802 lines
24 KiB
C
802 lines
24 KiB
C
/*
|
|
* 86Box A hypervisor and IBM PC system emulator that specializes in
|
|
* running old operating systems and software designed for IBM
|
|
* PC systems and compatibles from 1981 through fairly recent
|
|
* system designs based on the PCI bus.
|
|
*
|
|
* This file is part of the 86Box distribution.
|
|
*
|
|
* Emulation of VLSI 82C311 ("SCAMP") chipset.
|
|
*
|
|
* Note: The datasheet mentions that the chipset supports up to 8MB
|
|
* of DRAM. This is intepreted as 'being able to refresh up to
|
|
* 8MB of DRAM chips', because it works fine with bus-based
|
|
* memory expansion.
|
|
*
|
|
*
|
|
*
|
|
* Authors: Sarah Walker, <http://pcem-emulator.co.uk/>
|
|
*
|
|
* Copyright 2020 Sarah Walker.
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <wchar.h>
|
|
#include <86box/86box.h>
|
|
#include "cpu.h"
|
|
#include <86box/timer.h>
|
|
#include <86box/device.h>
|
|
#include <86box/io.h>
|
|
#include <86box/mem.h>
|
|
#include <86box/nmi.h>
|
|
#include <86box/port_92.h>
|
|
#include <86box/chipset.h>
|
|
|
|
|
|
#define CFG_ID 0x00
|
|
#define CFG_SLTPTR 0x02
|
|
#define CFG_RAMMAP 0x03
|
|
#define CFG_EMSEN1 0x0b
|
|
#define CFG_EMSEN2 0x0c
|
|
#define CFG_ABAXS 0x0e
|
|
#define CFG_CAXS 0x0f
|
|
#define CFG_DAXS 0x10
|
|
#define CFG_FEAXS 0x11
|
|
|
|
#define ID_VL82C311 0xd6
|
|
|
|
#define RAMMAP_REMP386 (1 << 4)
|
|
|
|
#define NR_ELEMS(x) (sizeof(x) / sizeof(x[0]))
|
|
|
|
|
|
/*Commodore SL386SX requires proper memory slot decoding to detect memory size.
|
|
Therefore we emulate the SCAMP memory address decoding, and therefore are
|
|
limited to the DRAM combinations supported by the actual chip*/
|
|
enum
|
|
{
|
|
BANK_NONE,
|
|
BANK_256K,
|
|
BANK_256K_INTERLEAVED,
|
|
BANK_1M,
|
|
BANK_1M_INTERLEAVED,
|
|
BANK_4M,
|
|
BANK_4M_INTERLEAVED
|
|
};
|
|
|
|
|
|
typedef struct {
|
|
void * parent;
|
|
int bank;
|
|
} ram_struct_t;
|
|
|
|
typedef struct {
|
|
int cfg_index;
|
|
uint8_t cfg_regs[256];
|
|
int cfg_enable, ram_config;
|
|
|
|
mem_mapping_t ram_mapping[2];
|
|
ram_struct_t ram_struct[2];
|
|
|
|
uint32_t ram_virt_base[2], ram_phys_base[2];
|
|
uint32_t ram_mask[2];
|
|
int row_virt_shift[2], row_phys_shift[2];
|
|
int ram_interleaved[2], ibank_shift[2];
|
|
|
|
port_92_t * port_92;
|
|
} scamp_t;
|
|
|
|
static const struct
|
|
{
|
|
int size_kb;
|
|
int rammap;
|
|
int bank[2];
|
|
} ram_configs[] =
|
|
{
|
|
{512, 0x0, {BANK_256K, BANK_NONE}},
|
|
{1024, 0x1, {BANK_256K_INTERLEAVED, BANK_NONE}},
|
|
{1536, 0x2, {BANK_256K_INTERLEAVED, BANK_256K}},
|
|
{2048, 0x3, {BANK_256K_INTERLEAVED, BANK_256K_INTERLEAVED}},
|
|
{3072, 0xc, {BANK_256K_INTERLEAVED, BANK_1M}},
|
|
{4096, 0x5, {BANK_1M_INTERLEAVED, BANK_NONE}},
|
|
{5120, 0xd, {BANK_256K_INTERLEAVED, BANK_1M_INTERLEAVED}},
|
|
{6144, 0x6, {BANK_1M_INTERLEAVED, BANK_1M}},
|
|
{8192, 0x7, {BANK_1M_INTERLEAVED, BANK_1M_INTERLEAVED}},
|
|
{12288, 0xe, {BANK_1M_INTERLEAVED, BANK_4M}},
|
|
{16384, 0x9, {BANK_4M_INTERLEAVED, BANK_NONE}},
|
|
};
|
|
|
|
