Files
86Box/src/sound/snd_opl_nuked.c
Adrien Moulin 808337aac3 OPL: add the faster YMFM cores
This refactors the OPL interface in two drivers : Nuked and YMFM
Nuked is used by default, YMFM can be enabled with [Sound] fm_driver = ymfm
2022-07-25 20:24:31 +02:00

1618 lines
43 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Nuked OPL3 emulator.
*
* Thanks:
* MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh):
* Feedback and Rhythm part calculation information.
* forums.submarine.org.uk(carbon14, opl3):
* Tremolo and phase generator calculation information.
* OPLx decapsulated(Matthew Gambrell, Olli Niemitalo):
* OPL2 ROMs.
* siliconpr0n.org(John McMaster, digshadow):
* YMF262 and VRC VII decaps and die shots.
*
* Version: 1.8.0
*
* Translation from C++ into C done by Miran Grca.
*
* **TODO** The OPL3 is a stereo chip, and, thus, always generates
* a two-sample stream of data, for the L and R channels,
* in that order. The OPL2, however, is mono. What should
* we generate for that?
*
* Version: @(#)snd_opl_nuked.c 1.0.5 2020/07/16
*
* Authors: Fred N. van Kempen, <decwiz@yahoo.com>
* Miran Grca, <mgrca8@gmail.com>
* Alexey Khokholov (Nuke.YKT)
*
* Copyright 2017-2020 Fred N. van Kempen.
* Copyright 2016-2020 Miran Grca.
* Copyright 2013-2018 Alexey Khokholov (Nuke.YKT)
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <86box/86box.h>
#include <86box/snd_opl_nuked.h>
#include <86box/sound.h>
#include <86box/timer.h>
#include <86box/device.h>
#include <86box/snd_opl.h>
#define WRBUF_SIZE 1024
#define WRBUF_DELAY 1
#define RSM_FRAC 10
// Channel types
enum {
ch_2op = 0,
ch_4op = 1,
ch_4op2 = 2,
ch_drum = 3
};
// Envelope key types
enum {
egk_norm = 0x01,
egk_drum = 0x02
};
enum envelope_gen_num {
envelope_gen_num_attack = 0,
envelope_gen_num_decay = 1,
envelope_gen_num_sustain = 2,
envelope_gen_num_release = 3
};
struct chan;
struct chip;
typedef struct slot {
struct chan *chan;
struct chip *dev;
int16_t out;
int16_t fbmod;
int16_t *mod;
int16_t prout;
int16_t eg_rout;
int16_t eg_out;
uint8_t eg_inc;
uint8_t eg_gen;
uint8_t eg_rate;
uint8_t eg_ksl;
uint8_t *trem;
uint8_t reg_vib;
uint8_t reg_type;
uint8_t reg_ksr;
uint8_t reg_mult;
uint8_t reg_ksl;
uint8_t reg_tl;
uint8_t reg_ar;
uint8_t reg_dr;
uint8_t reg_sl;
uint8_t reg_rr;
uint8_t reg_wf;
uint8_t key;
uint32_t pg_reset;
uint32_t pg_phase;
uint16_t pg_phase_out;
uint8_t slot_num;
} slot_t;
typedef struct chan {
slot_t *slots[2];
struct chan *pair;
struct chip *dev;
int16_t *out[4];
uint8_t chtype;
uint16_t f_num;
uint8_t block;
uint8_t fb;
uint8_t con;
uint8_t alg;
uint8_t ksv;
uint16_t cha,
chb;
uint8_t ch_num;
} chan_t;
typedef struct wrbuf {
uint64_t time;
uint16_t reg;
uint8_t data;
} wrbuf_t;
typedef struct chip {
chan_t chan[18];
slot_t slot[36];
uint16_t timer;
uint64_t eg_timer;
uint8_t eg_timerrem;
uint8_t eg_state;
uint8_t eg_add;
uint8_t newm;
uint8_t nts;
uint8_t rhy;
uint8_t vibpos;
uint8_t vibshift;
uint8_t tremolo;
uint8_t tremolopos;
uint8_t tremoloshift;
uint32_t noise;
