORT_SDR;
break;
} else
ret = svga->crtc[0xaa];
break;
default:
ret = svga->crtc[svga->crtcreg];
break;
}
break;
default:
ret = svga_in(addr, svga);
break;
}
return ret;
}
static void
s3_virge_recalctimings(svga_t *svga) {
virge_t *virge = (virge_t *) svga->priv;
svga->hdisp = svga->hdisp_old;
if (!svga->scrblank && svga->attr_palette_enable && (svga->crtc[0x43] & 0x80)) {
/* TODO: In case of bug reports, disable 9-dots-wide character clocks in graphics modes. */
svga->dots_per_clock = ((svga->seqregs[1] & 1) ? 16 : 18);
}
if ((svga->crtc[0x33] & 0x20) || ((svga->crtc[0x67] & 0xc) == 0xc)) {
/* In this mode, the dots per clock are always 8 or 16, never 9 or 18. */
if (!svga->scrblank && svga->attr_palette_enable)
svga->dots_per_clock = (svga->seqregs[1] & 8) ? 16 : 8;
}
if (svga->crtc[0x5d] & 0x01)
svga->htotal |= 0x100;
if (svga->crtc[0x5d] & 0x02) {
svga->hdisp_time |= 0x100;
svga->hdisp |= (0x100 * svga->dots_per_clock);
}
if (svga->crtc[0x5e] & 0x01)
svga->vtotal |= 0x400;
if (svga->crtc[0x5e] & 0x02)
svga->dispend |= 0x400;
if (svga->crtc[0x5e] & 0x04)
svga->vblankstart |= 0x400;
if (svga->crtc[0x5e] & 0x10)
svga->vsyncstart |= 0x400;
if (svga->crtc[0x5e] & 0x40)
svga->split |= 0x400;
svga->interlace = svga->crtc[0x42] & 0x20;
if (((svga->miscout >> 2) & 3) == 3) {
int n = svga->seqregs[0x12] & 0x1f;
int r = (svga->seqregs[0x12] >> 5);
if ((virge->chip == S3_VIRGEVX) || (virge->chip == S3_VIRGEDX))
r &= 7;
else if (virge->chip >= S3_VIRGEGX2)
r &= 10;
else
r &= 3;
int m = svga->seqregs[0x13] & 0x7f;
double freq = (((double) m + 2) / (((double) n + 2) * (double) (1 << r))) * 14318184.0;
svga->clock = (cpuclock * (float) (1ULL << 32)) / freq;
}
if ((svga->crtc[0x33] & 0x20) || ((svga->crtc[0x67] & 0xc) == 0xc)) {
/* The S3 version of the Cirrus' special blanking mode, with identical behavior. */
svga->hblankstart = (((svga->crtc[0x5d] & 0x02) >> 1) << 8) + svga->crtc[1]/* +
((svga->crtc[3] >> 5) & 3) + 1*/;
svga->hblank_end_val = svga->htotal - 1 /* + ((svga->crtc[3] >> 5) & 3)*/;
svga->monitor->mon_overscan_y = 0;
svga->monitor->mon_overscan_x = 0;
/* Also make sure vertical blanking starts on display end. */
svga->vblankstart = svga->dispend;
video_force_resize_set_monitor(1, svga->monitor_index);
} else {
svga->hblankstart = (((svga->crtc[0x5d] & 0x04) >> 2) << 8) + svga->crtc[2];
svga->hblank_end_val = (svga->crtc[3] & 0x1f) | (((svga->crtc[5] & 0x80) >> 7) << 5) |
(((svga->crtc[0x5d] & 0x08) >> 3) << 6);
svga->hblank_end_mask = 0x7f;
video_force_resize_set_monitor(1, svga->monitor_index);
}
if ((svga->crtc[0x67] & 0xc) != 0xc) { /*VGA mode*/
svga->ma_latch |= (virge->ma_ext << 16);
if (svga->crtc[0x51] & 0x30)
svga->rowoffset |= (svga->crtc[0x51] & 0x30) << 4;
else if (svga->crtc[0x43] & 0x04)
svga->rowoffset |= 0x100;
if (!svga->rowoffset)
svga->rowoffset = 256;
svga->lowres = !((svga->gdcreg[5] & 0x40) && (svga->crtc[0x3a] & 0x10));
if ((svga->gdcreg[5] & 0x40) && (svga->crtc[0x3a] & 0x10)) switch (svga->bpp) {
case 8:
svga->render = svga_render_8bpp_highres;
break;
case 15:
svga->render = svga_render_15bpp_highres;
if ((virge->chip != S3_VIRGEVX) && (virge->chip < S3_VIRGEGX2)) {
svga->hdisp >>= 1;
svga->dots_per_clock >>= 1;
}
break;
case 16:
svga->render = svga_render_16bpp_highres;
if ((virge->chip != S3_VIRGEVX) && (virge->chip < S3_VIRGEGX2)) {
svga->hdisp >>= 1;
svga->dots_per_clock >>= 1;
}
break;
case 24:
svga->render = svga_render_24bpp_highres;
if ((virge->chip != S3_VIRGEVX) && (virge->chip < S3_VIRGEGX2))
svga->rowoffset = (svga->rowoffset * 3) / 4; /*Hack*/
break;
case 32:
svga->render = svga_render_32bpp_highres;
break;
default:
break;
}
svga->vram_display_mask = (!(svga->crtc[0x31] & 0x08) &&
(svga->crtc[0x32] & 0x40)) ? 0x3ffff : virge->vram_mask;
svga->overlay.ena = 0;
if (virge->chip >= S3_VIRGEGX2 && (svga->crtc[0x67] & 0xc) == 0xc) {
/* ViRGE/GX2 and later does not use primary stream registers. */
svga->overlay.x = virge->streams.sec_x;
svga->overlay.y = virge->streams.sec_y;
svga->overlay.cur_ysize = virge->streams.sec_h;
if (virge->streams.buffer_ctrl & 2)
svga->overlay.addr = virge->streams.sec_fb1;
else
svga->overlay.addr = virge->streams.sec_fb0;
svga->overlay.ena = (svga->overlay.x >= 0) && !!(virge->streams.blend_ctrl & 0x20);
svga->overlay.v_acc = virge->streams.dda_vert_accumulator;
svga->rowoffset = virge->streams.pri_stride >> 3;
svga->vram_display_mask = virge->vram_mask;
}
} else { /*Streams mode*/
if (virge->streams.buffer_ctrl & 1)
svga->ma_latch = virge->streams.pri_fb1 >> 2;
else
svga->ma_latch = virge->streams.pri_fb0 >> 2;
svga->hdisp = virge->streams.pri_w + 1;
if (virge->streams.pri_h < svga->dispend)
svga->dispend = virge->streams.pri_h;
svga->overlay.x = virge->streams.sec_x - virge->streams.pri_x;
svga->overlay.y = virge->streams.sec_y - virge->streams.pri_y;
svga->overlay.cur_ysize = virge->streams.sec_h;
if (virge->streams.buffer_ctrl & 2)
svga->overlay.addr = virge->streams.sec_fb1;
else
svga->overlay.addr = virge->streams.sec_fb0;
svga->overlay.ena = (svga->overlay.x >= 0);
svga->overlay.v_acc = virge->streams.dda_vert_accumulator;
svga->rowoffset = virge->streams.pri_stride >> 3;
if (virge->chip <= S3_VIRGEDX && svga->overlay.ena) {
svga->overlay.ena = (((virge->streams.blend_ctrl >> 24) & 7) == 0b000) ||
(((virge->streams.blend_ctrl >> 24) & 7) == 0b101);
} else if (virge->chip == S3_VIRGEGX2 && svga->overlay.ena) {
/* 0x20 = Secondary Stream enabled */
/* 0x2000 = Primary Stream enabled */
svga->overlay.ena = !!(virge->streams.blend_ctrl & 0x20);
}
switch ((virge->streams.pri_ctrl >> 24) & 0x7) {
case 0: /*RGB-8 (CLUT)*/
svga->render = svga_render_8bpp_highres;
break;
case 3: /*KRGB-16 (1.5.5.5)*/
svga->render = svga_render_15bpp_highres;
break;
case 5: /*RGB-16 (5.6.5)*/
svga->render = svga_render_16bpp_highres;
break;
case 6: /*RGB-24 (8.8.8)*/
svga->render = svga_render_24bpp_highres;
break;
case 7: /*XRGB-32 (X.8.8.8)*/
svga->render = svga_render_32bpp_highres;
break;
}
svga->vram_display_mask = virge->vram_mask;
}
svga->hoverride = 1;
if (svga->render == svga_render_2bpp_lowres)
svga->render = svga_render_2bpp_s3_lowres;
else if (svga->render == svga_render_2bpp_highres)
svga->render = svga_render_2bpp_s3_highres;
}
static void
s3_virge_update_buffer(virge_t *virge)
{
svga_t *svga = &virge->svga;
if ((svga->crtc[0x67] & 0xc) != 0xc)
return;
if (virge->chip < S3_VIRGEGX2) {
if (virge->streams.buffer_ctrl & 1)
svga->ma_latch = virge->streams.pri_fb1 >> 2;
else
svga->ma_latch = virge->streams.pri_fb0 >> 2;
}
if (virge->streams.buffer_ctrl & 2)
svga->overlay.addr = virge->streams.sec_fb1;
else
svga->overlay.addr = virge->streams.sec_fb0;
svga->rowoffset = virge->streams.pri_stride >> 3;
}
static void
s3_virge_updatemapping(virge_t *virge) {
svga_t *svga = &virge->svga;
if (!(virge->pci_regs[PCI_REG_COMMAND] & PCI_COMMAND_MEM)) {
mem_mapping_disable(&svga->mapping);
mem_mapping_disable(&virge->linear_mapping);
mem_mapping_disable(&virge->mmio_mapping);
mem_mapping_disable(&virge->new_mmio_mapping);
return;
}
switch (svga->gdcreg[6] & 0xc) { /*Banked framebuffer*/
case 0x0: /*128k at A0000*/
mem_mapping_set_addr(&svga->mapping, 0xa0000, 0x20000);
svga->banked_mask = 0xffff;
break;
case 0x4: /*64k at A0000*/
mem_mapping_set_addr(&svga->mapping, 0xa0000, 0x10000);
svga->banked_mask = 0xffff;
break;
case 0x8: /*32k at B0000*/
mem_mapping_set_addr(&svga->mapping, 0xb0000, 0x08000);
svga->banked_mask = 0x7fff;
break;
case 0xC: /*32k at B8000*/
mem_mapping_set_addr(&svga->mapping, 0xb8000, 0x08000);
svga->banked_mask = 0x7fff;
break;
}
virge->linear_base = (svga->crtc[0x5a] << 16) | (svga->crtc[0x59] << 24);
if ((svga->crtc[0x58] & 0x10) || (virge->advfunc_cntl & 0x10)) { /*Linear framebuffer*/
switch (svga->crtc[0x58] & 3) {
case 0: /*64k*/
virge->linear_size = 0x10000;
break;
case 1: /*1mb*/
virge->linear_size = 0x100000;
break;
case 2: /*2mb*/
virge->linear_size = 0x200000;
break;
case 3: /*4mb on other than ViRGE/VX, 8mb on ViRGE/VX*/
if ((virge->chip == S3_VIRGEVX) || (virge->chip == S3_TRIO3D2X))
virge->linear_size = 0x800000;
else
virge->linear_size = 0x400000;
break;
case 7:
virge->linear_size = 0x800000;
break;
}
virge->linear_base &= ~(virge->linear_size - 1);
if (virge->linear_base == 0xa0000) {
mem_mapping_set_addr(&svga->mapping, 0xa0000, 0x10000);
mem_mapping_disable(&virge->linear_mapping);
} else {
if ((virge->chip == S3_VIRGEVX) || (virge->chip == S3_TRIO3D2X))
virge->linear_base &= 0xfe000000;
else
virge->linear_base &= 0xfc000000;
mem_mapping_set_addr(&virge->linear_mapping, virge->linear_base, virge->linear_size);
}
svga->fb_only = 1;
} else {
mem_mapping_disable(&virge->linear_mapping);
svga->fb_only = 0;
}
if ((svga->crtc[0x53] & 0x10) || (virge->advfunc_cntl & 0x20)) { /*Old MMIO*/
if (svga->crtc[0x53] & 0x20)
mem_mapping_set_addr(&virge->mmio_mapping, 0xb8000, 0x8000);
else
mem_mapping_set_addr(&virge->mmio_mapping, 0xa0000, 0x10000);
} else
mem_mapping_disable(&virge->mmio_mapping);
if (svga->crtc[0x53] & 0x08) /*New MMIO*/
mem_mapping_set_addr(&virge->new_mmio_mapping, virge->linear_base + 0x1000000, 0x10000);
else
mem_mapping_disable(&virge->new_mmio_mapping);
}
static void
s3_virge_vblank_start(svga_t *svga) {
virge_t *virge = (virge_t *) svga->priv;
virge->subsys_stat |= INT_VSY;
s3_virge_update_irqs(virge);
}
static void
s3_virge_wait_fifo_idle(virge_t *virge) {
while (!FIFO_EMPTY) {
wake_fifo_thread(virge);
thread_wait_event(virge->fifo_not_full_event, 1);
}
}
static uint8_t
s3_virge_mmio_read(uint32_t addr, void *priv) {
virge_t *virge = (virge_t *) priv;
uint8_t ret;
switch (addr & 0xffff) {
case 0x8504:
if (!virge->virge_busy)
wake_fifo_thread(virge);
ret = virge->subsys_stat;
return ret;
case 0x8505:
ret = 0xc0;
if (virge->s3d_busy || virge->virge_busy || !FIFO_EMPTY)
ret |= 0x10;
else
ret |= 0x30;
if (!virge->virge_busy)
wake_fifo_thread(virge);
return ret;
case 0x850c:
ret = virge->advfunc_cntl & 0x3f;
ret |= virge->fifo_slots_num << 6;
ret &= 0xff;
return ret;
case 0x850d:
ret = virge->fifo_slots_num >> 2;
return ret;
case 0x83b0 ... 0x83df:
return s3_virge_in(addr & 0x3ff, priv);
case 0x859c:
return virge->cmd_dma;
case 0xff20:
case 0xff21:
ret = virge->serialport & ~(SERIAL_PORT_SCR | SERIAL_PORT_SDR);
if ((virge->serialport & SERIAL_PORT_SCW) && i2c_gpio_get_scl(virge->i2c))
ret |= SERIAL_PORT_SCR;
if ((virge->serialport & SERIAL_PORT_SDW) && i2c_gpio_get_sda(virge->i2c))
ret |= SERIAL_PORT_SDR;
return ret;
}
return 0xff;
}
static uint16_t
s3_virge_mmio_read_w(uint32_t addr, void *priv) {
virge_t *virge = (virge_t *) priv;
uint16_t ret;
switch (addr & 0xfffe) {
case 0x8504:
ret = 0xc000;
if (virge->s3d_busy || virge->virge_busy || !FIFO_EMPTY)
ret |= 0x1000;
else
ret |= 0x3000;
ret |= virge->subsys_stat;
if (!virge->virge_busy)
wake_fifo_thread(virge);
return ret;
case 0x850c:
ret = virge->advfunc_cntl & 0x3f;
ret |= virge->fifo_slots_num << 6;
return ret;
case 0x859c:
return virge->cmd_dma;
default:
return s3_virge_mmio_read(addr, priv) | (s3_virge_mmio_read(addr + 1, priv) << 8);
}
return 0xffff;
}
static uint32_t
s3_virge_mmio_read_l(uint32_t addr, void *priv) {
virge_t *virge = (virge_t *) priv;
svga_t *svga = &virge->svga;
uint32_t ret = 0xffffffff;
switch (addr & 0xfffc) {
case 0x8180:
ret = virge->streams.pri_ctrl;
break;
case 0x8184:
ret = virge->streams.chroma_ctrl;
break;
case 0x8190:
ret = virge->streams.sec_ctrl;
break;
case 0x8194:
ret = virge->streams.chroma_upper_bound;
break;
case 0x8198:
ret = virge->streams.sec_filter;
break;
case 0x81a0:
ret = virge->streams.blend_ctrl;
svga_recalctimings(svga);
break;
case 0x81c0:
ret = virge->streams.pri_fb0;
s3_virge_update_buffer(virge);
svga->fullchange = changeframecount;
break;
case 0x81c4:
ret = virge->streams.pri_fb1;
s3_virge_update_buffer(virge);
svga->fullchange = changeframecount;
break;
case 0x81c8:
ret = virge->streams.pri_stride;
s3_virge_update_buffer(virge);
svga->fullchange = changeframecount;
break;
case 0x81cc:
ret = virge->streams.buffer_ctrl;
s3_virge_update_buffer(virge);
svga->fullchange = changeframecount;
break;
case 0x81d0:
ret = virge->streams.sec_fb0;
s3_virge_update_buffer(virge);
svga->fullchange = changeframecount;
break;
case 0x81d4:
ret = virge->streams.sec_fb1;
s3_virge_update_buffer(virge);
svga->fullchange = changeframecount;
break;
case 0x81d8:
ret = virge->streams.sec_stride;
s3_virge_update_buffer(virge);
svga->fullchange = changeframecount;
break;
case 0x81dc:
ret = virge->streams.overlay_ctrl;
svga->fullchange = changeframecount;
break;
case 0x81e0:
ret = virge->streams.k1_vert_scale;
break;
case 0x81e4:
ret = virge->streams.k2_vert_scale;
break;
case 0x81e8:
ret = virge->streams.dda_vert_accumulator;
break;
case 0x81ec:
ret = virge->streams.fifo_ctrl;
break;
case 0x81f0:
ret = virge->streams.pri_start;
break;
case 0x81f4:
ret = virge->streams.pri_size;
break;
case 0x81f8:
ret = virge->streams.sec_start;
break;
case 0x81fc:
ret = virge->streams.sec_size;
break;
case 0x8504:
ret = 0x0000c000;
if (virge->s3d_busy || virge->virge_busy || !FIFO_EMPTY)
ret |= 0x00001000;
else
ret |= 0x00003000;
ret |= virge->subsys_stat;
if (!virge->virge_busy)
wake_fifo_thread(virge);
break;
case 0x850c:
ret = virge->advfunc_cntl & 0x3f;
ret |= virge->fifo_slots_num << 6;
break;
case 0x8590:
ret = virge->cmd_dma_base;
break;
case 0x8594:
break;
case 0x8598:
ret = virge->dma_ptr;
break;
case 0x859c:
ret = virge->cmd_dma;
break;
case 0xa4d4:
case 0xa8d4:
case 0xacd4:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.src_base;
break;
case 0xa4d8:
case 0xa8d8:
case 0xacd8:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.dest_base;
break;
case 0xa4dc:
case 0xa8dc:
case 0xacdc:
s3_virge_wait_fifo_idle(virge);
ret = (virge->s3d.clip_l << 16) | virge->s3d.clip_r;
break;
case 0xa4e0:
case 0xa8e0:
case 0xace0:
s3_virge_wait_fifo_idle(virge);
ret = (virge->s3d.clip_t << 16) | virge->s3d.clip_b;
break;
case 0xa4e4:
case 0xa8e4:
case 0xace4:
s3_virge_wait_fifo_idle(virge);
ret = (virge->s3d.dest_str << 16) | virge->s3d.src_str;
break;
case 0xa4e8:
case 0xace8:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.mono_pat_0;
break;
case 0xa4ec:
case 0xacec:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.mono_pat_1;
break;
case 0xa4f0:
case 0xacf0:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.pat_bg_clr;
break;
case 0xa4f4:
case 0xa8f4:
case 0xacf4:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.pat_fg_clr;
break;
case 0xa4f8:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.src_bg_clr;
break;
case 0xa4fc:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.src_fg_clr;
break;
case 0xa500:
case 0xa900:
case 0xad00:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.cmd_set;
break;
case 0xa504:
s3_virge_wait_fifo_idle(virge);
ret = (virge->s3d.r_width << 16) | virge->s3d.r_height;
break;
case 0xa508:
s3_virge_wait_fifo_idle(virge);
ret = (virge->s3d.rsrc_x << 16) | virge->s3d.rsrc_y;
break;
case 0xa50c:
s3_virge_wait_fifo_idle(virge);
ret = (virge->s3d.rdest_x << 16) | virge->s3d.rdest_y;
break;
case 0xa96c:
s3_virge_wait_fifo_idle(virge);
ret = (virge->s3d.lxend0 << 16) | virge->s3d.lxend1;
break;
case 0xa970:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.ldx;
break;
case 0xa974:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.lxstart;
break;
case 0xa978:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.lystart;
break;
case 0xa97c:
s3_virge_wait_fifo_idle(virge);
ret = (virge->s3d.line_dir << 31) | virge->s3d.lycnt;
break;
case 0xad68:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.prdx;
break;
case 0xad6c:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.prxstart;
break;
case 0xad70:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.pldx;
break;
case 0xad74:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.plxstart;
break;
case 0xad78:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.pystart;
break;
case 0xad7c:
s3_virge_wait_fifo_idle(virge);
ret = virge->s3d.pycnt;
break;
default:
ret = s3_virge_mmio_read_w(addr, priv) | (s3_virge_mmio_read_w(addr + 2, priv) << 16);
}
return ret;
}
static void
fifo_thread(void *param) {
virge_t *virge = (virge_t *)param;
while (virge->fifo_thread_run) {
thread_set_event(virge->fifo_not_full_event);
thread_wait_event(virge->wake_fifo_thread, -1);
thread_reset_event(virge->wake_fifo_thread);
virge->virge_busy = 1;
while (!FIFO_EMPTY) {
uint64_t start_time = plat_timer_read();
uint64_t end_time;
fifo_entry_t *fifo = &virge->fifo[virge->fifo_read_idx & FIFO_MASK];
uint32_t val = fifo->val;
switch (fifo->addr_type & FIFO_TYPE) {
case FIFO_WRITE_BYTE:
if (((fifo->addr_type & FIFO_ADDR) & 0xfffc) < 0x8000)
s3_virge_bitblt(virge, 8, val);
else if (((fifo->addr_type & FIFO_ADDR) & 0xffff) == 0x859c)
virge->cmd_dma = val;
break;
case FIFO_WRITE_WORD:
if (((fifo->addr_type & FIFO_ADDR) & 0xfffc) < 0x8000) {
if (virge->s3d.cmd_set & CMD_SET_MS)
s3_virge_bitblt(virge, 16, ((val >> 8) | (val << 8)) << 16);
else
s3_virge_bitblt(virge, 16, val);
} else if (((fifo->addr_type & FIFO_ADDR) & 0xfffe) == 0x859c)
virge->cmd_dma = val;
break;
case FIFO_WRITE_DWORD:
if (((fifo->addr_type & FIFO_ADDR) & 0xfffc) < 0x8000) {
if (virge->s3d.cmd_set & CMD_SET_MS)
s3_virge_bitblt(virge, 32,
((val & 0xff000000) >> 24) | ((val & 0x00ff0000) >> 8) |
((val & 0x0000ff00) << 8) | ((val & 0x000000ff) << 24));
else
s3_virge_bitblt(virge, 32, val);
} else {
switch ((fifo->addr_type & FIFO_ADDR) & 0xfffc) {
case 0x8590:
virge->cmd_dma_base = val;
break;
case 0x8594:
virge->dma_ptr = val;
break;
case 0x8598:
break;
case 0x859c:
virge->cmd_dma = val;
break;
case 0xa000 ... 0xa1fc:
{
int x = (fifo->addr_type & FIFO_ADDR) & 4;
int y = ((fifo->addr_type & FIFO_ADDR) >> 3) & 7;
int color;
int byte;
uint32_t addr = (fifo->addr_type & FIFO_ADDR);
virge->s3d.pattern_8[y * 8 + x] = val & 0xff;
virge->s3d.pattern_8[y * 8 + x + 1] = val >> 8;
virge->s3d.pattern_8[y * 8 + x + 2] = val >> 16;
virge->s3d.pattern_8[y * 8 + x + 3] = val >> 24;
x = ((fifo->addr_type & FIFO_ADDR) >> 1) & 6;
y = ((fifo->addr_type & FIFO_ADDR) >> 4) & 7;
virge->s3d.pattern_16[y * 8 + x] = val & 0xffff;
virge->s3d.pattern_16[y * 8 + x + 1] = val >> 16;
addr &= 0x00ff;
for (uint8_t xx = 0; xx < 4; xx++) {
x = ((addr + xx) / 3) % 8;
y = ((addr + xx) / 24) % 8;
color = ((addr + xx) % 3) << 3;
byte = (xx << 3);
virge->s3d.pattern_24[y * 8 + x] &= ~(0xff << color);
virge->s3d.pattern_24[y * 8 + x] |= ((val >> byte) & 0xff) << color;
}
x = ((fifo->addr_type & FIFO_ADDR) >> 2) & 7;
y = ((fifo->addr_type & FIFO_ADDR) >> 5) & 7;
virge->s3d.pattern_32[y * 8 + x] = val & 0xffffff;
} break;
case 0xa4d4:
case 0xa8d4:
case 0xacd4:
virge->s3d.src_base = val & ((virge->memory_size == 8) ?
(val & 0x7ffff8) : (val & 0x3ffff8));
break;
case 0xa4d8:
case 0xa8d8:
case 0xacd8:
virge->s3d.dest_base = val & ((virge->memory_size == 8) ?
(val & 0x7ffff8) : (val & 0x3ffff8));
break;
case 0xa4dc:
case 0xa8dc:
case 0xacdc:
virge->s3d.clip_l = (val >> 16) & 0x7ff;
virge->s3d.clip_r = val & 0x7ff;
break;
case 0xa4e0:
case 0xa8e0:
case 0xace0:
virge->s3d.clip_t = (val >> 16) & 0x7ff;
virge->s3d.clip_b = val & 0x7ff;
break;
case 0xa4e4:
case 0xa8e4:
case 0xace4:
virge->s3d.dest_str = (val >> 16) & 0xff8;
virge->s3d.src_str = val & 0xff8;
break;
case 0xa4e8:
case 0xace8:
virge->s3d.mono_pat_0 = val;
break;
case 0xa4ec:
case 0xacec:
virge->s3d.mono_pat_1 = val;
break;
case 0xa4f0:
case 0xacf0:
virge->s3d.pat_bg_clr = val;
break;
case 0xa4f4:
case 0xa8f4:
case 0xacf4:
virge->s3d.pat_fg_clr = val;
break;
case 0xa4f8:
virge->s3d.src_bg_clr = val;
break;
case 0xa4fc:
virge->s3d.src_fg_clr = val;
break;
case 0xa500:
case 0xa900:
case 0xad00:
virge->s3d.cmd_set = val;
if (!(val & CMD_SET_AE))
s3_virge_bitblt(virge, -1, 0);
break;
case 0xa504:
virge->s3d.r_width = (val >> 16) & 0x7ff;
virge->s3d.r_height = val & 0x7ff;
break;
case 0xa508:
virge->s3d.rsrc_x = (val >> 16) & 0x7ff;
virge->s3d.rsrc_y = val & 0x7ff;
break;
case 0xa50c:
virge->s3d.rdest_x = (val >> 16) & 0x7ff;
virge->s3d.rdest_y = val & 0x7ff;
if (virge->s3d.cmd_set & CMD_SET_AE)
s3_virge_bitblt(virge, -1, 0);
break;
case 0xa96c:
virge->s3d.lxend0 = (val >> 16) & 0x7ff;
virge->s3d.lxend1 = val & 0x7ff;
break;
case 0xa970:
virge->s3d.ldx = (int32_t)val;
break;
case 0xa974:
virge->s3d.lxstart = val;
break;
case 0xa978:
virge->s3d.lystart = val & 0x7ff;
break;
case 0xa97c:
virge->s3d.lycnt = val & 0x7ff;
virge->s3d.line_dir = val >> 31;
if (virge->s3d.cmd_set & CMD_SET_AE)
s3_virge_bitblt(virge, -1, 0);
break;
case 0xad68:
virge->s3d.prdx = val;
break;
case 0xad6c:
virge->s3d.prxstart = val;
break;
case 0xad70:
virge->s3d.pldx = val;
break;
case 0xad74:
virge->s3d.plxstart = val;
break;
case 0xad78:
virge->s3d.pystart = val & 0x7ff;
break;
case 0xad7c:
virge->s3d.pycnt = val & 0x300007ff;
if (virge->s3d.cmd_set & CMD_SET_AE)
s3_virge_bitblt(virge, -1, 0);
break;
case 0xb0d4:
case 0xb4d4:
virge->s3d_tri.z_base = val & ((virge->memory_size == 8) ?
(val & 0x7ffff8) : (val & 0x3ffff8));
break;
case 0xb0d8:
case 0xb4d8:
virge->s3d_tri.dest_base = val & ((virge->memory_size == 8) ?
(val & 0x7ffff8) : (val & 0x3ffff8));
break;
case 0xb0dc:
case 0xb4dc:
virge->s3d_tri.clip_l = (val >> 16) & 0x7ff;
virge->s3d_tri.clip_r = val & 0x7ff;
break;
case 0xb0e0:
case 0xb4e0:
virge->s3d_tri.clip_t = (val >> 16) & 0x7ff;
virge->s3d_tri.clip_b = val & 0x7ff;
break;
case 0xb0e4:
case 0xb4e4:
virge->s3d_tri.dest_str = (val >> 16) & 0xff8;
virge->s3d.src_str = val & 0xff8;
break;
case 0xb0e8:
case 0xb4e8:
virge->s3d_tri.z_str = val & 0xff8;
break;
case 0xb4ec:
virge->s3d_tri.tex_base = val & ((virge->memory_size == 8) ?
(val & 0x7ffff8) : (val & 0x3ffff8));
break;
case 0xb4f0:
virge->s3d_tri.tex_bdr_clr = val & 0xffffff;
break;
case 0xb0f4:
case 0xb4f4:
virge->s3d_tri.fog_b = val & 0xff;
virge->s3d_tri.fog_g = (val >> 8) & 0xff;
virge->s3d_tri.fog_r = (val >> 16) & 0xff;
break;
case 0xb100:
case 0xb500:
virge->s3d_tri.cmd_set = val;
if (!(val & CMD_SET_AE))
queue_triangle(virge);
break;
case 0xb504:
virge->s3d_tri.tbv = val & 0xfffff;
break;
case 0xb508:
virge->s3d_tri.tbu = val & 0xfffff;
break;
case 0xb50c:
virge->s3d_tri.TdWdX = val;
break;
case 0xb510:
virge->s3d_tri.TdWdY = val;
break;
case 0xb514:
virge->s3d_tri.tws = val;
break;
case 0xb518:
virge->s3d_tri.TdDdX = val;
break;
case 0xb51c:
virge->s3d_tri.TdVdX = val;
break;
case 0xb520:
virge->s3d_tri.TdUdX = val;
break;
case 0xb524:
virge->s3d_tri.TdDdY = val;
break;
case 0xb528:
virge->s3d_tri.TdVdY = val;
break;
case 0xb52c:
virge->s3d_tri.TdUdY = val;
break;
case 0xb530:
virge->s3d_tri.tds = val;
break;
case 0xb534:
virge->s3d_tri.tvs = val;
break;
case 0xb538:
virge->s3d_tri.tus = val;
break;
case 0xb53c:
virge->s3d_tri.TdGdX = val >> 16;
virge->s3d_tri.TdBdX = val & 0xffff;
break;
case 0xb540:
virge->s3d_tri.TdAdX = val >> 16;
virge->s3d_tri.TdRdX = val & 0xffff;
break;
case 0xb544:
virge->s3d_tri.TdGdY = val >> 16;
virge->s3d_tri.TdBdY = val & 0xffff;
break;
case 0xb548:
virge->s3d_tri.TdAdY = val >> 16;
virge->s3d_tri.TdRdY = val & 0xffff;
break;
case 0xb54c:
virge->s3d_tri.tgs = (val >> 16) & 0xffff;
virge->s3d_tri.tbs = val & 0xffff;
break;
case 0xb550:
virge->s3d_tri.tas = (val >> 16) & 0xffff;
virge->s3d_tri.trs = val & 0xffff;
break;
case 0xb554:
virge->s3d_tri.TdZdX = val;
break;
case 0xb558:
virge->s3d_tri.TdZdY = val;
break;
case 0xb55c:
virge->s3d_tri.tzs = val;
break;
case 0xb560:
virge->s3d_tri.TdXdY12 = val;
break;
case 0xb564:
virge->s3d_tri.txend12 = val;
break;
case 0xb568:
virge->s3d_tri.TdXdY01 = val;
break;
case 0xb56c:
virge->s3d_tri.txend01 = val;
break;
case 0xb570:
virge->s3d_tri.TdXdY02 = val;
break;
case 0xb574:
virge->s3d_tri.txs = val;
break;
case 0xb578:
virge->s3d_tri.tys = val;
break;
case 0xb57c:
virge->s3d_tri.ty01 = (val >> 16) & 0x7ff;
virge->s3d_tri.ty12 = val & 0x7ff;
virge->s3d_tri.tlr = val >> 31;
if (virge->s3d_tri.cmd_set & CMD_SET_AE)
queue_triangle(virge);
break;
}
}
break;
}
virge->fifo_read_idx++;
fifo->addr_type = FIFO_INVALID;
if (FIFO_ENTRIES > 0xe000)
thread_set_event(virge->fifo_not_full_event);
end_time = plat_timer_read();
virge_time += end_time - start_time;
}
virge->virge_busy = 0;
virge->subsys_stat |= INT_FIFO_EMP | INT_3DF_EMP;
s3_virge_update_irqs(virge);
}
}
static void
s3_virge_queue(virge_t *virge, uint32_t addr, uint32_t val, uint32_t type)
{
fifo_entry_t *fifo = &virge->fifo[virge->fifo_write_idx & FIFO_MASK];
int limit = 0;
if (type == FIFO_WRITE_DWORD) {
switch (addr & 0xfffc) {
case 0xa500:
if (val & CMD_SET_AE)
limit = 1;
break;
default:
break;
}
}
if (limit) {
if (FIFO_ENTRIES >= 16) {
thread_reset_event(virge->fifo_not_full_event);
if (FIFO_ENTRIES >= 16)
thread_wait_event(virge->fifo_not_full_event, -1); /*Wait for room in ringbuffer*/
}
} else {
if (FIFO_FULL) {
thread_reset_event(virge->fifo_not_full_event);
if (FIFO_FULL)
thread_wait_event(virge->fifo_not_full_event, -1); /*Wait for room in ringbuffer*/
}
}
fifo->val = val;
fifo->addr_type = (addr & FIFO_ADDR) | type;
virge->fifo_write_idx++;
if (FIFO_ENTRIES > 0xe000)
wake_fifo_thread(virge);
if (FIFO_ENTRIES > 0xe000 || FIFO_ENTRIES < 8)
wake_fifo_thread(virge);
}
static void
s3_virge_mmio_write(uint32_t addr, uint8_t val, void *priv) {
virge_t *virge = (virge_t *) priv;
if ((addr & 0xfffc) < 0x8000)
s3_virge_queue(virge, addr, val, FIFO_WRITE_BYTE);
else switch (addr & 0xffff) {
case 0x83b0 ... 0x83df:
s3_virge_out(addr & 0x3ff, val, priv);
break;
case 0xff20:
virge->serialport = val;
i2c_gpio_set(virge->i2c, !!(val & SERIAL_PORT_SCW), !!(val & SERIAL_PORT_SDW));
break;
}
}
static void
s3_virge_mmio_write_w(uint32_t addr, uint16_t val, void *priv) {
virge_t *virge = (virge_t *) priv;
if ((addr & 0xfffc) < 0x8000)
s3_virge_queue(virge, addr, val, FIFO_WRITE_WORD);
else switch (addr & 0xfffe) {
case 0x83d4:
s3_virge_mmio_write(addr, val, priv);
s3_virge_mmio_write(addr + 1, val >> 8, priv);
break;
case 0xff20:
s3_virge_mmio_write(addr, val, priv);
break;
}
}
static void
s3_virge_mmio_write_l(uint32_t addr, uint32_t val, void *priv) {
virge_t *virge = (virge_t *) priv;
svga_t * svga = &virge->svga;
if ((addr & 0xfffc) < 0x8000)
s3_virge_queue(virge, addr, val, FIFO_WRITE_DWORD);
else if ((addr & 0xe000) == 0xa000)
s3_virge_queue(virge, addr, val, FIFO_WRITE_DWORD);
else switch (addr & 0xfffc) {
case 0x8180:
virge->streams.pri_ctrl = val;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x8184:
virge->streams.chroma_ctrl = val;
break;
case 0x8190:
virge->streams.sec_ctrl = val;
virge->streams.dda_horiz_accumulator = val & 0xfff;
if (val & (1 << 11))
virge->streams.dda_horiz_accumulator |= 0xfffff800;
virge->streams.sdif = (val >> 24) & 7;
break;
case 0x8194:
virge->streams.chroma_upper_bound = val;
break;
case 0x8198:
virge->streams.sec_filter = val;
virge->streams.k1_horiz_scale = val & 0x7ff;
if (val & (1 << 10))
virge->streams.k1_horiz_scale |= 0xfffff800;
virge->streams.k2_horiz_scale = (val >> 16) & 0x7ff;
if ((val >> 16) & (1 << 10))
virge->streams.k2_horiz_scale |= 0xfffff800;
break;
case 0x81a0:
virge->streams.blend_ctrl = val;
break;
case 0x81c0:
virge->streams.pri_fb0 = val & ((virge->memory_size == 8) ?