static const struct
|
|
{
|
|
int bank[2];
|
|
int remapped;
|
|
} rammap[16] =
|
|
{
|
|
{{BANK_256K, BANK_NONE}, 0},
|
|
{{BANK_256K_INTERLEAVED, BANK_NONE}, 0},
|
|
{{BANK_256K_INTERLEAVED, BANK_256K}, 0},
|
|
{{BANK_256K_INTERLEAVED, BANK_256K_INTERLEAVED}, 0},
|
|
|
|
{{BANK_1M, BANK_NONE}, 0},
|
|
{{BANK_1M_INTERLEAVED, BANK_NONE}, 0},
|
|
{{BANK_1M_INTERLEAVED, BANK_1M}, 0},
|
|
{{BANK_1M_INTERLEAVED, BANK_1M_INTERLEAVED}, 0},
|
|
|
|
{{BANK_4M, BANK_NONE}, 0},
|
|
{{BANK_4M_INTERLEAVED, BANK_NONE}, 0},
|
|
{{BANK_NONE, BANK_4M}, 1}, /*Bank 2 remapped to 0*/
|
|
{{BANK_NONE, BANK_4M_INTERLEAVED}, 1}, /*Banks 2/3 remapped to 0/1*/
|
|
|
|
{{BANK_256K_INTERLEAVED, BANK_1M}, 0},
|
|
{{BANK_256K_INTERLEAVED, BANK_1M_INTERLEAVED}, 0},
|
|
{{BANK_1M_INTERLEAVED, BANK_4M}, 0},
|
|
{{BANK_1M_INTERLEAVED, BANK_4M_INTERLEAVED}, 0}, /*Undocumented - probably wrong!*/
|
|
};
|
|
|
|
|
|
/* The column bits masked when using 256kbit DRAMs in 4Mbit mode aren't contiguous,
|
|
so we use separate routines for that special case */
|
|
static uint8_t
|
|
ram_mirrored_256k_in_4mi_read(uint32_t addr, void *priv)
|
|
{
|
|
ram_struct_t *rs = (ram_struct_t *) priv;
|
|
scamp_t *dev = rs->parent;
|
|
int bank = rs->bank, byte;
|
|
int row, column;
|
|
|
|
addr -= dev->ram_virt_base[bank];
|
|
byte = addr & 1;
|
|
if (!dev->ram_interleaved[bank]) {
|
|
if (addr & 0x400)
|
|
return 0xff;
|
|
|
|
addr = (addr & 0x3ff) | ((addr & ~0x7ff) >> 1);
|
|
column = (addr >> 1) & dev->ram_mask[bank];
|
|
row = ((addr & 0xff000) >> 13) | (((addr & 0x200000) >> 22) << 9);
|
|
|
|
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
|
|
} else {
|
|
column = (addr >> 1) & ((dev->ram_mask[bank] << 1) | 1);
|
|
row = ((addr & 0x1fe000) >> 13) | (((addr & 0x400000) >> 22) << 9);
|
|
|
|
addr = byte | (column << 1) | (row << (dev->row_phys_shift[bank]+1));
|
|
}
|
|
|
|
return ram[addr + dev->ram_phys_base[bank]];
|
|
}
|
|
|
|
|
|
static void
|
|
ram_mirrored_256k_in_4mi_write(uint32_t addr, uint8_t val, void *priv)
|
|
{
|
|
ram_struct_t *rs = (ram_struct_t *) priv;
|
|
scamp_t *dev = rs->parent;
|
|
int bank = rs->bank, byte;
|
|
int row, column;
|
|
|
|
addr -= dev->ram_virt_base[bank];
|
|
byte = addr & 1;
|
|
if (!dev->ram_interleaved[bank]) {
|
|
if (addr & 0x400)
|
|
return;
|
|
|
|
addr = (addr & 0x3ff) | ((addr & ~0x7ff) >> 1);
|
|
column = (addr >> 1) & dev->ram_mask[bank];
|
|
row = ((addr & 0xff000) >> 13) | (((addr & 0x200000) >> 22) << 9);
|
|
|
|
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
|
|
} else {
|
|
column = (addr >> 1) & ((dev->ram_mask[bank] << 1) | 1);
|
|
row = ((addr & 0x1fe000) >> 13) | (((addr & 0x400000) >> 22) << 9);
|
|
|
|
addr = byte | (column << 1) | (row << (dev->row_phys_shift[bank]+1));
|
|
}
|
|
|
|
ram[addr + dev->ram_phys_base[bank]] = val;
|
|
}
|
|
|
|
|
|
/*Read/write handlers for interleaved memory banks. We must keep CPU and ram array
|
|
mapping linear, otherwise we won't be able to execute code from interleaved banks*/
|
|
static uint8_t
|
|