int16_t zeromod;
int32_t mixbuff[2];
uint8_t rm_hh_bit2;
uint8_t rm_hh_bit3;
uint8_t rm_hh_bit7;
uint8_t rm_hh_bit8;
uint8_t rm_tc_bit3;
uint8_t rm_tc_bit5;
// OPL3L
int32_t rateratio;
int32_t samplecnt;
int32_t oldsamples[2];
int32_t samples[2];
uint64_t wrbuf_samplecnt;
uint32_t wrbuf_cur;
uint32_t wrbuf_last;
uint64_t wrbuf_lasttime;
wrbuf_t wrbuf[WRBUF_SIZE];
} nuked_t;
typedef struct {
nuked_t opl;
int8_t flags, pad;
uint16_t port;
uint8_t status, timer_ctrl;
uint16_t timer_count[2],
timer_cur_count[2];
pc_timer_t timers[2];
int pos;
int32_t buffer[SOUNDBUFLEN * 2];
} nuked_drv_t;
enum {
FLAG_CYCLES = 0x02,
FLAG_OPL3 = 0x01
};
enum {
STAT_TMR_OVER = 0x60,
STAT_TMR1_OVER = 0x40,
STAT_TMR2_OVER = 0x20,
STAT_TMR_ANY = 0x80
};
enum {
CTRL_RESET = 0x80,
CTRL_TMR_MASK = 0x60,
CTRL_TMR1_MASK = 0x40,
CTRL_TMR2_MASK = 0x20,
CTRL_TMR2_START = 0x02,
CTRL_TMR1_START = 0x01
};
#ifdef ENABLE_OPL_LOG
static void
nuked_log(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
pclog_ex(fmt, ap);
va_end(ap);
}
#else
# define nuked_log(fmt, ...)
#endif
// logsin table
static const uint16_t logsinrom[256] = {
0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471,
0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365,
0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd,
0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261,
0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f,
0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd,
0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195,
0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166,
0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c,
0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118,
0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8,
0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db,
0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1,
0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9,
0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094,
0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081,
0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070,
0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060,
0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052,
0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045,
0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039,
0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f,
0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026,
0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e,
0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017,
0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011,
0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c,
0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007,
0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004,
0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002,
0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001,
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000
};
// exp table