(val & 0x7fffff) : (val & 0x3fffff));
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81c4:
virge->streams.pri_fb1 = ((virge->memory_size == 8) ?
(val & 0x7fffff) : (val & 0x3fffff));
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81c8:
virge->streams.pri_stride = val & 0xfff;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81cc:
virge->streams.buffer_ctrl = val;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81d0:
virge->streams.sec_fb0 = val;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81d4:
virge->streams.sec_fb1 = val;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81d8:
virge->streams.sec_stride = val;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81dc:
virge->streams.overlay_ctrl = val;
break;
case 0x81e0:
virge->streams.k1_vert_scale = val & 0x7ff;
if (val & (1 << 10))
virge->streams.k1_vert_scale |= 0xfffff800;
break;
case 0x81e4:
virge->streams.k2_vert_scale = val & 0x7ff;
if (val & (1 << 10))
virge->streams.k2_vert_scale |= 0xfffff800;
break;
case 0x81e8:
virge->streams.dda_vert_accumulator = val & 0xfff;
if (val & (1 << 11))
virge->streams.dda_vert_accumulator |= 0xfffff800;
break;
case 0x81ec:
virge->streams.fifo_ctrl = val;
break;
case 0x81f0:
virge->streams.pri_start = val;
virge->streams.pri_x = (val >> 16) & 0x7ff;
virge->streams.pri_y = val & 0x7ff;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81f4:
virge->streams.pri_size = val;
virge->streams.pri_w = (val >> 16) & 0x7ff;
virge->streams.pri_h = val & 0x7ff;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81f8:
virge->streams.sec_start = val;
virge->streams.sec_x = (val >> 16) & 0x7ff;
virge->streams.sec_y = val & 0x7ff;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x81fc:
virge->streams.sec_size = val;
virge->streams.sec_w = (val >> 16) & 0x7ff;
virge->streams.sec_h = val & 0x7ff;
svga_recalctimings(svga);
svga->fullchange = changeframecount;
break;
case 0x8504:
virge->subsys_stat &= ~(val & 0xff);
virge->subsys_cntl = (val >> 8);
s3_virge_update_irqs(virge);
break;
case 0x850c:
virge->advfunc_cntl = val & 0xff;
s3_virge_updatemapping(virge);
break;
case 0xff20:
s3_virge_mmio_write(addr, val, priv);
break;
}
}
#define READ(addr, val) \
do { \
switch (bpp) { \
case 0: /*8 bpp*/ \
val = vram[addr & svga->vram_mask]; \
break; \
case 1: /*16 bpp*/ \
val = *(uint16_t *)&vram[addr & svga->vram_mask]; \
break; \
case 2: /*24 bpp*/ \
val = (*(uint32_t *)&vram[addr & svga->vram_mask]) & 0xffffff; \
break; \
} \
} while (0)
#define Z_READ(addr) *(uint16_t *)&vram[addr & svga->vram_mask]
#define Z_WRITE(addr, val) \
if (!(s3d_tri->cmd_set & CMD_SET_ZB_MODE)) \
*(uint16_t *)&vram[addr & svga->vram_mask] = val
#define CLIP(x, y) \
do { \
if ((virge->s3d.cmd_set & CMD_SET_HC) && \
(x < virge->s3d.clip_l || x > virge->s3d.clip_r || \
y < virge->s3d.clip_t || y > virge->s3d.clip_b)) \
update = 0; \
} while (0)
#define CLIP_3D(x, y) \
do { \
if ((s3d_tri->cmd_set & CMD_SET_HC) && (x < s3d_tri->clip_l || \
x > s3d_tri->clip_r || y < s3d_tri->clip_t || \
y > s3d_tri->clip_b)) \
update = 0; \
} while (0)
#define Z_CLIP(Zzb, Zs) \
do { \
if (!(s3d_tri->cmd_set & CMD_SET_ZB_MODE)) \
switch ((s3d_tri->cmd_set >> 20) & 7) { \
case 0: \
update = 0; \
break; \
case 1: \
if (Zs <= Zzb) \
update = 0; \
else \
Zzb = Zs; \
break; \
case 2: \
if (Zs != Zzb) \
update = 0; \
else \
Zzb = Zs; \
break; \
case 3: \
if (Zs < Zzb) \
update = 0; \
else \
Zzb = Zs; \
break; \
case 4: \
if (Zs >= Zzb) \
update = 0; \
else \
Zzb = Zs; \
break; \
case 5: \
if (Zs == Zzb) \
update = 0; \
else \
Zzb = Zs; \
break; \
case 6: \
if (Zs > Zzb) \
update = 0; \
else \
Zzb = Zs; \
break; \
case 7: \
update = 1; \
Zzb = Zs; \
break; \
} \
} while (0)
#define MIX() \
do { \
int c; \
for (c = 0; c < 24; c++) { \
int d = (dest & (1 << c)) ? 1 : 0; \
if (source & (1 << c)) \
d |= 2; \
if (pattern & (1 << c)) \
d |= 4; \
if (virge->s3d.rop & (1 << d)) \
out |= (1 << c); \
} \
} while (0)
#define WRITE(addr, val) \
do { \
switch (bpp) { \
case 0: /*8 bpp*/ \
vram[addr & svga->vram_mask] = val; \
virge->svga.changedvram[(addr & svga->vram_mask) >> 12] = \
changeframecount; \
break; \
case 1: /*16 bpp*/ \
*(uint16_t *)&vram[addr & svga->vram_mask] = val; \
virge->svga.changedvram[(addr & svga->vram_mask) >> 12] = \
changeframecount; \
break; \
case 2: /*24 bpp*/ \
*(uint32_t *)&vram[addr & svga->vram_mask] = (val & 0xffffff) |\
(vram[(addr + 3) & svga->vram_mask] << 24); \
virge->svga.changedvram[(addr & svga->vram_mask) >> 12] = \
changeframecount; \
break; \
} \
} while (0)
static void
s3_virge_bitblt(virge_t *virge, int count, uint32_t cpu_dat) {
svga_t *svga = &virge->svga;
uint8_t *vram = virge->svga.vram;
uint32_t mono_pattern[64];
int count_mask;
int x_inc = (virge->s3d.cmd_set & CMD_SET_XP) ? 1 : -1;
int y_inc = (virge->s3d.cmd_set & CMD_SET_YP) ? 1 : -1;
int bpp;
int x_mul;
int cpu_dat_shift;
uint32_t *pattern_data;
uint32_t src_fg_clr;
uint32_t src_bg_clr;
switch (virge->s3d.cmd_set & CMD_SET_FORMAT_MASK) {
case CMD_SET_FORMAT_8:
bpp = 0;
x_mul = 1;
cpu_dat_shift = 8;
pattern_data = virge->s3d.pattern_8;
src_fg_clr = virge->s3d.src_fg_clr & 0xff;
src_bg_clr = virge->s3d.src_bg_clr & 0xff;
break;
case CMD_SET_FORMAT_16:
bpp = 1;
x_mul = 2;
cpu_dat_shift = 16;
pattern_data = virge->s3d.pattern_16;
src_fg_clr = virge->s3d.src_fg_clr & 0xffff;
src_bg_clr = virge->s3d.src_bg_clr & 0xffff;
break;
case CMD_SET_FORMAT_24:
default:
bpp = 2;
x_mul = 3;
cpu_dat_shift = 24;
pattern_data = virge->s3d.pattern_24;
src_fg_clr = virge->s3d.src_fg_clr;
src_bg_clr = virge->s3d.src_bg_clr;
break;
}
if (virge->s3d.cmd_set & CMD_SET_MP)
pattern_data = mono_pattern;
switch (virge->s3d.cmd_set & CMD_SET_ITA_MASK) {
case CMD_SET_ITA_BYTE:
count_mask = ~0x7;
break;
case CMD_SET_ITA_WORD:
count_mask = ~0xf;
break;
case CMD_SET_ITA_DWORD:
default:
count_mask = ~0x1f;
break;
}
if (virge->s3d.cmd_set & CMD_SET_MP) {
int x;
int y;
for (y = 0; y < 4; y++) {
for (x = 0; x < 8; x++) {
if (virge->s3d.mono_pat_0 & (1 << (x + y * 8)))
mono_pattern[y * 8 + (7 - x)] = virge->s3d.pat_fg_clr;
else
mono_pattern[y * 8 + (7 - x)] = virge->s3d.pat_bg_clr;
if (virge->s3d.mono_pat_1 & (1 << (x + y * 8)))
mono_pattern[(y + 4) * 8 + (7 - x)] = virge->s3d.pat_fg_clr;
else
mono_pattern[(y + 4) * 8 + (7 - x)] = virge->s3d.pat_bg_clr;
}
}
}
switch (virge->s3d.cmd_set & CMD_SET_COMMAND_MASK) {
case CMD_SET_COMMAND_NOP:
break;
case CMD_SET_COMMAND_BITBLT:
if (count == -1) {
virge->s3d.src_x = virge->s3d.rsrc_x;
virge->s3d.src_y = virge->s3d.rsrc_y;
virge->s3d.dest_x = virge->s3d.rdest_x;
virge->s3d.dest_y = virge->s3d.rdest_y;
virge->s3d.w = virge->s3d.r_width;
virge->s3d.h = virge->s3d.r_height;
virge->s3d.rop = (virge->s3d.cmd_set >> 17) & 0xff;
virge->s3d.data_left_count = 0;
if (virge->s3d.cmd_set & CMD_SET_IDS)
return;
}
if (!virge->s3d.h)
return;
while (count) {
uint32_t src_addr = virge->s3d.src_base + (virge->s3d.src_x * x_mul) +
(virge->s3d.src_y * virge->s3d.src_str);
uint32_t dest_addr = virge->s3d.dest_base + (virge->s3d.dest_x * x_mul) +
(virge->s3d.dest_y * virge->s3d.dest_str);
uint32_t source = 0;
uint32_t dest;
uint32_t pattern;
uint32_t out = 0;
int update = 1;
switch (virge->s3d.cmd_set & (CMD_SET_MS | CMD_SET_IDS)) {
case 0:
case CMD_SET_MS:
READ(src_addr, source);
if ((virge->s3d.cmd_set & CMD_SET_TP) && source == src_fg_clr)
update = 0;
break;
case CMD_SET_IDS:
if (virge->s3d.data_left_count) {
/*Handle shifting for 24-bit data*/
source = virge->s3d.data_left;
source |= ((cpu_dat << virge->s3d.data_left_count) & ~0xff000000);
cpu_dat >>= (cpu_dat_shift - virge->s3d.data_left_count);
count -= (cpu_dat_shift - virge->s3d.data_left_count);
virge->s3d.data_left_count = 0;
if (count < cpu_dat_shift) {
virge->s3d.data_left = cpu_dat;
virge->s3d.data_left_count = count;
count = 0;
}
} else {
source = cpu_dat;
cpu_dat >>= cpu_dat_shift;
count -= cpu_dat_shift;
if (count < cpu_dat_shift) {
virge->s3d.data_left = cpu_dat;
virge->s3d.data_left_count = count;
count = 0;
}
}
if ((virge->s3d.cmd_set & CMD_SET_TP) && source == src_fg_clr)
update = 0;
break;
case CMD_SET_IDS | CMD_SET_MS:
source = (cpu_dat & (1 << 31)) ? src_fg_clr : src_bg_clr;
if ((virge->s3d.cmd_set & CMD_SET_TP) && !(cpu_dat & (1 << 31)))
update = 0;
cpu_dat <<= 1;
count--;
break;
}
CLIP(virge->s3d.dest_x, virge->s3d.dest_y);
if (update) {
READ(dest_addr, dest);
pattern = pattern_data[(virge->s3d.dest_y & 7) * 8 + (virge->s3d.dest_x & 7)];
MIX();
WRITE(dest_addr, out);
}
virge->s3d.src_x += x_inc;
virge->s3d.src_x &= 0x7ff;
virge->s3d.dest_x += x_inc;
virge->s3d.dest_x &= 0x7ff;
if (!virge->s3d.w) {
virge->s3d.src_x = virge->s3d.rsrc_x;
virge->s3d.dest_x = virge->s3d.rdest_x;
virge->s3d.w = virge->s3d.r_width;
virge->s3d.src_y += y_inc;
virge->s3d.dest_y += y_inc;
virge->s3d.h--;
switch (virge->s3d.cmd_set & (CMD_SET_MS | CMD_SET_IDS)) {
case CMD_SET_IDS:
cpu_dat >>= (count - (count & count_mask));
count &= count_mask;
virge->s3d.data_left_count = 0;
break;
case CMD_SET_IDS | CMD_SET_MS:
cpu_dat <<= (count - (count & count_mask));
count &= count_mask;
break;
}
if (!virge->s3d.h)
return;
} else
virge->s3d.w--;
}
break;
case CMD_SET_COMMAND_RECTFILL:
/*No source, pattern = pat_fg_clr*/
if (count == -1) {
virge->s3d.src_x = virge->s3d.rsrc_x;
virge->s3d.src_y = virge->s3d.rsrc_y;
virge->s3d.dest_x = virge->s3d.rdest_x;
virge->s3d.dest_y = virge->s3d.rdest_y;
virge->s3d.w = virge->s3d.r_width;
virge->s3d.h = virge->s3d.r_height;
virge->s3d.rop = (virge->s3d.cmd_set >> 17) & 0xff;
}
while (count && virge->s3d.h) {
uint32_t dest_addr = virge->s3d.dest_base + (virge->s3d.dest_x * x_mul) +
(virge->s3d.dest_y * virge->s3d.dest_str);
uint32_t source = 0;
uint32_t dest;
uint32_t pattern = virge->s3d.pat_fg_clr;
uint32_t out = 0;
int update = 1;
CLIP(virge->s3d.dest_x, virge->s3d.dest_y);
if (update) {
READ(dest_addr, dest);
MIX();
WRITE(dest_addr, out);
}
virge->s3d.src_x += x_inc;
virge->s3d.src_x &= 0x7ff;
virge->s3d.dest_x += x_inc;
virge->s3d.dest_x &= 0x7ff;
if (!virge->s3d.w) {
virge->s3d.src_x = virge->s3d.rsrc_x;
virge->s3d.dest_x = virge->s3d.rdest_x;
virge->s3d.w = virge->s3d.r_width;
virge->s3d.src_y += y_inc;
virge->s3d.dest_y += y_inc;
virge->s3d.h--;
if (!virge->s3d.h)
return;
} else
virge->s3d.w--;
count--;
}
break;
case CMD_SET_COMMAND_LINE:
if (count == -1) {
virge->s3d.dest_x = virge->s3d.lxstart;
virge->s3d.dest_y = virge->s3d.lystart;
virge->s3d.h = virge->s3d.lycnt;
virge->s3d.rop = (virge->s3d.cmd_set >> 17) & 0xff;
}
while (virge->s3d.h) {
int x;
int new_x;
int first_pixel = 1;
x = virge->s3d.dest_x >> 20;
if (virge->s3d.h == virge->s3d.lycnt && ((virge->s3d.line_dir && x > virge->s3d.lxend0) ||
(!virge->s3d.line_dir && x < virge->s3d.lxend0)))
x = virge->s3d.lxend0;
if (virge->s3d.h == 1)
new_x = virge->s3d.lxend1 + (virge->s3d.line_dir ? 1 : -1);
else
new_x = (virge->s3d.dest_x + virge->s3d.ldx) >> 20;
if ((virge->s3d.line_dir && x > new_x) || (!virge->s3d.line_dir && x < new_x))
goto skip_line;
do {
uint32_t dest_addr = virge->s3d.dest_base + (x * x_mul) +
(virge->s3d.dest_y * virge->s3d.dest_str);
uint32_t source = 0;
uint32_t dest;
uint32_t pattern;
uint32_t out = 0;
int update = 1;
if ((virge->s3d.h == virge->s3d.lycnt || !first_pixel) &&
((virge->s3d.line_dir && x < virge->s3d.lxend0) ||
(!virge->s3d.line_dir && x > virge->s3d.lxend0)))
update = 0;
if ((virge->s3d.h == 1 || !first_pixel) &&
((virge->s3d.line_dir && x > virge->s3d.lxend1) ||
(!virge->s3d.line_dir && x < virge->s3d.lxend1)))
update = 0;
CLIP(x, virge->s3d.dest_y);
if (update) {
READ(dest_addr, dest);
pattern = virge->s3d.pat_fg_clr;
MIX();
WRITE(dest_addr, out);
}
if (x < new_x)
x++;
else if (x > new_x)
x--;
first_pixel = 0;
} while (x != new_x);
skip_line:
virge->s3d.dest_x += virge->s3d.ldx;
virge->s3d.dest_y--;
virge->s3d.h--;
}
break;
case CMD_SET_COMMAND_POLY:
/*No source*/
if (virge->s3d.pycnt & (1 << 28))
virge->s3d.dest_r = virge->s3d.prxstart;
if (virge->s3d.pycnt & (1 << 29))
virge->s3d.dest_l = virge->s3d.plxstart;