ram_mirrored_interleaved_read(uint32_t addr, void *priv)
|
|
{
|
|
ram_struct_t *rs = (ram_struct_t *) priv;
|
|
scamp_t *dev = rs->parent;
|
|
int bank = rs->bank, byte;
|
|
int row, column;
|
|
|
|
addr -= dev->ram_virt_base[bank];
|
|
byte = addr & 1;
|
|
if (!dev->ram_interleaved[bank]) {
|
|
if (addr & 0x400)
|
|
return 0xff;
|
|
|
|
addr = (addr & 0x3ff) | ((addr & ~0x7ff) >> 1);
|
|
column = (addr >> 1) & dev->ram_mask[bank];
|
|
row = (addr >> dev->row_virt_shift[bank]) & dev->ram_mask[bank];
|
|
|
|
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
|
|
} else {
|
|
column = (addr >> 1) & ((dev->ram_mask[bank] << 1) | 1);
|
|
row = (addr >> (dev->row_virt_shift[bank]+1)) & dev->ram_mask[bank];
|
|
|
|
addr = byte | (column << 1) | (row << (dev->row_phys_shift[bank]+1));
|
|
}
|
|
|
|
return ram[addr + dev->ram_phys_base[bank]];
|
|
}
|
|
|
|
|
|
static void
|
|
ram_mirrored_interleaved_write(uint32_t addr, uint8_t val, void *priv)
|
|
{
|
|
ram_struct_t *rs = (ram_struct_t *) priv;
|
|
scamp_t *dev = rs->parent;
|
|
int bank = rs->bank, byte;
|
|
int row, column;
|
|
|
|
addr -= dev->ram_virt_base[bank];
|
|
byte = addr & 1;
|
|
if (!dev->ram_interleaved[bank]) {
|
|
if (addr & 0x400)
|
|
return;
|
|
|
|
addr = (addr & 0x3ff) | ((addr & ~0x7ff) >> 1);
|
|
column = (addr >> 1) & dev->ram_mask[bank];
|
|
row = (addr >> dev->row_virt_shift[bank]) & dev->ram_mask[bank];
|
|
|
|
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
|
|
} else {
|
|
column = (addr >> 1) & ((dev->ram_mask[bank] << 1) | 1);
|
|
row = (addr >> (dev->row_virt_shift[bank]+1)) & dev->ram_mask[bank];
|
|
|
|
addr = byte | (column << 1) | (row << (dev->row_phys_shift[bank]+1));
|
|
}
|
|
|
|
ram[addr + dev->ram_phys_base[bank]] = val;
|
|
}
|
|
|
|
|
|
static uint8_t
|
|
ram_mirrored_read(uint32_t addr, void *priv)
|
|
{
|
|
ram_struct_t *rs = (ram_struct_t *) priv;
|
|
scamp_t *dev = rs->parent;
|
|
int bank = rs->bank, byte;
|
|
int row, column;
|
|
|
|
addr -= dev->ram_virt_base[bank];
|
|
byte = addr & 1;
|
|
column = (addr >> 1) & dev->ram_mask[bank];
|
|
row = (addr >> dev->row_virt_shift[bank]) & dev->ram_mask[bank];
|
|
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
|
|
|
|
return ram[addr + dev->ram_phys_base[bank]];
|
|
}
|
|
|
|
|
|
static void
|
|
ram_mirrored_write(uint32_t addr, uint8_t val, void *priv)
|
|
{
|
|
ram_struct_t *rs = (ram_struct_t *) priv;
|
|
scamp_t *dev = rs->parent;
|
|
int bank = rs->bank, byte;
|
|
int row, column;
|
|
|
|
addr -= dev->ram_virt_base[bank];
|
|
byte = addr & 1;
|
|
column = (addr >> 1) & dev->ram_mask[bank];
|
|
row = (addr >> dev->row_virt_shift[bank]) & dev->ram_mask[bank];
|
|
addr = byte | (column << 1) | (row << dev->row_phys_shift[bank]);
|
|
|
|
ram[addr + dev->ram_phys_base[bank]] = val;
|
|
}
|
|
|
|
|
|
static void
|
|
recalc_mappings(void *priv)
|
|
{
|
|
scamp_t *dev = (scamp_t *) priv;
|
|
int c;
|
|
uint32_t virt_base = 0, old_virt_base;
|
|
uint8_t cur_rammap = dev->cfg_regs[CFG_RAMMAP] & 0xf;
|
|
int bank_nr = 0, phys_bank;