static const uint16_t exprom[256] = {
0x7fa, 0x7f5, 0x7ef, 0x7ea, 0x7e4, 0x7df, 0x7da, 0x7d4,
0x7cf, 0x7c9, 0x7c4, 0x7bf, 0x7b9, 0x7b4, 0x7ae, 0x7a9,
0x7a4, 0x79f, 0x799, 0x794, 0x78f, 0x78a, 0x784, 0x77f,
0x77a, 0x775, 0x770, 0x76a, 0x765, 0x760, 0x75b, 0x756,
0x751, 0x74c, 0x747, 0x742, 0x73d, 0x738, 0x733, 0x72e,
0x729, 0x724, 0x71f, 0x71a, 0x715, 0x710, 0x70b, 0x706,
0x702, 0x6fd, 0x6f8, 0x6f3, 0x6ee, 0x6e9, 0x6e5, 0x6e0,
0x6db, 0x6d6, 0x6d2, 0x6cd, 0x6c8, 0x6c4, 0x6bf, 0x6ba,
0x6b5, 0x6b1, 0x6ac, 0x6a8, 0x6a3, 0x69e, 0x69a, 0x695,
0x691, 0x68c, 0x688, 0x683, 0x67f, 0x67a, 0x676, 0x671,
0x66d, 0x668, 0x664, 0x65f, 0x65b, 0x657, 0x652, 0x64e,
0x649, 0x645, 0x641, 0x63c, 0x638, 0x634, 0x630, 0x62b,
0x627, 0x623, 0x61e, 0x61a, 0x616, 0x612, 0x60e, 0x609,
0x605, 0x601, 0x5fd, 0x5f9, 0x5f5, 0x5f0, 0x5ec, 0x5e8,
0x5e4, 0x5e0, 0x5dc, 0x5d8, 0x5d4, 0x5d0, 0x5cc, 0x5c8,
0x5c4, 0x5c0, 0x5bc, 0x5b8, 0x5b4, 0x5b0, 0x5ac, 0x5a8,
0x5a4, 0x5a0, 0x59c, 0x599, 0x595, 0x591, 0x58d, 0x589,
0x585, 0x581, 0x57e, 0x57a, 0x576, 0x572, 0x56f, 0x56b,
0x567, 0x563, 0x560, 0x55c, 0x558, 0x554, 0x551, 0x54d,
0x549, 0x546, 0x542, 0x53e, 0x53b, 0x537, 0x534, 0x530,
0x52c, 0x529, 0x525, 0x522, 0x51e, 0x51b, 0x517, 0x514,
0x510, 0x50c, 0x509, 0x506, 0x502, 0x4ff, 0x4fb, 0x4f8,
0x4f4, 0x4f1, 0x4ed, 0x4ea, 0x4e7, 0x4e3, 0x4e0, 0x4dc,
0x4d9, 0x4d6, 0x4d2, 0x4cf, 0x4cc, 0x4c8, 0x4c5, 0x4c2,
0x4be, 0x4bb, 0x4b8, 0x4b5, 0x4b1, 0x4ae, 0x4ab, 0x4a8,
0x4a4, 0x4a1, 0x49e, 0x49b, 0x498, 0x494, 0x491, 0x48e,
0x48b, 0x488, 0x485, 0x482, 0x47e, 0x47b, 0x478, 0x475,
0x472, 0x46f, 0x46c, 0x469, 0x466, 0x463, 0x460, 0x45d,
0x45a, 0x457, 0x454, 0x451, 0x44e, 0x44b, 0x448, 0x445,
0x442, 0x43f, 0x43c, 0x439, 0x436, 0x433, 0x430, 0x42d,
0x42a, 0x428, 0x425, 0x422, 0x41f, 0x41c, 0x419, 0x416,
0x414, 0x411, 0x40e, 0x40b, 0x408, 0x406, 0x403, 0x400
};
// freq mult table multiplied by 2
//
// 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 12, 12, 15, 15
static const uint8_t mt[16] = {
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30
};
// ksl table
static const uint8_t kslrom[16] = {
0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64
};
static const uint8_t kslshift[4] = {
8, 1, 2, 0
};
// envelope generator constants
static const uint8_t eg_incstep[4][4] = {
{0, 0, 0, 0},
{ 1, 0, 0, 0},
{ 1, 0, 1, 0},
{ 1, 1, 1, 0}
};
// address decoding
static const int8_t ad_slot[0x20] = {
0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1,
12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static const uint8_t ch_slot[18] = {
0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32
};
// Envelope generator
typedef int16_t (*env_sinfunc)(uint16_t phase, uint16_t envelope);
typedef void (*env_genfunc)(slot_t *slot);
static int16_t
env_calc_exp(uint32_t level)
{
if (level > 0x1fff)
level = 0x1fff;
return ((exprom[level & 0xff] << 1) >> (level >> 8));
}
static int16_t
env_calc_sin0(uint16_t phase, uint16_t env)
{
uint16_t out = 0;
uint16_t neg = 0;
phase &= 0x3ff;
if (phase & 0x0200)