virge->s3d.h = virge->s3d.pycnt & 0x7ff;
virge->s3d.rop = (virge->s3d.cmd_set >> 17) & 0xff;
while (virge->s3d.h) {
int x = virge->s3d.dest_l >> 20;
int xend = virge->s3d.dest_r >> 20;
int y = virge->s3d.pystart & 0x7ff;
int xdir = (x < xend) ? 1 : -1;
do {
uint32_t dest_addr = virge->s3d.dest_base + (x * x_mul) + (y * virge->s3d.dest_str);
uint32_t source = 0;
uint32_t dest;
uint32_t pattern;
uint32_t out = 0;
int update = 1;
CLIP(x, y);
if (update) {
READ(dest_addr, dest);
pattern = pattern_data[(y & 7) * 8 + (x & 7)];
MIX();
WRITE(dest_addr, out);
}
x = (x + xdir) & 0x7ff;
} while (x != (xend + xdir));
virge->s3d.dest_l += virge->s3d.pldx;
virge->s3d.dest_r += virge->s3d.prdx;
virge->s3d.h--;
virge->s3d.pystart = (virge->s3d.pystart - 1) & 0x7ff;
}
break;
default:
fatal("s3_virge_bitblt : blit command %i %08x\n",
(virge->s3d.cmd_set >> 27) & 0xf, virge->s3d.cmd_set);
}
}
#define RGB15_TO_24(val, r, g, b) \
b = ((val & 0x001f) << 3) | ((val & 0x001f) >> 2); \
g = ((val & 0x03e0) >> 2) | ((val & 0x03e0) >> 7); \
r = ((val & 0x7c00) >> 7) | ((val & 0x7c00) >> 12);
#define RGB24_TO_24(val, r, g, b) \
b = val & 0xff; \
g = (val & 0xff00) >> 8; \
r = (val & 0xff0000) >> 16
#define RGB15(r, g, b, dest) \
if (virge->dithering_enabled) { \
int add = dither[_y & 3][_x & 3]; \
int _r = (r > 248) ? 248 : r + add; \
int _g = (g > 248) ? 248 : g + add; \
int _b = (b > 248) ? 248 : b + add; \
dest = ((_b >> 3) & 0x1f) | \
(((_g >> 3) & 0x1f) << 5) | \
(((_r >> 3) & 0x1f) << 10); \
} else \
dest = ((b >> 3) & 0x1f) | \
(((g >> 3) & 0x1f) << 5) | \
(((r >> 3) & 0x1f) << 10)
#define RGB24(r, g, b) ((b) | ((g) << 8) | ((r) << 16))
typedef struct rgba_t {
int r, g, b, a;
} rgba_t;
typedef struct s3d_state_t {
int32_t r;
int32_t g;
int32_t b;
int32_t a;
int32_t u;
int32_t v;
int32_t d;
int32_t w;
int32_t base_r;
int32_t base_g;
int32_t base_b;
int32_t base_a;
int32_t base_u;
int32_t base_v;
int32_t base_d;
int32_t base_w;
uint32_t base_z;
uint32_t tbu;
uint32_t tbv;
uint32_t cmd_set;
int max_d;
uint16_t *texture[10];
uint32_t tex_bdr_clr;
int32_t x1;
int32_t x2;
int y;
rgba_t dest_rgba;
} s3d_state_t;
typedef struct s3d_texture_state_t {
int level;
int texture_shift;
int32_t u;
int32_t v;
} s3d_texture_state_t;
static void (*tex_read)(s3d_state_t *state, s3d_texture_state_t *texture_state, rgba_t *out);
static void (*tex_sample)(s3d_state_t *state);
static void (*dest_pixel)(s3d_state_t *state);
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
static int _x;
static int _y;
static void
tex_ARGB1555(s3d_state_t *state, s3d_texture_state_t *texture_state, rgba_t *out) {
int offset = ((texture_state->u & 0x7fc0000) >> texture_state->texture_shift) +
(((texture_state->v & 0x7fc0000) >> texture_state->texture_shift) << texture_state->level);
uint16_t val = state->texture[texture_state->level][offset];
out->r = ((val & 0x7c00) >> 7) | ((val & 0x7000) >> 12);
out->g = ((val & 0x03e0) >> 2) | ((val & 0x0380) >> 7);
out->b = ((val & 0x001f) << 3) | ((val & 0x001c) >> 2);
out->a = (val & 0x8000) ? 0xff : 0;
}
static void
tex_ARGB1555_nowrap(s3d_state_t *state, s3d_texture_state_t *texture_state, rgba_t *out) {
int offset = ((texture_state->u & 0x7fc0000) >> texture_state->texture_shift) +
(((texture_state->v & 0x7fc0000) >> texture_state->texture_shift) << texture_state->level);
uint16_t val = state->texture[texture_state->level][offset];
if (((texture_state->u | texture_state->v) & 0xf8000000) == 0xf8000000)
val = state->tex_bdr_clr;
out->r = ((val & 0x7c00) >> 7) | ((val & 0x7000) >> 12);
out->g = ((val & 0x03e0) >> 2) | ((val & 0x0380) >> 7);
out->b = ((val & 0x001f) << 3) | ((val & 0x001c) >> 2);
out->a = (val & 0x8000) ? 0xff : 0;
}
static void
tex_ARGB4444(s3d_state_t *state, s3d_texture_state_t *texture_state, rgba_t *out) {
int offset = ((texture_state->u & 0x7fc0000) >> texture_state->texture_shift) +
(((texture_state->v & 0x7fc0000) >> texture_state->texture_shift) << texture_state->level);
uint16_t val = state->texture[texture_state->level][offset];
out->r = ((val & 0x0f00) >> 4) | ((val & 0x0f00) >> 8);
out->g = (val & 0x00f0) | ((val & 0x00f0) >> 4);
out->b = ((val & 0x000f) << 4) | (val & 0x000f);
out->a = ((val & 0xf000) >> 8) | ((val & 0xf000) >> 12);
}
static void
tex_ARGB4444_nowrap(s3d_state_t *state, s3d_texture_state_t *texture_state, rgba_t *out) {
int offset = ((texture_state->u & 0x7fc0000) >> texture_state->texture_shift) +
(((texture_state->v & 0x7fc0000) >> texture_state->texture_shift) << texture_state->level);
uint16_t val = state->texture[texture_state->level][offset];
if (((texture_state->u | texture_state->v) & 0xf8000000) == 0xf8000000)
val = state->tex_bdr_clr;
out->r = ((val & 0x0f00) >> 4) | ((val & 0x0f00) >> 8);
out->g = (val & 0x00f0) | ((val & 0x00f0) >> 4);
out->b = ((val & 0x000f) << 4) | (val & 0x000f);
out->a = ((val & 0xf000) >> 8) | ((val & 0xf000) >> 12);
}
static void
tex_ARGB8888(s3d_state_t *state, s3d_texture_state_t *texture_state, rgba_t *out) {
int offset = ((texture_state->u & 0x7fc0000) >> texture_state->texture_shift) +
(((texture_state->v & 0x7fc0000) >> texture_state->texture_shift) << texture_state->level);
uint32_t val = ((uint32_t *)state->texture[texture_state->level])[offset];
out->r = (val >> 16) & 0xff;
out->g = (val >> 8) & 0xff;
out->b = val & 0xff;
out->a = (val >> 24) & 0xff;
}
static void
tex_ARGB8888_nowrap(s3d_state_t *state, s3d_texture_state_t *texture_state, rgba_t *out) {
int offset = ((texture_state->u & 0x7fc0000) >> texture_state->texture_shift) +
(((texture_state->v & 0x7fc0000) >> texture_state->texture_shift) << texture_state->level);
uint32_t val = ((uint32_t *)state->texture[texture_state->level])[offset];
if (((texture_state->u | texture_state->v) & 0xf8000000) == 0xf8000000)
val = state->tex_bdr_clr;
out->r = (val >> 16) & 0xff;
out->g = (val >> 8) & 0xff;
out->b = val & 0xff;
out->a = (val >> 24) & 0xff;
}
static void
tex_sample_normal(s3d_state_t *state) {
s3d_texture_state_t texture_state;
texture_state.level = state->max_d;
texture_state.texture_shift = 18 + (9 - texture_state.level);
texture_state.u = state->u + state->tbu;
texture_state.v = state->v + state->tbv;
tex_read(state, &texture_state, &state->dest_rgba);
}
static void
tex_sample_normal_filter(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int tex_offset;
rgba_t tex_samples[4];
int du;
int dv;
int d[4];
texture_state.level = state->max_d;
texture_state.texture_shift = 18 + (9 - texture_state.level);
tex_offset = 1 << texture_state.texture_shift;
texture_state.u = state->u + state->tbu;
texture_state.v = state->v + state->tbv;
tex_read(state, &texture_state, &tex_samples[0]);
du = (texture_state.u >> (texture_state.texture_shift - 8)) & 0xff;
dv = (texture_state.v >> (texture_state.texture_shift - 8)) & 0xff;
texture_state.u = state->u + state->tbu + tex_offset;
texture_state.v = state->v + state->tbv;
tex_read(state, &texture_state, &tex_samples[1]);
texture_state.u = state->u + state->tbu;
texture_state.v = state->v + state->tbv + tex_offset;
tex_read(state, &texture_state, &tex_samples[2]);
texture_state.u = state->u + state->tbu + tex_offset;
texture_state.v = state->v + state->tbv + tex_offset;
tex_read(state, &texture_state, &tex_samples[3]);
d[0] = (256 - du) * (256 - dv);
d[1] = du * (256 - dv);
d[2] = (256 - du) * dv;
d[3] = du * dv;
state->dest_rgba.r = (tex_samples[0].r * d[0] + tex_samples[1].r * d[1] +
tex_samples[2].r * d[2] + tex_samples[3].r * d[3]) >> 16;
state->dest_rgba.g = (tex_samples[0].g * d[0] + tex_samples[1].g * d[1] +
tex_samples[2].g * d[2] + tex_samples[3].g * d[3]) >> 16;
state->dest_rgba.b = (tex_samples[0].b * d[0] + tex_samples[1].b * d[1] +
tex_samples[2].b * d[2] + tex_samples[3].b * d[3]) >> 16;
state->dest_rgba.a = (tex_samples[0].a * d[0] + tex_samples[1].a * d[1] +
tex_samples[2].a * d[2] + tex_samples[3].a * d[3]) >> 16;
}
static void
tex_sample_mipmap(s3d_state_t *state) {
s3d_texture_state_t texture_state;
texture_state.level = (state->d < 0) ? state->max_d : state->max_d - ((state->d >> 27) & 0xf);
if (texture_state.level < 0)
texture_state.level = 0;
texture_state.texture_shift = 18 + (9 - texture_state.level);
texture_state.u = state->u + state->tbu;
texture_state.v = state->v + state->tbv;
tex_read(state, &texture_state, &state->dest_rgba);
}
static void
tex_sample_mipmap_filter(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int tex_offset;
rgba_t tex_samples[4];
int du;
int dv;
int d[4];
texture_state.level = (state->d < 0) ? state->max_d : state->max_d - ((state->d >> 27) & 0xf);
if (texture_state.level < 0)
texture_state.level = 0;
texture_state.texture_shift = 18 + (9 - texture_state.level);
tex_offset = 1 << texture_state.texture_shift;
texture_state.u = state->u + state->tbu;
texture_state.v = state->v + state->tbv;
tex_read(state, &texture_state, &tex_samples[0]);
du = (texture_state.u >> (texture_state.texture_shift - 8)) & 0xff;
dv = (texture_state.v >> (texture_state.texture_shift - 8)) & 0xff;
texture_state.u = state->u + state->tbu + tex_offset;
texture_state.v = state->v + state->tbv;
tex_read(state, &texture_state, &tex_samples[1]);
texture_state.u = state->u + state->tbu;
texture_state.v = state->v + state->tbv + tex_offset;
tex_read(state, &texture_state, &tex_samples[2]);
texture_state.u = state->u + state->tbu + tex_offset;
texture_state.v = state->v + state->tbv + tex_offset;
tex_read(state, &texture_state, &tex_samples[3]);
d[0] = (256 - du) * (256 - dv);
d[1] = du * (256 - dv);
d[2] = (256 - du) * dv;
d[3] = du * dv;
state->dest_rgba.r = (tex_samples[0].r * d[0] + tex_samples[1].r * d[1] +
tex_samples[2].r * d[2] + tex_samples[3].r * d[3]) >> 16;
state->dest_rgba.g = (tex_samples[0].g * d[0] + tex_samples[1].g * d[1] +
tex_samples[2].g * d[2] + tex_samples[3].g * d[3]) >> 16;
state->dest_rgba.b = (tex_samples[0].b * d[0] + tex_samples[1].b * d[1] +
tex_samples[2].b * d[2] + tex_samples[3].b * d[3]) >> 16;
state->dest_rgba.a = (tex_samples[0].a * d[0] + tex_samples[1].a * d[1] +
tex_samples[2].a * d[2] + tex_samples[3].a * d[3]) >> 16;
}
static void
tex_sample_persp_normal(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int32_t w = 0;
if (state->w)
w = (int32_t)(((1ULL << 27) << 19) / (int64_t)state->w);
texture_state.level = state->max_d;
texture_state.texture_shift = 18 + (9 - texture_state.level);
texture_state.u = (int32_t)(((int64_t)state->u * (int64_t)w) >> (12 + state->max_d)) + state->tbu;
texture_state.v = (int32_t)(((int64_t)state->v * (int64_t)w) >> (12 + state->max_d)) + state->tbv;
tex_read(state, &texture_state, &state->dest_rgba);
}
static void
tex_sample_persp_normal_filter(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int32_t w = 0;
int32_t u;
int32_t v;
int tex_offset;
rgba_t tex_samples[4];
int du;
int dv;
int d[4];
if (state->w)
w = (int32_t)(((1ULL << 27) << 19) / (int64_t)state->w);
u = (int32_t)(((int64_t)state->u * (int64_t)w) >> (12 + state->max_d)) + state->tbu;
v = (int32_t)(((int64_t)state->v * (int64_t)w) >> (12 + state->max_d)) + state->tbv;
texture_state.level = state->max_d;
texture_state.texture_shift = 18 + (9 - texture_state.level);
tex_offset = 1 << texture_state.texture_shift;
texture_state.u = u;
texture_state.v = v;
tex_read(state, &texture_state, &tex_samples[0]);
du = (u >> (texture_state.texture_shift - 8)) & 0xff;
dv = (v >> (texture_state.texture_shift - 8)) & 0xff;
texture_state.u = u + tex_offset;
texture_state.v = v;
tex_read(state, &texture_state, &tex_samples[1]);
texture_state.u = u;
texture_state.v = v + tex_offset;
tex_read(state, &texture_state, &tex_samples[2]);
texture_state.u = u + tex_offset;
texture_state.v = v + tex_offset;
tex_read(state, &texture_state, &tex_samples[3]);
d[0] = (256 - du) * (256 - dv);
d[1] = du * (256 - dv);
d[2] = (256 - du) * dv;
d[3] = du * dv;
state->dest_rgba.r = (tex_samples[0].r * d[0] + tex_samples[1].r * d[1] +
tex_samples[2].r * d[2] + tex_samples[3].r * d[3]) >> 16;