|
|
|
|
mem_set_mem_state_both((1 << 20), (16256 - 1024) * 1024, MEM_READ_EXTERNAL | MEM_WRITE_EXTERNAL);
|
|
mem_set_mem_state(0xfe0000, 0x20000, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
|
|
|
|
for (c = 0; c < 2; c++)
|
|
mem_mapping_disable(&dev->ram_mapping[c]);
|
|
|
|
/* Once the BIOS programs the correct DRAM configuration, switch to regular
|
|
linear memory mapping */
|
|
if (cur_rammap == ram_configs[dev->ram_config].rammap) {
|
|
mem_mapping_set_handler(&ram_low_mapping,
|
|
mem_read_ram, mem_read_ramw, mem_read_raml,
|
|
mem_write_ram, mem_write_ramw, mem_write_raml);
|
|
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
|
|
if (mem_size > 1024)
|
|
mem_set_mem_state_both((1 << 20), (mem_size - 1024) << 10, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
mem_mapping_enable(&ram_high_mapping);
|
|
return;
|
|
} else {
|
|
mem_mapping_set_handler(&ram_low_mapping,
|
|
ram_mirrored_read, NULL, NULL,
|
|
ram_mirrored_write, NULL, NULL);
|
|
mem_mapping_disable(&ram_low_mapping);
|
|
}
|
|
|
|
if (rammap[cur_rammap].bank[0] == BANK_NONE)
|
|
bank_nr = 1;
|
|
|
|
for (; bank_nr < 2; bank_nr++) {
|
|
old_virt_base = virt_base;
|
|
phys_bank = ram_configs[dev->ram_config].bank[bank_nr];
|
|
|
|
dev->ram_virt_base[bank_nr] = virt_base;
|
|
|
|
if (virt_base == 0) {
|
|
switch (rammap[cur_rammap].bank[bank_nr]) {
|
|
case BANK_NONE:
|
|
fatal(" Bank %i is empty!\n }\n}\n", bank_nr);
|
|
break;
|
|
|
|
case BANK_256K:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&ram_low_mapping, 0, 0x80000);
|
|
mem_mapping_set_p(&ram_low_mapping, (void *)&dev->ram_struct[bank_nr]);
|
|
}
|
|
virt_base += (1 << 19);
|
|
dev->row_virt_shift[bank_nr] = 10;
|
|
break;
|
|
|
|
case BANK_256K_INTERLEAVED:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
|
|
mem_mapping_set_p(&ram_low_mapping, (void *)&dev->ram_struct[bank_nr]);
|
|
}
|
|
virt_base += (1 << 20);
|
|
dev->row_virt_shift[bank_nr] = 10;
|
|
break;
|
|
|
|
case BANK_1M:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
|
|
mem_mapping_set_p(&ram_low_mapping, (void *)&dev->ram_struct[bank_nr]);
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], 0x100000, 0x100000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr] + 0x100000]);
|
|
mem_set_mem_state_both((1 << 20), (1 << 20), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 21);
|
|
dev->row_virt_shift[bank_nr] = 11;
|
|
break;
|
|
|
|
case BANK_1M_INTERLEAVED:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
|
|
mem_mapping_set_p(&ram_low_mapping, (void *)&dev->ram_struct[bank_nr]);
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], 0x100000, 0x300000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr] + 0x100000]);
|
|
mem_set_mem_state_both((1 << 20), (3 << 20), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 22);
|
|
dev->row_virt_shift[bank_nr] = 11;
|
|
break;
|
|
|
|
case BANK_4M:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
|
|
mem_mapping_set_p(&ram_low_mapping, (void *)&dev->ram_struct[bank_nr]);