neg = 0xffff;
if (phase & 0x0100)
out = logsinrom[(phase & 0xff) ^ 0xff];
else
out = logsinrom[phase & 0xff];
return (env_calc_exp(out + (env << 3)) ^ neg);
}
static int16_t
env_calc_sin1(uint16_t phase, uint16_t env)
{
uint16_t out = 0;
phase &= 0x3ff;
if (phase & 0x0200)
out = 0x1000;
else if (phase & 0x0100)
out = logsinrom[(phase & 0xff) ^ 0xff];
else
out = logsinrom[phase & 0xff];
return (env_calc_exp(out + (env << 3)));
}
static int16_t
env_calc_sin2(uint16_t phase, uint16_t env)
{
uint16_t out = 0;
phase &= 0x03ff;
if (phase & 0x0100)
out = logsinrom[(phase & 0xff) ^ 0xff];
else
out = logsinrom[phase & 0xff];
return (env_calc_exp(out + (env << 3)));
}
static int16_t
env_calc_sin3(uint16_t phase, uint16_t env)
{
uint16_t out = 0;
phase &= 0x03ff;
if (phase & 0x0100)
out = 0x1000;
else
out = logsinrom[phase & 0xff];
return (env_calc_exp(out + (env << 3)));
}
static int16_t
env_calc_sin4(uint16_t phase, uint16_t env)
{
uint16_t out = 0;
uint16_t neg = 0;
phase &= 0x03ff;
if ((phase & 0x0300) == 0x0100)
neg = 0xffff;
if (phase & 0x0200)
out = 0x1000;
else if (phase & 0x80)
out = logsinrom[((phase ^ 0xff) << 1) & 0xff];
else
out = logsinrom[(phase << 1) & 0xff];
return (env_calc_exp(out + (env << 3)) ^ neg);
}
static int16_t
env_calc_sin5(uint16_t phase, uint16_t env)
{
uint16_t out = 0;
phase &= 0x03ff;
if (phase & 0x0200)
out = 0x1000;
else if (phase & 0x80)
out = logsinrom[((phase ^ 0xff) << 1) & 0xff];
else
out = logsinrom[(phase << 1) & 0xff];
return (env_calc_exp(out + (env << 3)));
}
static int16_t
env_calc_sin6(uint16_t phase, uint16_t env)
{
uint16_t neg = 0;
phase &= 0x03ff;
if (phase & 0x0200)
neg = 0xffff;
return (env_calc_exp(env << 3) ^ neg);
}
static int16_t
env_calc_sin7(uint16_t phase, uint16_t env)
{
uint16_t out = 0;
uint16_t neg = 0;
phase &= 0x03ff;
if (phase & 0x0200) {
neg = 0xffff;
phase = (phase & 0x01ff) ^ 0x01ff;
}
out = phase << 3;
return (env_calc_exp(out + (env << 3)) ^ neg);
}
static const env_sinfunc env_sin[8] = {
env_calc_sin0,
env_calc_sin1,
env_calc_sin2,
env_calc_sin3,
env_calc_sin4,
env_calc_sin5,
env_calc_sin6,
env_calc_sin7
};
static void
env_update_ksl(slot_t *slot)
{
int16_t ksl = (kslrom[slot->chan->f_num >> 6] << 2) - ((0x08 - slot->chan->block) << 5);
if (ksl < 0)
ksl = 0;
slot->eg_ksl = (uint8_t) ksl;
}
static void
env_calc(slot_t *slot)
{
uint8_t nonzero;
uint8_t rate;
uint8_t rate_hi;
uint8_t rate_lo;
uint8_t reg_rate = 0;
uint8_t ks;
uint8_t eg_shift, shift;
uint16_t eg_rout;
int16_t eg_inc;
uint8_t eg_off;
uint8_t reset = 0;
slot->eg_out = slot->eg_rout + (slot->reg_tl << 2) + (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem;
if (slot->key && slot->eg_gen == envelope_gen_num_release) {
reset = 1;
reg_rate = slot->reg_ar;
} else
switch (slot->eg_gen) {
case envelope_gen_num_attack:
reg_rate = slot->reg_ar;
break;
case envelope_gen_num_decay:
reg_rate = slot->reg_dr;
break;
case envelope_gen_num_sustain:
if (!slot->reg_type)
reg_rate = slot->reg_rr;
break;
case envelope_gen_num_release:
reg_rate = slot->reg_rr;
break;
}
slot->pg_reset = reset;
ks = slot->chan->ksv >> ((slot->reg_ksr ^ 1) << 1);
nonzero = (reg_rate != 0);
rate = ks + (reg_rate << 2);
rate_hi = rate >> 2;
rate_lo = rate & 0x03;
if (rate_hi & 0x10)
rate_hi = 0x0f;
eg_shift = rate_hi + slot->dev->eg_add;
shift = 0;
if (nonzero) {
if (rate_hi < 12) {
if (slot->dev->eg_state)
switch (eg_shift) {
case 12:
shift = 1;
break;
case 13:
shift = (rate_lo >> 1) & 0x01;
break;
case 14:
shift = rate_lo & 0x01;
break;
default:
break;
}
} else {
shift = (rate_hi & 0x03) + eg_incstep[rate_lo][slot->dev->timer & 0x03];
if (shift & 0x04)
shift = 0x03;
if (!shift)
shift = slot->dev->eg_state;
}
}
eg_rout = slot->eg_rout;
eg_inc = 0;
eg_off = 0;
// Instant attack
if (reset && rate_hi == 0x0f)
eg_rout = 0x00;
// Envelope off
if ((slot->eg_rout & 0x1f8) == 0x1f8)
eg_off = 1;
if (slot->eg_gen != envelope_gen_num_attack && !reset && eg_off)
eg_rout = 0x1ff;
switch (slot->eg_gen) {
case envelope_gen_num_attack:
if (!slot->eg_rout)
slot->eg_gen = envelope_gen_num_decay;
else if (slot->key && shift > 0 && rate_hi != 0x0f)
eg_inc = ((~slot->eg_rout) << shift) >> 4;
break;
case envelope_gen_num_decay:
if ((slot->eg_rout >> 4) == slot->reg_sl)
slot->eg_gen = envelope_gen_num_sustain;
else if (!eg_off && !reset && shift > 0)
eg_inc = 1 << (shift - 1);
break;
case envelope_gen_num_sustain:
case envelope_gen_num_release:
if (!eg_off && !reset && shift > 0)
eg_inc = 1 << (shift - 1);
break;
}
slot->eg_rout = (eg_rout + eg_inc) & 0x1ff;
// Key off
if (reset)
slot->eg_gen = envelope_gen_num_attack;
if (!slot->key)
slot->eg_gen = envelope_gen_num_release;
}
static void
env_key_on(slot_t *slot, uint8_t type)
{
slot->key |= type;
}
static void
env_key_off(slot_t *slot, uint8_t type)
{
slot->key &= ~type;
}
static void
phase_generate(slot_t *slot)
{
uint16_t f_num;
uint32_t basefreq;
uint8_t rm_xor, n_bit;
uint32_t noise;
uint16_t phase;
int8_t range;
uint8_t vibpos;
nuked_t *dev;
dev = slot->dev;
f_num = slot->chan->f_num;
if (slot->reg_vib) {
range = (f_num >> 7) & 7;
vibpos = dev->vibpos;
if (!(vibpos & 3))
range = 0;
else if (vibpos & 1)
range >>= 1;
range >>= dev->vibshift;
if (vibpos & 4)
range = -range;
f_num += range;
}
basefreq = (f_num << slot->chan->block) >> 1;
phase = (uint16_t) (slot->pg_phase >> 9);
if (slot->pg_reset)
slot->pg_phase = 0;
slot->pg_phase += (basefreq * mt[slot->reg_mult]) >> 1;
// Rhythm mode
noise = dev->noise;
slot->pg_phase_out = phase;
if (slot->slot_num == 13) { // hh
dev->rm_hh_bit2 = (phase >> 2) & 1;
dev->rm_hh_bit3 = (phase >> 3) & 1;
dev->rm_hh_bit7 = (phase >> 7) & 1;
dev->rm_hh_bit8 = (phase >> 8) & 1;
}
if (slot->slot_num == 17 && (dev->rhy & 0x20)) { // tc
dev->rm_tc_bit3 = (phase >> 3) & 1;
dev->rm_tc_bit5 = (phase >> 5) & 1;
}
if (dev->rhy & 0x20) {
rm_xor = (dev->rm_hh_bit2 ^ dev->rm_hh_bit7) | (dev->rm_hh_bit3 ^ dev->rm_tc_bit5) | (dev->rm_tc_bit3 ^ dev->rm_tc_bit5);
switch (slot->slot_num) {
case 13: // hh
slot->pg_phase_out = rm_xor << 9;