state->dest_rgba.g = (tex_samples[0].g * d[0] + tex_samples[1].g * d[1] +
tex_samples[2].g * d[2] + tex_samples[3].g * d[3]) >> 16;
state->dest_rgba.b = (tex_samples[0].b * d[0] + tex_samples[1].b * d[1] +
tex_samples[2].b * d[2] + tex_samples[3].b * d[3]) >> 16;
state->dest_rgba.a = (tex_samples[0].a * d[0] + tex_samples[1].a * d[1] +
tex_samples[2].a * d[2] + tex_samples[3].a * d[3]) >> 16;
}
static void
tex_sample_persp_normal_375(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int32_t w = 0;
if (state->w)
w = (int32_t)(((1ULL << 27) << 19) / (int64_t)state->w);
texture_state.level = state->max_d;
texture_state.texture_shift = 18 + (9 - texture_state.level);
texture_state.u = (int32_t)(((int64_t)state->u * (int64_t)w) >> (8 + state->max_d)) + state->tbu;
texture_state.v = (int32_t)(((int64_t)state->v * (int64_t)w) >> (8 + state->max_d)) + state->tbv;
tex_read(state, &texture_state, &state->dest_rgba);
}
static void
tex_sample_persp_normal_filter_375(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int32_t w = 0;
int32_t u;
int32_t v;
int tex_offset;
rgba_t tex_samples[4];
int du;
int dv;
int d[4];
if (state->w)
w = (int32_t)(((1ULL << 27) << 19) / (int64_t)state->w);
u = (int32_t)(((int64_t)state->u * (int64_t)w) >> (8 + state->max_d)) + state->tbu;
v = (int32_t)(((int64_t)state->v * (int64_t)w) >> (8 + state->max_d)) + state->tbv;
texture_state.level = state->max_d;
texture_state.texture_shift = 18 + (9 - texture_state.level);
tex_offset = 1 << texture_state.texture_shift;
texture_state.u = u;
texture_state.v = v;
tex_read(state, &texture_state, &tex_samples[0]);
du = (u >> (texture_state.texture_shift - 8)) & 0xff;
dv = (v >> (texture_state.texture_shift - 8)) & 0xff;
texture_state.u = u + tex_offset;
texture_state.v = v;
tex_read(state, &texture_state, &tex_samples[1]);
texture_state.u = u;
texture_state.v = v + tex_offset;
tex_read(state, &texture_state, &tex_samples[2]);
texture_state.u = u + tex_offset;
texture_state.v = v + tex_offset;
tex_read(state, &texture_state, &tex_samples[3]);
d[0] = (256 - du) * (256 - dv);
d[1] = du * (256 - dv);
d[2] = (256 - du) * dv;
d[3] = du * dv;
state->dest_rgba.r = (tex_samples[0].r * d[0] + tex_samples[1].r * d[1] +
tex_samples[2].r * d[2] + tex_samples[3].r * d[3]) >> 16;
state->dest_rgba.g = (tex_samples[0].g * d[0] + tex_samples[1].g * d[1] +
tex_samples[2].g * d[2] + tex_samples[3].g * d[3]) >> 16;
state->dest_rgba.b = (tex_samples[0].b * d[0] + tex_samples[1].b * d[1] +
tex_samples[2].b * d[2] + tex_samples[3].b * d[3]) >> 16;
state->dest_rgba.a = (tex_samples[0].a * d[0] + tex_samples[1].a * d[1] +
tex_samples[2].a * d[2] + tex_samples[3].a * d[3]) >> 16;
}
static void
tex_sample_persp_mipmap(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int32_t w = 0;
if (state->w)
w = (int32_t)(((1ULL << 27) << 19) / (int64_t)state->w);
texture_state.level = (state->d < 0) ? state->max_d : state->max_d - ((state->d >> 27) & 0xf);
if (texture_state.level < 0)
texture_state.level = 0;
texture_state.texture_shift = 18 + (9 - texture_state.level);
texture_state.u = (int32_t)(((int64_t)state->u * (int64_t)w) >> (12 + state->max_d)) + state->tbu;
texture_state.v = (int32_t)(((int64_t)state->v * (int64_t)w) >> (12 + state->max_d)) + state->tbv;
tex_read(state, &texture_state, &state->dest_rgba);
}
static void
tex_sample_persp_mipmap_filter(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int32_t w = 0;
int32_t u;
int32_t v;
int tex_offset;
rgba_t tex_samples[4];
int du;
int dv;
int d[4];
if (state->w)
w = (int32_t)(((1ULL << 27) << 19) / (int64_t)state->w);
u = (int32_t)(((int64_t)state->u * (int64_t)w) >> (12 + state->max_d)) + state->tbu;
v = (int32_t)(((int64_t)state->v * (int64_t)w) >> (12 + state->max_d)) + state->tbv;
texture_state.level = (state->d < 0) ? state->max_d : state->max_d - ((state->d >> 27) & 0xf);
if (texture_state.level < 0)
texture_state.level = 0;
texture_state.texture_shift = 18 + (9 - texture_state.level);
tex_offset = 1 << texture_state.texture_shift;
texture_state.u = u;
texture_state.v = v;
tex_read(state, &texture_state, &tex_samples[0]);
du = (u >> (texture_state.texture_shift - 8)) & 0xff;
dv = (v >> (texture_state.texture_shift - 8)) & 0xff;
texture_state.u = u + tex_offset;
texture_state.v = v;
tex_read(state, &texture_state, &tex_samples[1]);
texture_state.u = u;
texture_state.v = v + tex_offset;
tex_read(state, &texture_state, &tex_samples[2]);
texture_state.u = u + tex_offset;
texture_state.v = v + tex_offset;
tex_read(state, &texture_state, &tex_samples[3]);
d[0] = (256 - du) * (256 - dv);
d[1] = du * (256 - dv);
d[2] = (256 - du) * dv;
d[3] = du * dv;
state->dest_rgba.r = (tex_samples[0].r * d[0] + tex_samples[1].r * d[1] +
tex_samples[2].r * d[2] + tex_samples[3].r * d[3]) >> 16;
state->dest_rgba.g = (tex_samples[0].g * d[0] + tex_samples[1].g * d[1] +
tex_samples[2].g * d[2] + tex_samples[3].g * d[3]) >> 16;
state->dest_rgba.b = (tex_samples[0].b * d[0] + tex_samples[1].b * d[1] +
tex_samples[2].b * d[2] + tex_samples[3].b * d[3]) >> 16;
state->dest_rgba.a = (tex_samples[0].a * d[0] + tex_samples[1].a * d[1] +
tex_samples[2].a * d[2] + tex_samples[3].a * d[3]) >> 16;
}
static void
tex_sample_persp_mipmap_375(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int32_t w = 0;
if (state->w)
w = (int32_t)(((1ULL << 27) << 19) / (int64_t)state->w);
texture_state.level = (state->d < 0) ? state->max_d : state->max_d - ((state->d >> 27) & 0xf);
if (texture_state.level < 0)
texture_state.level = 0;
texture_state.texture_shift = 18 + (9 - texture_state.level);
texture_state.u = (int32_t)(((int64_t)state->u * (int64_t)w) >> (8 + state->max_d)) + state->tbu;
texture_state.v = (int32_t)(((int64_t)state->v * (int64_t)w) >> (8 + state->max_d)) + state->tbv;
tex_read(state, &texture_state, &state->dest_rgba);
}
static void
tex_sample_persp_mipmap_filter_375(s3d_state_t *state) {
s3d_texture_state_t texture_state;
int32_t w = 0;
int32_t u;
int32_t v;
int tex_offset;
rgba_t tex_samples[4];
int du;
int dv;
int d[4];
if (state->w)
w = (int32_t)(((1ULL << 27) << 19) / (int64_t)state->w);
u = (int32_t)(((int64_t)state->u * (int64_t)w) >> (8 + state->max_d)) + state->tbu;
v = (int32_t)(((int64_t)state->v * (int64_t)w) >> (8 + state->max_d)) + state->tbv;
texture_state.level = (state->d < 0) ? state->max_d : state->max_d - ((state->d >> 27) & 0xf);
if (texture_state.level < 0)
texture_state.level = 0;
texture_state.texture_shift = 18 + (9 - texture_state.level);
tex_offset = 1 << texture_state.texture_shift;
texture_state.u = u;
texture_state.v = v;
tex_read(state, &texture_state, &tex_samples[0]);
du = (u >> (texture_state.texture_shift - 8)) & 0xff;
dv = (v >> (texture_state.texture_shift - 8)) & 0xff;
texture_state.u = u + tex_offset;
texture_state.v = v;
tex_read(state, &texture_state, &tex_samples[1]);
texture_state.u = u;
texture_state.v = v + tex_offset;
tex_read(state, &texture_state, &tex_samples[2]);
texture_state.u = u + tex_offset;
texture_state.v = v + tex_offset;
tex_read(state, &texture_state, &tex_samples[3]);
d[0] = (256 - du) * (256 - dv);
d[1] = du * (256 - dv);
d[2] = (256 - du) * dv;
d[3] = du * dv;
state->dest_rgba.r = (tex_samples[0].r * d[0] + tex_samples[1].r * d[1] +
tex_samples[2].r * d[2] + tex_samples[3].r * d[3]) >> 16;
state->dest_rgba.g = (tex_samples[0].g * d[0] + tex_samples[1].g * d[1] +
tex_samples[2].g * d[2] + tex_samples[3].g * d[3]) >> 16;
state->dest_rgba.b = (tex_samples[0].b * d[0] + tex_samples[1].b * d[1] +
tex_samples[2].b * d[2] + tex_samples[3].b * d[3]) >> 16;
state->dest_rgba.a = (tex_samples[0].a * d[0] + tex_samples[1].a * d[1] +
tex_samples[2].a * d[2] + tex_samples[3].a * d[3]) >> 16;
}
#define CLAMP(x) \
do { \
if ((x) & ~0xff) \
x = ((x) < 0) ? 0 : 0xff; \
} while (0)
#define CLAMP_RGBA(r, g, b, a) \
if ((r) & ~0xff) \
r = ((r) < 0) ? 0 : 0xff; \
if ((g) & ~0xff) \
g = ((g) < 0) ? 0 : 0xff; \
if ((b) & ~0xff) \
b = ((b) < 0) ? 0 : 0xff; \
if ((a) & ~0xff) \
a = ((a) < 0) ? 0 : 0xff;
#define CLAMP_RGB(r, g, b) \
do { \
if ((r) < 0) \
r = 0; \
if ((r) > 0xff) \
r = 0xff; \
if ((g) < 0) \
g = 0; \
if ((g) > 0xff) \
g = 0xff; \
if ((b) < 0) \
b = 0; \
if ((b) > 0xff) \
b = 0xff; \
} while (0)
static void
dest_pixel_gouraud_shaded_triangle(s3d_state_t *state) {
state->dest_rgba.r = state->r >> 7;
CLAMP(state->dest_rgba.r);
state->dest_rgba.g = state->g >> 7;
CLAMP(state->dest_rgba.g);
state->dest_rgba.b = state->b >> 7;
CLAMP(state->dest_rgba.b);
state->dest_rgba.a = state->a >> 7;
CLAMP(state->dest_rgba.a);
}
static void
dest_pixel_unlit_texture_triangle(s3d_state_t *state) {
tex_sample(state);
if (state->cmd_set & CMD_SET_ABC_SRC)
state->dest_rgba.a = state->a >> 7;
}
static void
dest_pixel_lit_texture_decal(s3d_state_t *state) {
tex_sample(state);
if (state->cmd_set & CMD_SET_ABC_SRC)
state->dest_rgba.a = state->a >> 7;
}
static void
dest_pixel_lit_texture_reflection(s3d_state_t *state) {
tex_sample(state);
state->dest_rgba.r += (state->r >> 7);
state->dest_rgba.g += (state->g >> 7);
state->dest_rgba.b += (state->b >> 7);
if (state->cmd_set & CMD_SET_ABC_SRC)
state->dest_rgba.a += (state->a >> 7);
CLAMP_RGBA(state->dest_rgba.r, state->dest_rgba.g, state->dest_rgba.b, state->dest_rgba.a);
}
static void
dest_pixel_lit_texture_modulate(s3d_state_t *state) {
int r = state->r >> 7;
int g = state->g >> 7;
int b = state->b >> 7;
int a = state->a >> 7;
tex_sample(state);
CLAMP_RGBA(r, g, b, a);
state->dest_rgba.r = ((state->dest_rgba.r) * r) >> 8;
state->dest_rgba.g = ((state->dest_rgba.g) * g) >> 8;
state->dest_rgba.b = ((state->dest_rgba.b) * b) >> 8;
if (state->cmd_set & CMD_SET_ABC_SRC)
state->dest_rgba.a = a;
}
static void
tri(virge_t *virge, s3d_t *s3d_tri, s3d_state_t *state, int yc, int32_t dx1, int32_t dx2) {
svga_t *svga = &virge->svga;
uint8_t *vram = virge->svga.vram;
int x_dir = s3d_tri->tlr ? 1 : -1;
int use_z = !(s3d_tri->cmd_set & CMD_SET_ZB_MODE);
int y_count = yc;
int bpp = (s3d_tri->cmd_set >> 2) & 7;
uint32_t dest_offset;
uint32_t z_offset;
dest_offset = s3d_tri->dest_base + (state->y * s3d_tri->dest_str);
z_offset = s3d_tri->z_base + (state->y * s3d_tri->z_str);
if (s3d_tri->cmd_set & CMD_SET_HC) {
if (state->y < s3d_tri->clip_t)
return;
if (state->y > s3d_tri->clip_b) {
int diff_y = state->y - s3d_tri->clip_b;
if (diff_y > y_count)
diff_y = y_count;
state->base_u += (s3d_tri->TdUdY * diff_y);
state->base_v += (s3d_tri->TdVdY * diff_y);
state->base_z += (s3d_tri->TdZdY * diff_y);
state->base_r += (s3d_tri->TdRdY * diff_y);
state->base_g += (s3d_tri->TdGdY * diff_y);
state->base_b += (s3d_tri->TdBdY * diff_y);
state->base_a += (s3d_tri->TdAdY * diff_y);
state->base_d += (s3d_tri->TdDdY * diff_y);
state->base_w += (s3d_tri->TdWdY * diff_y);
state->x1 += (dx1 * diff_y);
state->x2 += (dx2 * diff_y);
state->y -= diff_y;
dest_offset -= s3d_tri->dest_str;
z_offset -= s3d_tri->z_str;
y_count -= diff_y;
}
if ((state->y - y_count) < s3d_tri->clip_t)
y_count = (state->y - s3d_tri->clip_t) + 1;
}
for (; y_count > 0; y_count--) {
int x = (state->x1 + ((1 << 20) - 1)) >> 20;
int xe = (state->x2 + ((1 << 20) - 1)) >> 20;
uint32_t z = (state->base_z > 0) ? (state->base_z << 1) : 0;
if (x_dir < 0) {
x--;
xe--;
}
if (x != xe && ((x_dir > 0 && x < xe) || (x_dir < 0 && x > xe))) {
uint32_t dest_addr;
uint32_t z_addr;
int dx = (x_dir > 0) ? ((31 - ((state->x1 - 1) >> 15)) & 0x1f) :
(((state->x1 - 1) >> 15) & 0x1f);
int x_offset = x_dir * (bpp + 1);
int xz_offset = x_dir << 1;
if (x_dir > 0)
dx += 1;
state->r = state->base_r + ((s3d_tri->TdRdX * dx) >> 5);
state->g = state->base_g + ((s3d_tri->TdGdX * dx) >> 5);
state->b = state->base_b + ((s3d_tri->TdBdX * dx) >> 5);
state->a = state->base_a + ((s3d_tri->TdAdX * dx) >> 5);
state->u = state->base_u + ((s3d_tri->TdUdX * dx) >> 5);
state->v = state->base_v + ((s3d_tri->TdVdX * dx) >> 5);
state->w = state->base_w + ((s3d_tri->TdWdX * dx) >> 5);
state->d = state->base_d + ((s3d_tri->TdDdX * dx) >> 5);
z += ((s3d_tri->TdZdX * dx) >> 5);