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], 0x100000, 0x700000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr] + 0x100000]);
|
|
mem_set_mem_state_both((1 << 20), (7 << 20), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 23);
|
|
dev->row_virt_shift[bank_nr] = 12;
|
|
break;
|
|
|
|
case BANK_4M_INTERLEAVED:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&ram_low_mapping, 0, 0xa0000);
|
|
mem_mapping_set_p(&ram_low_mapping, (void *)&dev->ram_struct[bank_nr]);
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], 0x100000, 0xf00000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr] + 0x100000]);
|
|
mem_set_mem_state_both((1 << 20), (15 << 20), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 24);
|
|
dev->row_virt_shift[bank_nr] = 12;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (rammap[cur_rammap].bank[bank_nr]) {
|
|
case BANK_NONE:
|
|
break;
|
|
|
|
case BANK_256K:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x80000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
|
|
mem_set_mem_state_both(virt_base, (1 << 19), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 19);
|
|
dev->row_virt_shift[bank_nr] = 10;
|
|
break;
|
|
|
|
case BANK_256K_INTERLEAVED:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x100000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
|
|
mem_set_mem_state_both(virt_base, (1 << 20), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 20);
|
|
dev->row_virt_shift[bank_nr] = 10;
|
|
break;
|
|
|
|
case BANK_1M:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x200000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
|
|
mem_set_mem_state_both(virt_base, (1 << 21), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 21);
|
|
dev->row_virt_shift[bank_nr] = 11;
|
|
break;
|
|
|
|
case BANK_1M_INTERLEAVED:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x400000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
|
|
mem_set_mem_state_both(virt_base, (1 << 22), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 22);
|
|
dev->row_virt_shift[bank_nr] = 11;
|
|
break;
|
|
|
|
case BANK_4M:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x800000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
|
|
mem_set_mem_state_both(virt_base, (1 << 23), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 23);
|
|
dev->row_virt_shift[bank_nr] = 12;
|
|
break;
|
|
|
|
case BANK_4M_INTERLEAVED:
|
|
if (phys_bank != BANK_NONE) {
|
|
mem_mapping_set_addr(&dev->ram_mapping[bank_nr], virt_base, 0x1000000);
|
|
mem_mapping_set_exec(&dev->ram_mapping[bank_nr], &ram[dev->ram_phys_base[bank_nr]]);
|
|
mem_set_mem_state_both(virt_base, (1 << 24), MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
}
|
|
virt_base += (1 << 24);
|
|
dev->row_virt_shift[bank_nr] = 12;
|
|
break;
|
|
}
|
|
}
|
|
switch (rammap[cur_rammap].bank[bank_nr]) {
|
|
case BANK_256K: case BANK_1M: case BANK_4M:
|
|
mem_mapping_set_handler(&dev->ram_mapping[bank_nr],
|
|
ram_mirrored_read, NULL, NULL,
|
|