if (rm_xor ^ (noise & 1))
slot->pg_phase_out |= 0xd0;
else
slot->pg_phase_out |= 0x34;
break;
case 16: // sd
slot->pg_phase_out = (dev->rm_hh_bit8 << 9) | ((dev->rm_hh_bit8 ^ (noise & 1)) << 8);
break;
case 17: // tc
slot->pg_phase_out = (rm_xor << 9) | 0x80;
break;
default:
break;
}
}
n_bit = ((noise >> 14) ^ noise) & 0x01;
dev->noise = (noise >> 1) | (n_bit << 22);
}
static void
slot_write_20(slot_t *slot, uint8_t data)
{
if ((data >> 7) & 0x01)
slot->trem = &slot->dev->tremolo;
else
slot->trem = (uint8_t *) &slot->dev->zeromod;
slot->reg_vib = (data >> 6) & 0x01;
slot->reg_type = (data >> 5) & 0x01;
slot->reg_ksr = (data >> 4) & 0x01;
slot->reg_mult = data & 0x0f;
}
static void
slot_write_40(slot_t *slot, uint8_t data)
{
slot->reg_ksl = (data >> 6) & 0x03;
slot->reg_tl = data & 0x3f;
env_update_ksl(slot);
}
static void
slot_write_60(slot_t *slot, uint8_t data)
{
slot->reg_ar = (data >> 4) & 0x0f;
slot->reg_dr = data & 0x0f;
}
static void
slot_write_80(slot_t *slot, uint8_t data)
{
slot->reg_sl = (data >> 4) & 0x0f;
if (slot->reg_sl == 0x0f)
slot->reg_sl = 0x1f;
slot->reg_rr = data & 0x0f;
}
static void
slot_write_e0(slot_t *slot, uint8_t data)
{
slot->reg_wf = data & 0x07;
if (slot->dev->newm == 0x00)
slot->reg_wf &= 0x03;
}
static void
slot_generate(slot_t *slot)
{
slot->out = env_sin[slot->reg_wf](slot->pg_phase_out + *slot->mod,
slot->eg_out);
}
static void
slot_calc_fb(slot_t *slot)
{
if (slot->chan->fb != 0x00)
slot->fbmod = (slot->prout + slot->out) >> (0x09 - slot->chan->fb);
else
slot->fbmod = 0;
slot->prout = slot->out;
}
static void
channel_setup_alg(chan_t *ch)
{
if (ch->chtype == ch_drum) {
if (ch->ch_num == 7 || ch->ch_num == 8) {
ch->slots[0]->mod = &ch->dev->zeromod;
ch->slots[1]->mod = &ch->dev->zeromod;
return;
}
switch (ch->alg & 0x01) {
case 0x00:
ch->slots[0]->mod = &ch->slots[0]->fbmod;
ch->slots[1]->mod = &ch->slots[0]->out;
break;
case 0x01:
ch->slots[0]->mod = &ch->slots[0]->fbmod;
ch->slots[1]->mod = &ch->dev->zeromod;
break;
}
return;
}
if (ch->alg & 0x08)
return;
if (ch->alg & 0x04) {
ch->pair->out[0] = &ch->dev->zeromod;
ch->pair->out[1] = &ch->dev->zeromod;
ch->pair->out[2] = &ch->dev->zeromod;
ch->pair->out[3] = &ch->dev->zeromod;
switch (ch->alg & 0x03) {
case 0x00:
ch->pair->slots[0]->mod = &ch->pair->slots[0]->fbmod;
ch->pair->slots[1]->mod = &ch->pair->slots[0]->out;
ch->slots[0]->mod = &ch->pair->slots[1]->out;
ch->slots[1]->mod = &ch->slots[0]->out;
ch->out[0] = &ch->slots[1]->out;
ch->out[1] = &ch->dev->zeromod;
ch->out[2] = &ch->dev->zeromod;
ch->out[3] = &ch->dev->zeromod;
break;
case 0x01:
ch->pair->slots[0]->mod = &ch->pair->slots[0]->fbmod;
ch->pair->slots[1]->mod = &ch->pair->slots[0]->out;
ch->slots[0]->mod = &ch->dev->zeromod;
ch->slots[1]->mod = &ch->slots[0]->out;
ch->out[0] = &ch->pair->slots[1]->out;
ch->out[1] = &ch->slots[1]->out;
ch->out[2] = &ch->dev->zeromod;
ch->out[3] = &ch->dev->zeromod;
break;
case 0x02:
ch->pair->slots[0]->mod = &ch->pair->slots[0]->fbmod;
ch->pair->slots[1]->mod = &ch->dev->zeromod;