if (s3d_tri->cmd_set & CMD_SET_HC) {
if (x_dir > 0) {
if (x > s3d_tri->clip_r)
goto tri_skip_line;
if (xe < s3d_tri->clip_l)
goto tri_skip_line;
if (xe > s3d_tri->clip_r)
xe = s3d_tri->clip_r + 1;
if (x < s3d_tri->clip_l) {
int diff_x = s3d_tri->clip_l - x;
z += (s3d_tri->TdZdX * diff_x);
state->u += (s3d_tri->TdUdX * diff_x);
state->v += (s3d_tri->TdVdX * diff_x);
state->r += (s3d_tri->TdRdX * diff_x);
state->g += (s3d_tri->TdGdX * diff_x);
state->b += (s3d_tri->TdBdX * diff_x);
state->a += (s3d_tri->TdAdX * diff_x);
state->d += (s3d_tri->TdDdX * diff_x);
state->w += (s3d_tri->TdWdX * diff_x);
x = s3d_tri->clip_l;
}
} else {
if (x < s3d_tri->clip_l)
goto tri_skip_line;
if (xe > s3d_tri->clip_r)
goto tri_skip_line;
if (xe < s3d_tri->clip_l)
xe = s3d_tri->clip_l - 1;
if (x > s3d_tri->clip_r) {
int diff_x = x - s3d_tri->clip_r;
z += (s3d_tri->TdZdX * diff_x);
state->u += (s3d_tri->TdUdX * diff_x);
state->v += (s3d_tri->TdVdX * diff_x);
state->r += (s3d_tri->TdRdX * diff_x);
state->g += (s3d_tri->TdGdX * diff_x);
state->b += (s3d_tri->TdBdX * diff_x);
state->a += (s3d_tri->TdAdX * diff_x);
state->d += (s3d_tri->TdDdX * diff_x);
state->w += (s3d_tri->TdWdX * diff_x);
x = s3d_tri->clip_r;
}
}
}
virge->svga.changedvram[(dest_offset & svga->vram_mask) >> 12] = changeframecount;
dest_addr = dest_offset + (x * (bpp + 1));
z_addr = z_offset + (x << 1);
x &= 0xfff;
xe &= 0xfff;
for (; x != xe; x = (x + x_dir) & 0xfff) {
int update = 1;
uint16_t src_z = 0;
_x = x;
_y = state->y;
if (use_z) {
src_z = Z_READ(z_addr);
Z_CLIP(src_z, z >> 16);
}
if (update) {
uint32_t dest_col;
dest_pixel(state);
if (s3d_tri->cmd_set & CMD_SET_FE) {
int a = state->a >> 7;
state->dest_rgba.r = ((state->dest_rgba.r * a) + (s3d_tri->fog_r * (255 - a))) / 255;
state->dest_rgba.g = ((state->dest_rgba.g * a) + (s3d_tri->fog_g * (255 - a))) / 255;
state->dest_rgba.b = ((state->dest_rgba.b * a) + (s3d_tri->fog_b * (255 - a))) / 255;
}
if (s3d_tri->cmd_set & CMD_SET_ABC_ENABLE) {
uint32_t src_col;
int src_r = 0;
uint32_t src_g = 0;
uint32_t src_b = 0;
switch (bpp) {
case 0: /*8 bpp*/
/*Not implemented yet*/
break;
case 1: /*16 bpp*/
src_col = *(uint16_t *)&vram[dest_addr & svga->vram_mask];
RGB15_TO_24(src_col, src_r, src_g, src_b);
break;
case 2: /*24 bpp*/
src_col = (*(uint32_t *)&vram[dest_addr & svga->vram_mask]) & 0xffffff;
RGB24_TO_24(src_col, src_r, src_g, src_b);
break;
}
state->dest_rgba.r = ((state->dest_rgba.r * state->dest_rgba.a) +
(src_r * (255 - state->dest_rgba.a))) / 255;
state->dest_rgba.g = ((state->dest_rgba.g * state->dest_rgba.a) +
(src_g * (255 - state->dest_rgba.a))) / 255;
state->dest_rgba.b = ((state->dest_rgba.b * state->dest_rgba.a) +
(src_b * (255 - state->dest_rgba.a))) / 255;
}
switch (bpp) {
case 0: /*8 bpp*/
/*Not implemented yet*/
break;
case 1: /*16 bpp*/
RGB15(state->dest_rgba.r, state->dest_rgba.g, state->dest_rgba.b, dest_col);
*(uint16_t *)&vram[dest_addr] = dest_col;
break;
case 2: /*24 bpp*/
dest_col = RGB24(state->dest_rgba.r, state->dest_rgba.g, state->dest_rgba.b);
*(uint8_t *)&vram[dest_addr] = dest_col & 0xff;
*(uint8_t *)&vram[dest_addr + 1] = (dest_col >> 8) & 0xff;
*(uint8_t *)&vram[dest_addr + 2] = (dest_col >> 16) & 0xff;
break;
}
if (use_z && (s3d_tri->cmd_set & CMD_SET_ZUP))
Z_WRITE(z_addr, src_z);
}
z += s3d_tri->TdZdX;
state->u += s3d_tri->TdUdX;
state->v += s3d_tri->TdVdX;
state->r += s3d_tri->TdRdX;
state->g += s3d_tri->TdGdX;
state->b += s3d_tri->TdBdX;
state->a += s3d_tri->TdAdX;
state->d += s3d_tri->TdDdX;
state->w += s3d_tri->TdWdX;
dest_addr += x_offset;
z_addr += xz_offset;
virge->pixel_count++;
}
}
tri_skip_line:
state->x1 += dx1;
state->x2 += dx2;
state->base_u += s3d_tri->TdUdY;
state->base_v += s3d_tri->TdVdY;
state->base_z += s3d_tri->TdZdY;
state->base_r += s3d_tri->TdRdY;
state->base_g += s3d_tri->TdGdY;
state->base_b += s3d_tri->TdBdY;
state->base_a += s3d_tri->TdAdY;
state->base_d += s3d_tri->TdDdY;
state->base_w += s3d_tri->TdWdY;
state->y--;
dest_offset -= s3d_tri->dest_str;
z_offset -= s3d_tri->z_str;
}
}
static int tex_size[8] = {4 * 2, 2 * 2, 2 * 2, 1 * 2, 2 / 1, 2 / 1, 1 * 2, 1 * 2};
static void
s3_virge_triangle(virge_t *virge, s3d_t *s3d_tri) {
s3d_state_t state;
uint32_t tex_base;
int c;
uint64_t start_time = plat_timer_read();
uint64_t end_time;
state.tbu = s3d_tri->tbu << 11;
state.tbv = s3d_tri->tbv << 11;
state.max_d = (s3d_tri->cmd_set >> 8) & 15;
state.tex_bdr_clr = s3d_tri->tex_bdr_clr;
state.cmd_set = s3d_tri->cmd_set;
state.base_u = s3d_tri->tus;
state.base_v = s3d_tri->tvs;
state.base_z = s3d_tri->tzs;
state.base_r = (int32_t)s3d_tri->trs;
state.base_g = (int32_t)s3d_tri->tgs;
state.base_b = (int32_t)s3d_tri->tbs;
state.base_a = (int32_t)s3d_tri->tas;
state.base_d = s3d_tri->tds;
state.base_w = s3d_tri->tws;
tex_base = s3d_tri->tex_base;
for (c = 9; c >= 0; c--) {
state.texture[c] = (uint16_t *)&virge->svga.vram[tex_base];
if (c <= state.max_d)
tex_base += ((1 << (c * 2)) * tex_size[(s3d_tri->cmd_set >> 5) & 7]) / 2;
}
switch ((s3d_tri->cmd_set >> 27) & 0xf) {
case 0:
dest_pixel = dest_pixel_gouraud_shaded_triangle;
break;
case 1:
case 5:
switch ((s3d_tri->cmd_set >> 15) & 0x3) {
case 0:
dest_pixel = dest_pixel_lit_texture_reflection;
break;
case 1:
dest_pixel = dest_pixel_lit_texture_modulate;
break;
case 2:
dest_pixel = dest_pixel_lit_texture_decal;
break;
default:
return;
}
break;
case 2:
case 6:
dest_pixel = dest_pixel_unlit_texture_triangle;
break;
default:
return;
}
switch (((s3d_tri->cmd_set >> 12) & 7) | ((s3d_tri->cmd_set & (1 << 29)) ? 8 : 0)) {
case 0:
case 1:
tex_sample = tex_sample_mipmap;
break;
case 2:
case 3:
tex_sample = virge->bilinear_enabled ? tex_sample_mipmap_filter : tex_sample_mipmap;
break;
case 4:
case 5:
tex_sample = tex_sample_normal;
break;
case 6:
case 7:
tex_sample = virge->bilinear_enabled ? tex_sample_normal_filter : tex_sample_normal;
break;
case (0 | 8):
case (1 | 8):
if ((virge->chip == S3_VIRGEDX) || (virge->chip >= S3_VIRGEGX2))
tex_sample = tex_sample_persp_mipmap_375;
else
tex_sample = tex_sample_persp_mipmap;
break;
case (2 | 8):
case (3 | 8):
if ((virge->chip == S3_VIRGEDX) || (virge->chip >= S3_VIRGEGX2))
tex_sample = virge->bilinear_enabled ? tex_sample_persp_mipmap_filter_375 :
tex_sample_persp_mipmap_375;
else
tex_sample = virge->bilinear_enabled ? tex_sample_persp_mipmap_filter :
tex_sample_persp_mipmap;
break;
case (4 | 8):
case (5 | 8):
if ((virge->chip == S3_VIRGEDX) || (virge->chip >= S3_VIRGEGX2))
tex_sample = tex_sample_persp_normal_375;
else
tex_sample = tex_sample_persp_normal;
break;
case (6 | 8):
case (7 | 8):
if ((virge->chip == S3_VIRGEDX) || (virge->chip >= S3_VIRGEGX2))
tex_sample = virge->bilinear_enabled ? tex_sample_persp_normal_filter_375 :
tex_sample_persp_normal_375;
else
tex_sample = virge->bilinear_enabled ? tex_sample_persp_normal_filter :
tex_sample_persp_normal;
break;
}
switch ((s3d_tri->cmd_set >> 5) & 7) {
case 0:
tex_read = (s3d_tri->cmd_set & CMD_SET_TWE) ? tex_ARGB8888 : tex_ARGB8888_nowrap;
break;
case 1:
tex_read = (s3d_tri->cmd_set & CMD_SET_TWE) ? tex_ARGB4444 : tex_ARGB4444_nowrap;
break;
case 2:
tex_read = (s3d_tri->cmd_set & CMD_SET_TWE) ? tex_ARGB1555 : tex_ARGB1555_nowrap;
break;
default:
tex_read = (s3d_tri->cmd_set & CMD_SET_TWE) ? tex_ARGB1555 : tex_ARGB1555_nowrap;
break;
}
state.y = s3d_tri->tys;
state.x1 = s3d_tri->txs;
state.x2 = s3d_tri->txend01;
tri(virge, s3d_tri, &state, s3d_tri->ty01, s3d_tri->TdXdY02, s3d_tri->TdXdY01);
state.x2 = s3d_tri->txend12;
tri(virge, s3d_tri, &state, s3d_tri->ty12, s3d_tri->TdXdY02, s3d_tri->TdXdY12);
virge->tri_count++;
end_time = plat_timer_read();
virge_time += end_time - start_time;
}
static void
render_thread(void *param) {
virge_t *virge = (virge_t *)param;
while (virge->render_thread_run) {
thread_wait_event(virge->wake_render_thread, -1);
thread_reset_event(virge->wake_render_thread);
virge->s3d_busy = 1;
while (!RB_EMPTY) {
s3_virge_triangle(virge, &virge->s3d_buffer[virge->s3d_read_idx & RB_MASK]);
virge->s3d_read_idx++;
if (RB_ENTRIES == (RB_SIZE - 1))
thread_set_event(virge->not_full_event);
}
virge->s3d_busy = 0;
virge->subsys_stat |= INT_S3D_DONE;
s3_virge_update_irqs(virge);
}
}
static void
queue_triangle(virge_t *virge) {
if (RB_FULL) {
thread_reset_event(virge->not_full_event);
if (RB_FULL)
thread_wait_event(virge->not_full_event, -1); /*Wait for room in ringbuffer*/
}
virge->s3d_buffer[virge->s3d_write_idx & RB_MASK] = virge->s3d_tri;
virge->s3d_write_idx++;
if (!virge->s3d_busy)
thread_set_event(virge->wake_render_thread); /*Wake up render thread if moving from idle*/
}
static void s3_virge_hwcursor_draw(svga_t *svga, int displine) {
virge_t *virge = (virge_t *) svga->priv;
int x;
uint16_t dat[2] = { 0, 0 };
int xx;
int offset = svga->hwcursor_latch.x - svga->hwcursor_latch.xoff;
uint32_t fg;
uint32_t bg;
uint32_t vram_mask = virge->vram_mask;
if (svga->interlace && svga->hwcursor_oddeven)
svga->hwcursor_latch.addr += 16;
switch (svga->bpp) {
default:
if (virge->chip != S3_VIRGEGX2) {
fg = svga->pallook[virge->hwc_fg_col & 0xff];
bg = svga->pallook[virge->hwc_bg_col & 0xff];
break;
}
fallthrough;
case 15:
if (virge->chip != S3_VIRGEGX2) {
fg = video_15to32[virge->hwc_fg_col & 0xffff];
bg = video_15to32[virge->hwc_bg_col & 0xffff];
break;
}
fallthrough;
case 16:
if (virge->chip != S3_VIRGEGX2) {
fg = video_16to32[virge->hwc_fg_col & 0xffff];
bg = video_16to32[virge->hwc_bg_col & 0xffff];
break;
}
fallthrough;
case 24:
case 32:
fg = virge->hwc_fg_col;
bg = virge->hwc_bg_col;
break;
}
for (x = 0; x < 64; x += 16) {
dat[0] = (svga->vram[svga->hwcursor_latch.addr & vram_mask] << 8) |
svga->vram[(svga->hwcursor_latch.addr + 1) & vram_mask];
dat[1] = (svga->vram[(svga->hwcursor_latch.addr + 2) & vram_mask] << 8) |
svga->vram[(svga->hwcursor_latch.addr + 3) & vram_mask];
if (svga->crtc[0x55] & 0x10) {
/*X11*/
for (xx = 0; xx < 16; xx++) {
if (offset >= svga->hwcursor_latch.x) {
if (virge->chip == S3_VIRGEGX2)
dat[0] ^= 0x8000;
if (dat[0] & 0x8000)
buffer32->line[displine][offset + svga->x_add] = (dat[1] & 0x8000) ? fg : bg;
}
offset++;
dat[0] <<= 1;
dat[1] <<= 1;
}
} else {
/*Windows*/
for (xx = 0; xx < 16; xx++) {
if (offset >= svga->hwcursor_latch.x) {
if (!(dat[0] & 0x8000))
buffer32->line[displine][offset + svga->x_add] = (dat[1] & 0x8000) ? fg : bg;
else if (dat[1] & 0x8000)
buffer32->line[displine][offset + svga->x_add] ^= 0xffffff;
}
offset++;
dat[0] <<= 1;
dat[1] <<= 1;
}
}
svga->hwcursor_latch.addr += 4;
}
if (svga->interlace && !svga->hwcursor_oddeven)
svga->hwcursor_latch.addr += 16;
}
#define DECODE_YCbCr() \
do { \
int c; \
\
for (c = 0; c < 2; c++) { \
uint8_t y1, y2; \
int8_t Cr; \
int8_t Cb; \
int dR; \
int dG; \
int dB; \
\
y1 = src[0]; \
Cr = src[1] - 0x80; \
y2 = src[2]; \
Cb = src[3] - 0x80; \
src += 4; \
\
dR = (359 * Cr) >> 8; \
dG = (88 * Cb + 183 * Cr) >> 8; \
dB = (453 * Cb) >> 8; \
\
r[x_write] = y1 + dR; \
CLAMP(r[x_write]); \
g[x_write] = y1 - dG; \
CLAMP(g[x_write]); \
b[x_write] = y1 + dB; \
CLAMP(b[x_write]); \
\
r[x_write + 1] = y2 + dR; \
CLAMP(r[x_write + 1]); \
g[x_write + 1] = y2 - dG; \
CLAMP(g[x_write + 1]); \
b[x_write + 1] = y2 + dB; \
CLAMP(b[x_write + 1]); \
\
x_write = (x_write + 2) & 7; \
} \
} while (0)
/*Both YUV formats are untested*/
#define DECODE_YUV211() \
do { \
uint8_t y1, y2, y3, y4; \
int8_t U, V; \
int dR; \
int dG; \
int dB; \
\
U = src[0] - 0x80; \
y1 = (298 * (src[1] - 16)) >> 8; \
y2 = (298 * (src[2] - 16)) >> 8; \
V = src[3] - 0x80; \
y3 = (298 * (src[4] - 16)) >> 8; \
y4 = (298 * (src[5] - 16)) >> 8; \
src += 6; \
\
dR = (309 * V) >> 8; \
dG = (100 * U + 208 * V) >> 8; \
dB = (516 * U) >> 8; \
\
r[x_write] = y1 + dR; \
CLAMP(r[x_write]); \
g[x_write] = y1 - dG; \
CLAMP(g[x_write]); \
b[x_write] = y1 + dB; \
CLAMP(b[x_write]); \
\
r[x_write + 1] = y2 + dR; \
CLAMP(r[x_write + 1]); \
g[x_write + 1] = y2 - dG; \
CLAMP(g[x_write + 1]); \
b[x_write + 1] = y2 + dB; \
CLAMP(b[x_write + 1]); \
\
r[x_write + 2] = y3 + dR; \
CLAMP(r[x_write + 2]); \
g[x_write + 2] = y3 - dG; \