ram_mirrored_write, NULL, NULL);
|
|
if (!old_virt_base)
|
|
mem_mapping_set_handler(&ram_low_mapping,
|
|
ram_mirrored_read, NULL, NULL,
|
|
ram_mirrored_write, NULL, NULL);
|
|
break;
|
|
|
|
case BANK_256K_INTERLEAVED: case BANK_1M_INTERLEAVED:
|
|
mem_mapping_set_handler(&dev->ram_mapping[bank_nr],
|
|
ram_mirrored_interleaved_read, NULL, NULL,
|
|
ram_mirrored_interleaved_write, NULL, NULL);
|
|
if (!old_virt_base)
|
|
mem_mapping_set_handler(&ram_low_mapping,
|
|
ram_mirrored_interleaved_read, NULL, NULL,
|
|
ram_mirrored_interleaved_write, NULL, NULL);
|
|
break;
|
|
|
|
case BANK_4M_INTERLEAVED:
|
|
if (phys_bank == BANK_256K || phys_bank == BANK_256K_INTERLEAVED) {
|
|
mem_mapping_set_handler(&dev->ram_mapping[bank_nr],
|
|
ram_mirrored_256k_in_4mi_read, NULL, NULL,
|
|
ram_mirrored_256k_in_4mi_write, NULL, NULL);
|
|
if (!old_virt_base)
|
|
mem_mapping_set_handler(&ram_low_mapping,
|
|
ram_mirrored_256k_in_4mi_read, NULL, NULL,
|
|
ram_mirrored_256k_in_4mi_write, NULL, NULL);
|
|
} else {
|
|
mem_mapping_set_handler(&dev->ram_mapping[bank_nr],
|
|
ram_mirrored_interleaved_read, NULL, NULL,
|
|
ram_mirrored_interleaved_write, NULL, NULL);
|
|
if (!old_virt_base)
|
|
mem_mapping_set_handler(&ram_low_mapping,
|
|
ram_mirrored_interleaved_read, NULL, NULL,
|
|
ram_mirrored_interleaved_write, NULL, NULL);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
shadow_control(uint32_t addr, uint32_t size, int state)
|
|
{
|
|
switch (state) {
|
|
case 0:
|
|
mem_set_mem_state(addr, size, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
|
|
break;
|
|
case 1:
|
|
mem_set_mem_state(addr, size, MEM_READ_EXTANY | MEM_WRITE_INTERNAL);
|
|
break;
|
|
case 2:
|
|
mem_set_mem_state(addr, size, MEM_READ_INTERNAL | MEM_WRITE_EXTANY);
|
|
break;
|
|
case 3:
|
|
mem_set_mem_state(addr, size, MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
|
|
break;
|
|
}
|
|
|
|
flushmmucache_nopc();
|
|
}
|
|
|
|
|
|
static void
|
|
scamp_write(uint16_t addr, uint8_t val, void *priv)
|
|
{
|
|
scamp_t *dev = (scamp_t *) priv;
|
|
|
|
switch (addr) {
|
|
case 0xec:
|
|
if (dev->cfg_enable)
|
|
dev->cfg_index = val;
|
|
break;
|
|
|
|
case 0xed:
|
|
if (dev->cfg_enable && (dev->cfg_index >= 0x02) && (dev->cfg_index <= 0x16)) {
|
|
dev->cfg_regs[dev->cfg_index] = val;
|
|
switch (dev->cfg_index) {
|
|
case CFG_SLTPTR:
|
|
break;
|
|
|
|
case CFG_RAMMAP:
|
|
recalc_mappings(dev);
|
|
mem_mapping_disable(&ram_remapped_mapping);
|
|
if (dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386) {
|
|
/* Enabling remapping will disable all shadowing */
|
|
mem_remap_top(384);
|
|
shadow_control(0xa0000, 0x60000, 0);
|
|
} else {
|
|
shadow_control(0xa0000, 0x8000, dev->cfg_regs[CFG_ABAXS] & 3);
|
|
shadow_control(0xa8000, 0x8000, (dev->cfg_regs[CFG_ABAXS] >> 2) & 3);
|
|
shadow_control(0xb0000, 0x8000, (dev->cfg_regs[CFG_ABAXS] >> 4) & 3);
|
|
shadow_control(0xb8000, 0x8000, (dev->cfg_regs[CFG_ABAXS] >> 6) & 3);
|
|
|
|
shadow_control(0xc0000, 0x4000, dev->cfg_regs[CFG_CAXS] & 3);
|
|