ch->slots[0]->mod = &ch->pair->slots[1]->out;
ch->slots[1]->mod = &ch->slots[0]->out;
ch->out[0] = &ch->pair->slots[0]->out;
ch->out[1] = &ch->slots[1]->out;
ch->out[2] = &ch->dev->zeromod;
ch->out[3] = &ch->dev->zeromod;
break;
case 0x03:
ch->pair->slots[0]->mod = &ch->pair->slots[0]->fbmod;
ch->pair->slots[1]->mod = &ch->dev->zeromod;
ch->slots[0]->mod = &ch->pair->slots[1]->out;
ch->slots[1]->mod = &ch->dev->zeromod;
ch->out[0] = &ch->pair->slots[0]->out;
ch->out[1] = &ch->slots[0]->out;
ch->out[2] = &ch->slots[1]->out;
ch->out[3] = &ch->dev->zeromod;
break;
}
} else
switch (ch->alg & 0x01) {
case 0x00:
ch->slots[0]->mod = &ch->slots[0]->fbmod;
ch->slots[1]->mod = &ch->slots[0]->out;
ch->out[0] = &ch->slots[1]->out;
ch->out[1] = &ch->dev->zeromod;
ch->out[2] = &ch->dev->zeromod;
ch->out[3] = &ch->dev->zeromod;
break;
case 0x01:
ch->slots[0]->mod = &ch->slots[0]->fbmod;
ch->slots[1]->mod = &ch->dev->zeromod;
ch->out[0] = &ch->slots[0]->out;
ch->out[1] = &ch->slots[1]->out;
ch->out[2] = &ch->dev->zeromod;
ch->out[3] = &ch->dev->zeromod;
break;
}
}
static void
channel_update_rhythm(nuked_t *dev, uint8_t data)
{
chan_t *ch6, *ch7, *ch8;
uint8_t chnum;
dev->rhy = data & 0x3f;
if (dev->rhy & 0x20) {
ch6 = &dev->chan[6];
ch7 = &dev->chan[7];
ch8 = &dev->chan[8];
ch6->out[0] = &ch6->slots[1]->out;
ch6->out[1] = &ch6->slots[1]->out;
ch6->out[2] = &dev->zeromod;
ch6->out[3] = &dev->zeromod;
ch7->out[0] = &ch7->slots[0]->out;
ch7->out[1] = &ch7->slots[0]->out;
ch7->out[2] = &ch7->slots[1]->out;
ch7->out[3] = &ch7->slots[1]->out;
ch8->out[0] = &ch8->slots[0]->out;
ch8->out[1] = &ch8->slots[0]->out;
ch8->out[2] = &ch8->slots[1]->out;
ch8->out[3] = &ch8->slots[1]->out;
for (chnum = 6; chnum < 9; chnum++)
dev->chan[chnum].chtype = ch_drum;
channel_setup_alg(ch6);
channel_setup_alg(ch7);
channel_setup_alg(ch8);
// hh
if (dev->rhy & 0x01)
env_key_on(ch7->slots[0], egk_drum);
else
env_key_off(ch7->slots[0], egk_drum);
// tc
if (dev->rhy & 0x02)
env_key_on(ch8->slots[1], egk_drum);
else
env_key_off(ch8->slots[1], egk_drum);
// tom
if (dev->rhy & 0x04)
env_key_on(ch8->slots[0], egk_drum);
else
env_key_off(ch8->slots[0], egk_drum);
// sd
if (dev->rhy & 0x08)
env_key_on(ch7->slots[1], egk_drum);
else
env_key_off(ch7->slots[1], egk_drum);
// bd
if (dev->rhy & 0x10) {
env_key_on(ch6->slots[0], egk_drum);
env_key_on(ch6->slots[1], egk_drum);
} else {
env_key_off(ch6->slots[0], egk_drum);
env_key_off(ch6->slots[1], egk_drum);
}
} else {
for (chnum = 6; chnum < 9; chnum++) {
dev->chan[chnum].chtype = ch_2op;
channel_setup_alg(&dev->chan[chnum]);
env_key_off(dev->chan[chnum].slots[0], egk_drum);
env_key_off(dev->chan[chnum].slots[1], egk_drum);
}
}
}
static void
channel_write_a0(chan_t *ch, uint8_t data)
{
if (ch->dev->newm && ch->chtype == ch_4op2)
return;
ch->f_num = (ch->f_num & 0x300) | data;
ch->ksv = (ch->block << 1) | ((ch->f_num >> (0x09 - ch->dev->nts)) & 0x01);
env_update_ksl(ch->slots[0]);
env_update_ksl(ch->slots[1]);
if (ch->dev->newm && ch->chtype == ch_4op) {