CLAMP(g[x_write + 2]); \
b[x_write + 2] = y3 + dB; \
CLAMP(b[x_write + 2]); \
\
r[x_write + 3] = y4 + dR; \
CLAMP(r[x_write + 3]); \
g[x_write + 3] = y4 - dG; \
CLAMP(g[x_write + 3]); \
b[x_write + 3] = y4 + dB; \
CLAMP(b[x_write + 3]); \
\
x_write = (x_write + 4) & 7; \
} while (0)
#define DECODE_YUV422() \
do { \
int c; \
\
for (c = 0; c < 2; c++) { \
uint8_t y1; \
uint8_t y2; \
int8_t U; \
int8_t V; \
int dR; \
int dG; \
int dB; \
\
U = src[0] - 0x80; \
y1 = (298 * (src[1] - 16)) >> 8; \
V = src[2] - 0x80; \
y2 = (298 * (src[3] - 16)) >> 8; \
src += 4; \
\
dR = (309 * V) >> 8; \
dG = (100 * U + 208 * V) >> 8; \
dB = (516 * U) >> 8; \
\
r[x_write] = y1 + dR; \
CLAMP(r[x_write]); \
g[x_write] = y1 - dG; \
CLAMP(g[x_write]); \
b[x_write] = y1 + dB; \
CLAMP(b[x_write]); \
\
r[x_write + 1] = y2 + dR; \
CLAMP(r[x_write + 1]); \
g[x_write + 1] = y2 - dG; \
CLAMP(g[x_write + 1]); \
b[x_write + 1] = y2 + dB; \
CLAMP(b[x_write + 1]); \
\
x_write = (x_write + 2) & 7; \
} \
} while (0)
#define DECODE_RGB555() \
do { \
int c; \
\
for (c = 0; c < 4; c++) { \
uint16_t dat; \
\
dat = *(uint16_t *)src; \
src += 2; \
\
r[x_write + c] = \
((dat & 0x001f) << 3) | \
((dat & 0x001f) >> 2); \
g[x_write + c] = \
((dat & 0x03e0) >> 2) | \
((dat & 0x03e0) >> 7); \
b[x_write + c] = \
((dat & 0x7c00) >> 7) | \
((dat & 0x7c00) >> 12); \
} \
x_write = (x_write + 4) & 7; \
} while (0)
#define DECODE_RGB565() \
do { \
int c; \
\
for (c = 0; c < 4; c++) { \
uint16_t dat; \
\
dat = *(uint16_t *)src; \
src += 2; \
\
r[x_write + c] = \
((dat & 0x001f) << 3) | \
((dat & 0x001f) >> 2); \
g[x_write + c] = \
((dat & 0x07e0) >> 3) | \
((dat & 0x07e0) >> 9); \
b[x_write + c] = \
((dat & 0xf800) >> 8) | \
((dat & 0xf800) >> 13); \
} \
x_write = (x_write + 4) & 7; \
} while (0)
#define DECODE_RGB888() \
do { \
int c; \
\
for (c = 0; c < 4; c++) { \
r[x_write + c] = src[0]; \
g[x_write + c] = src[1]; \
b[x_write + c] = src[2]; \
src += 3; \
} \
x_write = (x_write + 4) & 7; \
} while (0)
#define DECODE_XRGB8888() \
do { \
int c; \
\
for (c = 0; c < 4; c++) { \
r[x_write + c] = src[0]; \
g[x_write + c] = src[1]; \
b[x_write + c] = src[2]; \
src += 4; \
} \
x_write = (x_write + 4) & 7; \
} while (0)
#define OVERLAY_SAMPLE() \
do { \
switch (virge->streams.sdif) { \
case 1: \
DECODE_YCbCr(); \
break; \
case 2: \
DECODE_YUV422(); \
break; \
case 3: \
DECODE_RGB555(); \
break; \
case 4: \
DECODE_YUV211(); \
break; \
case 5: \
DECODE_RGB565(); \
break; \
case 6: \
DECODE_RGB888(); \
break; \
case 7: \
default: \
DECODE_XRGB8888(); \
break; \
} \
} while (0)
static void
s3_virge_overlay_draw(svga_t *svga, int displine) {
virge_t *virge = (virge_t *) svga->priv;
int offset = (virge->streams.sec_x - virge->streams.pri_x) + 1;
int h_acc = virge->streams.dda_horiz_accumulator;
int r[8];
int g[8];
int b[8];
int x_size;
int x_read = 4;
int x_write = 4;
int x;
uint32_t *p;
uint8_t *src = &svga->vram[svga->overlay_latch.addr];
p = &((uint32_t *)buffer32->line[displine])[offset + svga->x_add];
if ((offset + virge->streams.sec_w) > virge->streams.pri_w)
x_size = (virge->streams.pri_w - virge->streams.sec_x) + 1;
else
x_size = virge->streams.sec_w + 1;
OVERLAY_SAMPLE();
for (x = 0; x < x_size; x++) {
*p++ = r[x_read] | (g[x_read] << 8) | (b[x_read] << 16);
h_acc += virge->streams.k1_horiz_scale;
if (h_acc >= 0) {
if ((x_read ^ (x_read + 1)) & ~3)
OVERLAY_SAMPLE();
x_read = (x_read + 1) & 7;
h_acc += (virge->streams.k2_horiz_scale - virge->streams.k1_horiz_scale);
}
}
svga->overlay_latch.v_acc += virge->streams.k1_vert_scale;
if (svga->overlay_latch.v_acc >= 0) {
svga->overlay_latch.v_acc += (virge->streams.k2_vert_scale - virge->streams.k1_vert_scale);
svga->overlay_latch.addr += virge->streams.sec_stride;
}
}
static uint8_t
s3_virge_pci_read(UNUSED(int func), int addr, void *priv)
{
const virge_t *virge = (virge_t *) priv;
const svga_t *svga = &virge->svga;
uint8_t ret = 0;
switch (addr) {
case 0x00:
ret = 0x33;
break; /*'S3'*/
case 0x01:
ret = 0x53;
break;
case 0x02:
ret = virge->virge_id_low;
break;
case 0x03:
ret = virge->virge_id_high;
break;
case PCI_REG_COMMAND:
ret = virge->pci_regs[PCI_REG_COMMAND] & 0x27;
break;
case 0x07:
ret = virge->pci_regs[0x07] & 0x36;
break;
case 0x08:
ret = virge->virge_rev;
break; /*Revision ID*/
case 0x09:
ret = 0;
break; /*Programming interface*/
case 0x0a:
ret = 0x00;
break; /*Supports VGA interface*/
case 0x0b:
ret = 0x03;
break;
case 0x0d:
ret = virge->pci_regs[0x0d] & 0xf8;
break;
case 0x10:
ret = 0x00;
break; /*Linear frame buffer address*/
case 0x11:
ret = 0x00;
break;
case 0x12:
ret = 0x00;
break;
case 0x13:
ret = (virge->chip == S3_VIRGEVX || virge->chip == S3_TRIO3D2X) ? (svga->crtc[0x59] & 0xfe) : (svga->crtc[0x59] & 0xfc);
break;
case 0x2c:
ret = 0x33;
break; /* Subsystem vendor ID */
case 0x2d:
ret = 0x53;
break;
case 0x2e:
ret = virge->virge_id_low;
break;
case 0x2f:
ret = virge->virge_id_high;
break;
case 0x30:
ret = (!virge->onboard) ? (virge->pci_regs[0x30] & 0x01) : 0x00;
break; /*BIOS ROM address*/
case 0x31:
ret = 0x00;
break;
case 0x32:
ret = (!virge->onboard) ? virge->pci_regs[0x32] : 0x00;
break;
case 0x33:
ret = (!virge->onboard) ? virge->pci_regs[0x33] : 0x00;
break;
case 0x34:
ret = (virge->chip >= S3_VIRGEGX2) ? 0xdc : 0x00;
break;
case 0x3c:
ret = virge->pci_regs[0x3c];
break;
case 0x3d:
ret = PCI_INTA;
break; /*INTA*/
case 0x3e:
ret = 0x04;
break;
case 0x3f:
ret = 0xff;
break;
case 0x80:
ret = 0x02;
break; /* AGP capability */
case 0x81:
ret = 0x00;
break;
case 0x82:
ret = 0x10;
break; /* assumed AGP 1.0 */
case 0x84:
ret = (virge->chip >= S3_TRIO3D2X) ? 0x03 : 0x01;
break;
case 0x87:
ret = 0x1f;
break;
case 0x88:
ret = virge->pci_regs[0x88];
break;
case 0x89:
ret = virge->pci_regs[0x89];
break;
case 0x8a:
ret = virge->pci_regs[0x8a];
break;
case 0x8b:
ret = virge->pci_regs[0x8b];
break;
case 0xdc:
ret = 0x01;
break; /* PCI Power Management capability */
case 0xdd:
ret = virge->is_agp ? 0x80 : 0x00;
break;
case 0xde:
ret = 0x21;
break;
case 0xe0:
ret = virge->pci_regs[0xe0];
break;
case 0xe1:
ret = virge->pci_regs[0xe1];
break;
case 0xe2:
ret = virge->pci_regs[0xe2];
break;
case 0xe3:
ret = virge->pci_regs[0xe3];
break;
default:
break;
}
return ret;
}
static void
s3_virge_pci_write(UNUSED(int func), int addr, uint8_t val, void *priv)
{
virge_t *virge = (virge_t *) priv;
svga_t *svga = &virge->svga;
switch (addr) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x3d:
case 0x3e:
case 0x3f:
return;
case PCI_REG_COMMAND:
if (val & PCI_COMMAND_IO) {
io_removehandler(0x03c0, 0x0020, s3_virge_in, NULL, NULL, s3_virge_out, NULL, NULL, virge);
io_sethandler(0x03c0, 0x0020, s3_virge_in, NULL, NULL, s3_virge_out, NULL, NULL, virge);
} else
io_removehandler(0x03c0, 0x0020, s3_virge_in, NULL, NULL, s3_virge_out, NULL, NULL, virge);
virge->pci_regs[PCI_REG_COMMAND] = val & 0x27;
s3_virge_updatemapping(virge);
return;
case 0x07:
virge->pci_regs[0x07] = val & 0x3e;
return;
case 0x0d:
virge->pci_regs[0x0d] = val & 0xf8;
return;
case 0x13:
svga->crtc[0x59] = (virge->chip == S3_VIRGEVX || virge->chip == S3_TRIO3D2X) ? (val & 0xfe) : (val & 0xfc);
s3_virge_updatemapping(virge);
return;
case 0x30:
case 0x32:
case 0x33:
if (virge->onboard)
return;
virge->pci_regs[addr] = val;
if (virge->pci_regs[0x30] & 0x01) {
uint32_t biosaddr = (virge->pci_regs[0x32] << 16) | (virge->pci_regs[0x33] << 24);
if (virge->chip == S3_VIRGEGX2)
mem_mapping_set_addr(&virge->bios_rom.mapping, biosaddr, 0x10000);
else
mem_mapping_set_addr(&virge->bios_rom.mapping, biosaddr, 0x8000);
} else {
mem_mapping_disable(&virge->bios_rom.mapping);
}
return;
case 0x3c:
virge->pci_regs[0x3c] = val;
return;
case 0x88:
virge->pci_regs[0x88] = val & 0x27;
return;
case 0x89:
virge->pci_regs[0x89] = val & 0x03;
return;
case 0x8b:
case 0xe1:
case 0xe3:
virge->pci_regs[addr] = val;
return;
case 0xe0:
virge->pci_regs[0xe0] = val & 0x03;
return;
case 0xe2:
virge->pci_regs[0xe2] = val & 0xc0;
return;
default:
break;
}
}
static void
s3_virge_disable_handlers(virge_t *dev)
{
io_removehandler(0x03c0, 0x0020, s3_virge_in, NULL, NULL,
s3_virge_out, NULL, NULL, dev);
mem_mapping_disable(&dev->linear_mapping);
mem_mapping_disable(&dev->mmio_mapping);
mem_mapping_disable(&dev->new_mmio_mapping);
mem_mapping_disable(&dev->svga.mapping);
mem_mapping_disable(&dev->bios_rom.mapping);
/* Save all the mappings and the timers because they are part of linked lists. */
reset_state->linear_mapping = dev->linear_mapping;
reset_state->mmio_mapping = dev->mmio_mapping;
reset_state->new_mmio_mapping = dev->new_mmio_mapping;
reset_state->svga.mapping = dev->svga.mapping;
reset_state->bios_rom.mapping = dev->bios_rom.mapping;
reset_state->svga.timer = dev->svga.timer;
reset_state->svga.timer8514 = dev->svga.timer8514;
}
static void
s3_virge_reset(void *priv)
{
virge_t *dev = (virge_t *) priv;
if (reset_state != NULL) {
s3_virge_disable_handlers(dev);
dev->virge_busy = 0;
dev->fifo_write_idx = 0;
dev->fifo_read_idx = 0;
dev->s3d_busy = 0;
dev->s3d_write_idx = 0;
dev->s3d_read_idx = 0;
reset_state->pci_slot = dev->pci_slot;
*dev = *reset_state;
}
}
static void *
s3_virge_init(const device_t *info)
{
const char *bios_fn;
virge_t *virge = (virge_t *) calloc(1, sizeof(virge_t));
reset_state = calloc(1, sizeof(virge_t));
virge->bilinear_enabled = device_get_config_int("bilinear");
virge->dithering_enabled = device_get_config_int("dithering");
if (info->local >= S3_VIRGE_GX2)
virge->memory_size = 4;
else
virge->memory_size = device_get_config_int("memory");
virge->onboard = !!(info->local & 0x100);
switch (info->local) {
case S3_VIRGE_325:
bios_fn = ROM_VIRGE_325;
break;
case S3_DIAMOND_STEALTH3D_2000:
bios_fn = ROM_DIAMOND_STEALTH3D_2000;
break;
case S3_DIAMOND_STEALTH3D_3000:
bios_fn = ROM_DIAMOND_STEALTH3D_3000;
break;
case S3_STB_VELOCITY_3D:
bios_fn = ROM_STB_VELOCITY_3D;
break;
case S3_VIRGE_DX:
bios_fn = virge->onboard ? NULL : ROM_VIRGE_DX;
break;
case S3_DIAMOND_STEALTH3D_2000PRO:
bios_fn = ROM_DIAMOND_STEALTH3D_2000PRO;
break;
case S3_VIRGE_GX:
bios_fn = ROM_VIRGE_GX;
break;
case S3_VIRGE_GX2:
bios_fn = ROM_VIRGE_GX2;
break;
case S3_DIAMOND_STEALTH3D_4000:
bios_fn = ROM_DIAMOND_STEALTH3D_4000;
break;
case S3_TRIO_3D2X:
bios_fn = ROM_TRIO3D2X;
break;
default:
free(virge);
return NULL;
}
svga_init(info, &virge->svga, virge, virge->memory_size << 20,
s3_virge_recalctimings,
s3_virge_in, s3_virge_out,
s3_virge_hwcursor_draw,
s3_virge_overlay_draw);
virge->svga.hwcursor.cur_ysize = 64;
if (bios_fn != NULL) {
if (info->local == S3_VIRGE_GX2)
rom_init(&virge->bios_rom, bios_fn, 0xc0000, 0x10000, 0xffff, 0, MEM_MAPPING_EXTERNAL);
else
rom_init(&virge->bios_rom, bios_fn, 0xc0000, 0x8000, 0x7fff, 0, MEM_MAPPING_EXTERNAL);
mem_mapping_disable(&virge->bios_rom.mapping);
}
mem_mapping_add(&virge->linear_mapping, 0, 0,
svga_read_linear,
svga_readw_linear,
svga_readl_linear,
svga_write_linear,
svga_writew_linear,
svga_writel_linear,
NULL,
MEM_MAPPING_EXTERNAL,
&virge->svga);
mem_mapping_add(&virge->mmio_mapping, 0, 0,
s3_virge_mmio_read,
s3_virge_mmio_read_w,
s3_virge_mmio_read_l,
s3_virge_mmio_write,
s3_virge_mmio_write_w,
s3_virge_mmio_write_l,
NULL,
MEM_MAPPING_EXTERNAL,
virge);
mem_mapping_add(&virge->new_mmio_mapping, 0, 0,
s3_virge_mmio_read,
s3_virge_mmio_read_w,
s3_virge_mmio_read_l,
s3_virge_mmio_write,
s3_virge_mmio_write_w,
s3_virge_mmio_write_l,
NULL,
MEM_MAPPING_EXTERNAL,
virge);
io_sethandler(0x03c0, 0x0020, s3_virge_in, NULL, NULL, s3_virge_out, NULL, NULL, virge);
virge->pci_regs[PCI_REG_COMMAND] = 3;
virge->pci_regs[0x05] = 0;
virge->pci_regs[0x06] = 0;
virge->pci_regs[0x07] = 2;
virge->pci_regs[0x32] = 0x0c;
virge->pci_regs[0x3d] = 1;
virge->pci_regs[0x3e] = 4;
virge->pci_regs[0x3f] = 0xff;
virge->virge_rev = 0;
virge->virge_id = 0xe1;
virge->is_agp = !!(info->flags & DEVICE_AGP);
switch (info->local) {
case S3_VIRGE_325:
case S3_DIAMOND_STEALTH3D_2000:
virge->fifo_slots_num = 8;
virge->svga.decode_mask = (4 << 20) - 1;
virge->virge_id_high = 0x56;
virge->virge_id_low = 0x31;