shadow_control(0xc4000, 0x4000, (dev->cfg_regs[CFG_CAXS] >> 2) & 3);
|
|
shadow_control(0xc8000, 0x4000, (dev->cfg_regs[CFG_CAXS] >> 4) & 3);
|
|
shadow_control(0xcc000, 0x4000, (dev->cfg_regs[CFG_CAXS] >> 6) & 3);
|
|
|
|
shadow_control(0xd0000, 0x4000, dev->cfg_regs[CFG_DAXS] & 3);
|
|
shadow_control(0xd4000, 0x4000, (dev->cfg_regs[CFG_DAXS] >> 2) & 3);
|
|
shadow_control(0xd8000, 0x4000, (dev->cfg_regs[CFG_DAXS] >> 4) & 3);
|
|
shadow_control(0xdc000, 0x4000, (dev->cfg_regs[CFG_DAXS] >> 6) & 3);
|
|
|
|
shadow_control(0xe0000, 0x8000, dev->cfg_regs[CFG_FEAXS] & 3);
|
|
shadow_control(0xe8000, 0x8000, (dev->cfg_regs[CFG_FEAXS] >> 2) & 3);
|
|
shadow_control(0xf0000, 0x8000, (dev->cfg_regs[CFG_FEAXS] >> 4) & 3);
|
|
shadow_control(0xf8000, 0x8000, (dev->cfg_regs[CFG_FEAXS] >> 6) & 3);
|
|
}
|
|
break;
|
|
|
|
case CFG_ABAXS:
|
|
if (!(dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386)) {
|
|
shadow_control(0xa0000, 0x8000, val & 3);
|
|
shadow_control(0xa8000, 0x8000, (val >> 2) & 3);
|
|
shadow_control(0xb0000, 0x8000, (val >> 4) & 3);
|
|
shadow_control(0xb8000, 0x8000, (val >> 6) & 3);
|
|
}
|
|
break;
|
|
|
|
case CFG_CAXS:
|
|
if (!(dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386)) {
|
|
shadow_control(0xc0000, 0x4000, val & 3);
|
|
shadow_control(0xc4000, 0x4000, (val >> 2) & 3);
|
|
shadow_control(0xc8000, 0x4000, (val >> 4) & 3);
|
|
shadow_control(0xcc000, 0x4000, (val >> 6) & 3);
|
|
}
|
|
break;
|
|
|
|
case CFG_DAXS:
|
|
if (!(dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386)) {
|
|
shadow_control(0xd0000, 0x4000, val & 3);
|
|
shadow_control(0xd4000, 0x4000, (val >> 2) & 3);
|
|
shadow_control(0xd8000, 0x4000, (val >> 4) & 3);
|
|
shadow_control(0xdc000, 0x4000, (val >> 6) & 3);
|
|
}
|
|
break;
|
|
|
|
case CFG_FEAXS:
|
|
if (!(dev->cfg_regs[CFG_RAMMAP] & RAMMAP_REMP386)) {
|
|
shadow_control(0xe0000, 0x8000, val & 3);
|
|
shadow_control(0xe8000, 0x8000, (val >> 2) & 3);
|
|
shadow_control(0xf0000, 0x8000, (val >> 4) & 3);
|
|
shadow_control(0xf8000, 0x8000, (val >> 6) & 3);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0xee:
|
|
if (dev->cfg_enable && mem_a20_alt) {
|
|
dev->port_92->reg &= 0xfd;
|
|
mem_a20_alt = 0;
|
|
mem_a20_recalc();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static uint8_t
|
|
scamp_read(uint16_t addr, void *priv)
|
|
{
|
|
scamp_t *dev = (scamp_t *) priv;
|
|
uint8_t ret = 0xff;
|
|
|
|
switch (addr) {
|
|
case 0xed:
|
|
if (dev->cfg_enable && (dev->cfg_index >= 0x00) && (dev->cfg_index <= 0x16))
|
|
ret = (dev->cfg_regs[dev->cfg_index]);
|
|
break;
|
|
|
|
case 0xee:
|
|
if (!mem_a20_alt) {
|
|
dev->port_92->reg |= 0x02;
|
|
mem_a20_alt = 1;
|
|
mem_a20_recalc();
|
|
}
|
|
break;
|
|
|
|
case 0xef:
|
|
softresetx86();
|
|
cpu_set_edx();
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void
|
|
scamp_close(void *priv)
|
|
{
|
|
scamp_t *dev = (scamp_t *) priv;
|
|
|
|
free(dev);
|
|
}
|
|
|
|
|
|
static void *
|
|
scamp_init(const device_t *info)
|
|
{
|
|
uint32_t addr;
|
|
int c;
|
|
scamp_t *dev = (scamp_t *)malloc(sizeof(scamp_t));
|
|
memset(dev, 0x00, sizeof(scamp_t));
|
|
|
|
dev->cfg_regs[CFG_ID] = ID_VL82C311;
|
|
dev->cfg_enable = 1;
|
|
|
|
io_sethandler(0x00e8, 0x0001,
|
|
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
|
|
io_sethandler(0x00ea, 0x0006,
|
|
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
|
|
io_sethandler(0x00f4, 0x0002,
|
|
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
|
|
io_sethandler(0x00f9, 0x0001,
|
|
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
|
|
io_sethandler(0x00fb, 0x0001,
|
|
scamp_read, NULL, NULL, scamp_write, NULL, NULL, dev);
|
|
|
|
dev->ram_config = 0;
|
|
|
|
/* Find best fit configuration for the requested memory size */
|
|
for (c = 0; c < NR_ELEMS(ram_configs); c++) {
|
|
if (mem_size < ram_configs[c].size_kb)
|
|
break;
|
|
|
|
dev->ram_config = c;
|
|
}
|
|
|
|
mem_mapping_set_p(&ram_low_mapping, (void *) &dev->ram_struct[0]);
|
|
mem_mapping_set_handler(&ram_low_mapping,
|
|
ram_mirrored_read, NULL, NULL,
|
|
ram_mirrored_write, NULL, NULL);
|
|
mem_mapping_disable(&ram_high_mapping);
|
|
|
|
addr = 0;
|
|
for (c = 0; c < 2; c++) {
|
|
dev->ram_struct[c].parent = dev;
|
|
dev->ram_struct[c].bank = c;
|
|
mem_mapping_add(&dev->ram_mapping[c], 0, 0,
|
|
ram_mirrored_read, NULL, NULL,
|
|
ram_mirrored_write, NULL, NULL,
|
|
&ram[addr], MEM_MAPPING_INTERNAL, (void *) &dev->ram_struct[c]);
|
|
mem_mapping_disable(&dev->ram_mapping[c]);
|
|
|
|
dev->ram_phys_base[c] = addr;
|
|
|
|
switch (ram_configs[dev->ram_config].bank[c]) {
|
|
case BANK_NONE:
|
|
dev->ram_mask[c] = 0;
|
|
dev->ram_interleaved[c] = 0;
|
|
break;
|
|
|
|
case BANK_256K:
|
|
addr += (1 << 19);
|
|
dev->ram_mask[c] = 0x1ff;
|
|
dev->row_phys_shift[c] = 10;
|
|
dev->ram_interleaved[c] = 0;
|
|
break;
|
|
|
|
case BANK_256K_INTERLEAVED:
|
|
addr += (1 << 20);
|
|
dev->ram_mask[c] = 0x1ff;
|
|
dev->row_phys_shift[c] = 10;
|
|
dev->ibank_shift[c] = 19;
|
|
dev->ram_interleaved[c] = 1;
|
|
break;
|
|
|
|
case BANK_1M:
|
|
addr += (1 << 21);
|
|
dev->ram_mask[c] = 0x3ff;
|
|
dev->row_phys_shift[c] = 11;
|
|
dev->ram_interleaved[c] = 0;
|
|
break;
|
|
|
|
case BANK_1M_INTERLEAVED:
|
|
addr += (1 << 22);
|
|
dev->ram_mask[c] = 0x3ff;
|
|
dev->row_phys_shift[c] = 11;
|
|
dev->ibank_shift[c] = 21;
|
|
dev->ram_interleaved[c] = 1;
|
|
break;
|
|
|
|
case BANK_4M:
|
|
addr += (1 << 23);
|
|
dev->ram_mask[c] = 0x7ff;
|
|
dev->row_phys_shift[c] = 12;
|
|
dev->ram_interleaved[c] = 0;
|
|
break;
|
|
|
|
case BANK_4M_INTERLEAVED:
|
|
addr += (1 << 24);
|
|
dev->ram_mask[c] = 0x7ff;
|
|
dev->row_phys_shift[c] = 12;
|
|
dev->ibank_shift[c] = 23;
|
|
dev->ram_interleaved[c] = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mem_set_mem_state(0xfe0000, 0x20000, MEM_READ_EXTANY | MEM_WRITE_EXTANY);
|
|
|
|
dev->port_92 = device_add(&port_92_device);
|
|
|
|
return dev;
|
|
}
|
|
|
|
|
|
const device_t vlsi_scamp_device = {
|
|
"VLSI SCAMP",
|
|
0,
|
|
0,
|
|
scamp_init, scamp_close, NULL,
|
|
{ NULL }, NULL, NULL,
|
|
NULL
|
|
};
|