virge->svga.crtc[0x59] = 0x70;
virge->chip = S3_VIRGE;
video_inform(VIDEO_FLAG_TYPE_SPECIAL, &timing_diamond_stealth3d_2000_pci);
break;
case S3_DIAMOND_STEALTH3D_3000:
case S3_STB_VELOCITY_3D:
virge->fifo_slots_num = 8;
virge->svga.decode_mask = (8 << 20) - 1;
virge->virge_id_high = 0x88;
virge->virge_id_low = 0x3d;
virge->svga.crtc[0x59] = 0x70;
virge->chip = S3_VIRGEVX;
video_inform(VIDEO_FLAG_TYPE_SPECIAL, &timing_diamond_stealth3d_3000_pci);
break;
case S3_VIRGE_GX2:
case S3_DIAMOND_STEALTH3D_4000:
virge->fifo_slots_num = 16;
virge->svga.decode_mask = (4 << 20) - 1;
virge->virge_id_high = 0x8a;
virge->virge_id_low = 0x10;
virge->svga.crtc[0x6c] = 1;
virge->svga.crtc[0x59] = 0x70;
virge->svga.vblank_start = s3_virge_vblank_start;
virge->chip = S3_VIRGEGX2;
video_inform(VIDEO_FLAG_TYPE_SPECIAL, virge->is_agp ? &timing_virge_agp : &timing_virge_dx_pci);
break;
case S3_TRIO_3D2X:
virge->fifo_slots_num = 16;
virge->svga.decode_mask = (8 << 20) - 1;
virge->virge_id_high = 0x8a;
virge->virge_id_low = 0x13;
virge->virge_rev = 0x01;
virge->svga.crtc[0x6c] = 1;
virge->svga.crtc[0x59] = 0x70;
virge->svga.vblank_start = s3_virge_vblank_start;
virge->chip = S3_TRIO3D2X;
video_inform(VIDEO_FLAG_TYPE_SPECIAL, virge->is_agp ? &timing_virge_agp : &timing_virge_dx_pci);
break;
case S3_VIRGE_GX:
virge->virge_rev = 0x01;
fallthrough;
default:
virge->fifo_slots_num = 8;
virge->svga.decode_mask = (4 << 20) - 1;
virge->virge_id_high = 0x8a;
virge->virge_id_low = 0x01;
virge->svga.crtc[0x6c] = 1;
virge->svga.crtc[0x59] = 0x70;
virge->svga.vblank_start = s3_virge_vblank_start;
virge->chip = S3_VIRGEDX;
video_inform(VIDEO_FLAG_TYPE_SPECIAL, &timing_virge_dx_pci);
break;
}
if (virge->chip == S3_VIRGEGX2) {
virge->vram_mask = (4 << 20) - 1;
virge->svga.vram_mask = (4 << 20) - 1;
virge->svga.vram_max = 4 << 20;
virge->svga.crtc[0x36] = 2 | (2 << 2) | (1 << 4) | (1 << 5);
} else {
switch (virge->memory_size) {
case 2:
virge->vram_mask = (2 << 20) - 1;
virge->svga.vram_mask = (2 << 20) - 1;
virge->svga.vram_max = 2 << 20;
if (virge->chip == S3_VIRGEVX) {
virge->svga.crtc[0x36] = (0 << 5);
} else
virge->svga.crtc[0x36] = 2 | (0 << 2) | (1 << 4) | (4 << 5);
break;
case 8:
virge->vram_mask = (8 << 20) - 1;
virge->svga.vram_mask = (8 << 20) - 1;
virge->svga.vram_max = 8 << 20;
if (virge->chip == S3_TRIO3D2X)
virge->svga.crtc[0x36] = 2 | (2 << 2) | (1 << 4) | (0 << 5);
else
virge->svga.crtc[0x36] = (3 << 5);
break;
case 4:
virge->vram_mask = (4 << 20) - 1;
virge->svga.vram_mask = (4 << 20) - 1;
virge->svga.vram_max = 4 << 20;
if (virge->chip == S3_VIRGEVX)
virge->svga.crtc[0x36] = (1 << 5);
else if (virge->chip == S3_TRIO3D2X)
virge->svga.crtc[0x36] = 2 | (2 << 2) | (1 << 4) | (2 << 5);
else
virge->svga.crtc[0x36] = 2 | (0 << 2) | (1 << 4) | (0 << 5);
break;
default:
break;
}
if (info->local == S3_VIRGE_GX)
virge->svga.crtc[0x36] |= (1 << 2);
}
virge->svga.crtc[0x37] = 1 | (7 << 5);
virge->svga.crtc[0x53] = 8;
if (bios_fn == NULL)
pci_add_card(virge->is_agp ? PCI_ADD_AGP : PCI_ADD_VIDEO, s3_virge_pci_read, s3_virge_pci_write, virge, &virge->pci_slot);
else
pci_add_card(virge->is_agp ? PCI_ADD_AGP : PCI_ADD_NORMAL, s3_virge_pci_read, s3_virge_pci_write, virge, &virge->pci_slot);
virge->i2c = i2c_gpio_init("ddc_s3_virge");
virge->ddc = ddc_init(i2c_gpio_get_bus(virge->i2c));
virge->svga.force_old_addr = 1;
virge->render_thread_run = 1;
virge->wake_render_thread = thread_create_event();
virge->wake_main_thread = thread_create_event();
virge->not_full_event = thread_create_event();
virge->render_thread = thread_create(render_thread, virge);
virge->fifo_thread_run = 1;
virge->wake_fifo_thread = thread_create_event();
virge->fifo_not_full_event = thread_create_event();
virge->fifo_thread = thread_create(fifo_thread, virge);
virge->local = info->local;
*reset_state = *virge;
return virge;
}
static void
s3_virge_close(void *priv)
{
virge_t *virge = (virge_t *) priv;
virge->render_thread_run = 0;
thread_set_event(virge->wake_render_thread);
thread_wait(virge->render_thread);
thread_destroy_event(virge->not_full_event);
thread_destroy_event(virge->wake_main_thread);
thread_destroy_event(virge->wake_render_thread);
virge->fifo_thread_run = 0;
thread_set_event(virge->wake_fifo_thread);
thread_wait(virge->fifo_thread);
thread_destroy_event(virge->fifo_not_full_event);
thread_destroy_event(virge->wake_fifo_thread);
svga_close(&virge->svga);
ddc_close(virge->ddc);
i2c_gpio_close(virge->i2c);
free(reset_state);
reset_state = NULL;
free(virge);
}
static int
s3_virge_325_diamond_available(void)
{
return rom_present(ROM_DIAMOND_STEALTH3D_2000);
}
static int
s3_virge_325_available(void)
{
return rom_present(ROM_VIRGE_325);
}
static int
s3_virge_988_diamond_available(void)
{
return rom_present(ROM_DIAMOND_STEALTH3D_3000);
}
static int
s3_virge_988_stb_available(void)
{
return rom_present(ROM_STB_VELOCITY_3D);
}
static int
s3_virge_375_available(void)
{
return rom_present(ROM_VIRGE_DX);
}
static int
s3_virge_375_diamond_available(void)
{
return rom_present(ROM_DIAMOND_STEALTH3D_2000PRO);
}
static int
s3_virge_385_available(void)
{
return rom_present(ROM_VIRGE_GX);
}
static int
s3_virge_357_available(void)
{
return rom_present(ROM_VIRGE_GX2);
}
static int
s3_virge_357_diamond_available(void)
{
return rom_present(ROM_DIAMOND_STEALTH3D_4000);
}
static int
s3_trio3d2x_available(void)
{
return rom_present(ROM_TRIO3D2X);
}
static void
s3_virge_speed_changed(void *priv)
{
virge_t *virge = (virge_t *) priv;
svga_recalctimings(&virge->svga);
}
static void
s3_virge_force_redraw(void *priv)
{
virge_t *virge = (virge_t *) priv;
virge->svga.fullchange = changeframecount;
}
static const device_config_t s3_virge_config[] = {
// clang-format off
{
.name = "memory",
.description = "Memory size",
.type = CONFIG_SELECTION,
.default_int = 4,
.selection = {
{
.description = "2 MB",
.value = 2
},
{
.description = "4 MB",
.value = 4
},
{
.description = ""
}
}
},
{
.name = "bilinear",
.description = "Bilinear filtering",
.type = CONFIG_BINARY,
.default_int = 1
},
{
.name = "dithering",
.description = "Dithering",
.type = CONFIG_BINARY,
.default_int = 1
},
{
.type = CONFIG_END
}
// clang-format on
};
static const device_config_t s3_virge_stb_config[] = {
// clang-format off
{
.name = "memory",
.description = "Memory size",
.type = CONFIG_SELECTION,
.default_int = 4,
.selection = {
{
.description = "2 MB",
.value = 2
},
{
.description = "4 MB",
.value = 4
},
{
.description = "8 MB",
.value = 8
},
{
.description = ""
}
}
},
{
.name = "bilinear",
.description = "Bilinear filtering",
.type = CONFIG_BINARY,
.default_int = 1
},
{
.name = "dithering",
.description = "Dithering",
.type = CONFIG_BINARY,
.default_int = 1
},
{
.type = CONFIG_END
}
// clang-format on
};
static const device_config_t s3_virge_357_config[] = {
// clang-format off
{
.name = "bilinear",
.description = "Bilinear filtering",
.type = CONFIG_BINARY,
.default_int = 1
},
{
.name = "dithering",
.description = "Dithering",
.type = CONFIG_BINARY,
.default_int = 1
},
{
.type = CONFIG_END
}
// clang-format on
};
static const device_config_t s3_trio3d2x_config[] = {
// clang-format off
{
.name = "memory",
.description = "Memory size",
.type = CONFIG_SELECTION,
.default_int = 4,
.selection = {
{
.description = "4 MB",
.value = 4
},
{
.description = "8 MB",
.value = 8
},
{
.description = ""
}
}
},
{
.name = "bilinear",
.description = "Bilinear filtering",
.type = CONFIG_BINARY,
.default_int = 1
},
{
.name = "dithering",
.description = "Dithering",
.type = CONFIG_BINARY,
.default_int = 1
},
{
.type = CONFIG_END
}
// clang-format on
};
const device_t s3_virge_325_pci_device = {
.name = "S3 ViRGE (325) PCI",
.internal_name = "virge325_pci",
.flags = DEVICE_PCI,
.local = S3_VIRGE_325,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_325_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_config
};
const device_t s3_diamond_stealth_2000_pci_device = {
.name = "S3 ViRGE (Diamond Stealth 3D 2000) PCI",
.internal_name = "stealth3d_2000_pci",
.flags = DEVICE_PCI,
.local = S3_DIAMOND_STEALTH3D_2000,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_325_diamond_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_config
};
const device_t s3_diamond_stealth_3000_pci_device = {
.name = "S3 ViRGE/VX (Diamond Stealth 3D 3000) PCI",
.internal_name = "stealth3d_3000_pci",
.flags = DEVICE_PCI,
.local = S3_DIAMOND_STEALTH3D_3000,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_988_diamond_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_stb_config
};
const device_t s3_stb_velocity_3d_pci_device = {
.name = "S3 ViRGE/VX (STB Velocity 3D) PCI",
.internal_name = "stb_velocity3d_pci",
.flags = DEVICE_PCI,
.local = S3_STB_VELOCITY_3D,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_988_stb_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_stb_config
};
const device_t s3_virge_375_pci_device = {
.name = "S3 ViRGE/DX (375) PCI",
.internal_name = "virge375_pci",
.flags = DEVICE_PCI,
.local = S3_VIRGE_DX,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_375_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_config
};
const device_t s3_virge_375_onboard_pci_device = {
.name = "S3 ViRGE/DX (375) On-Board PCI",
.internal_name = "virge375_onboard_pci",
.flags = DEVICE_PCI,
.local = S3_VIRGE_DX | 0x100,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = NULL },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_config
};
const device_t s3_diamond_stealth_2000pro_pci_device = {
.name = "S3 ViRGE/DX (Diamond Stealth 3D 2000 Pro) PCI",
.internal_name = "stealth3d_2000pro_pci",
.flags = DEVICE_PCI,
.local = S3_DIAMOND_STEALTH3D_2000PRO,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_375_diamond_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_config
};
const device_t s3_virge_385_pci_device = {
.name = "S3 ViRGE/GX (385) PCI",
.internal_name = "virge385_pci",
.flags = DEVICE_PCI,
.local = S3_VIRGE_GX,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_385_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_config
};
const device_t s3_virge_357_pci_device = {
.name = "S3 ViRGE/GX2 (357) PCI",
.internal_name = "virge357_pci",
.flags = DEVICE_PCI,
.local = S3_VIRGE_GX2,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_357_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_357_config
};
const device_t s3_virge_357_agp_device = {
.name = "S3 ViRGE/GX2 (357) AGP",
.internal_name = "virge357_agp",
.flags = DEVICE_AGP,
.local = S3_VIRGE_GX2,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_357_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_357_config
};
const device_t s3_diamond_stealth_4000_pci_device = {
.name = "S3 ViRGE/GX2 (Diamond Stealth 3D 4000) PCI",
.internal_name = "stealth3d_4000_pci",
.flags = DEVICE_PCI,
.local = S3_DIAMOND_STEALTH3D_4000,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_357_diamond_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_357_config
};
const device_t s3_diamond_stealth_4000_agp_device = {
.name = "S3 ViRGE/GX2 (Diamond Stealth 3D 4000) AGP",
.internal_name = "stealth3d_4000_agp",
.flags = DEVICE_AGP,
.local = S3_DIAMOND_STEALTH3D_4000,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_virge_357_diamond_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_virge_357_config
};
const device_t s3_trio3d2x_pci_device = {
.name = "S3 Trio3D/2X (362) PCI",
.internal_name = "trio3d2x",
.flags = DEVICE_PCI,
.local = S3_TRIO_3D2X,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_trio3d2x_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_trio3d2x_config
};
const device_t s3_trio3d2x_agp_device = {
.name = "S3 Trio3D/2X (362) AGP",
.internal_name = "trio3d2x_agp",
.flags = DEVICE_AGP,
.local = S3_TRIO_3D2X,
.init = s3_virge_init,
.close = s3_virge_close,
.reset = s3_virge_reset,
{ .available = s3_trio3d2x_available },
.speed_changed = s3_virge_speed_changed,
.force_redraw = s3_virge_force_redraw,
.config = s3_trio3d2x_config
};