ch->pair->f_num = ch->f_num;
ch->pair->ksv = ch->ksv;
env_update_ksl(ch->pair->slots[0]);
env_update_ksl(ch->pair->slots[1]);
}
}
static void
channel_write_b0(chan_t *ch, uint8_t data)
{
if (ch->dev->newm && ch->chtype == ch_4op2)
return;
ch->f_num = (ch->f_num & 0xff) | ((data & 0x03) << 8);
ch->block = (data >> 2) & 0x07;
ch->ksv = (ch->block << 1) | ((ch->f_num >> (0x09 - ch->dev->nts)) & 0x01);
env_update_ksl(ch->slots[0]);
env_update_ksl(ch->slots[1]);
if (ch->dev->newm && ch->chtype == ch_4op) {
ch->pair->f_num = ch->f_num;
ch->pair->block = ch->block;
ch->pair->ksv = ch->ksv;
env_update_ksl(ch->pair->slots[0]);
env_update_ksl(ch->pair->slots[1]);
}
}
static void
channel_write_c0(chan_t *ch, uint8_t data)
{
ch->fb = (data & 0x0e) >> 1;
ch->con = data & 0x01;
ch->alg = ch->con;
if (ch->dev->newm) {
if (ch->chtype == ch_4op) {
ch->pair->alg = 0x04 | (ch->con << 1) | ch->pair->con;
ch->alg = 0x08;
channel_setup_alg(ch->pair);
} else if (ch->chtype == ch_4op2) {
ch->alg = 0x04 | (ch->pair->con << 1) | ch->con;
ch->pair->alg = 0x08;
channel_setup_alg(ch);
} else
channel_setup_alg(ch);
} else
channel_setup_alg(ch);
if (ch->dev->newm) {
ch->cha = ((data >> 4) & 0x01) ? ~0 : 0;
ch->chb = ((data >> 5) & 0x01) ? ~0 : 0;
} else
ch->cha = ch->chb = (uint16_t) ~0;
}
static void
channel_key_on(chan_t *ch)
{
if (ch->dev->newm) {
if (ch->chtype == ch_4op) {
env_key_on(ch->slots[0], egk_norm);
env_key_on(ch->slots[1], egk_norm);
env_key_on(ch->pair->slots[0], egk_norm);
env_key_on(ch->pair->slots[1], egk_norm);
} else if (ch->chtype == ch_2op || ch->chtype == ch_drum) {
env_key_on(ch->slots[0], egk_norm);
env_key_on(ch->slots[1], egk_norm);
}
} else {
env_key_on(ch->slots[0], egk_norm);
env_key_on(ch->slots[1], egk_norm);
}
}
static void
channel_key_off(chan_t *ch)
{
if (ch->dev->newm) {
if (ch->chtype == ch_4op) {
env_key_off(ch->slots[0], egk_norm);
env_key_off(ch->slots[1], egk_norm);
env_key_off(ch->pair->slots[0], egk_norm);
env_key_off(ch->pair->slots[1], egk_norm);
} else if (ch->chtype == ch_2op || ch->chtype == ch_drum) {
env_key_off(ch->slots[0], egk_norm);
env_key_off(ch->slots[1], egk_norm);
}
} else {
env_key_off(ch->slots[0], egk_norm);
env_key_off(ch->slots[1], egk_norm);
}
}
static void
channel_set_4op(nuked_t *dev, uint8_t data)
{
uint8_t chnum;
uint8_t bit;
for (bit = 0; bit < 6; bit++) {
chnum = bit;
if (bit >= 3)
chnum += 9 - 3;
if ((data >> bit) & 0x01) {
dev->chan[chnum].chtype = ch_4op;
dev->chan[chnum + 3].chtype = ch_4op2;
} else {
dev->chan[chnum].chtype = ch_2op;
dev->chan[chnum + 3].chtype = ch_2op;
}
}
}
uint16_t
nuked_write_addr(void *priv, uint16_t port, uint8_t val)
{
nuked_t *dev = (nuked_t *) priv;
uint16_t addr;
addr = val;
if ((port & 0x0002) && ((addr == 0x0005) || dev->newm))
addr |= 0x0100;
return (addr);
}
void
nuked_write_reg(void *priv, uint16_t reg, uint8_t val)
{
nuked_t *dev = (nuked_t *) priv;
uint8_t high = (reg >> 8) & 0x01;
uint8_t regm = reg & 0xff;
switch (regm & 0xf0) {
case 0x00:
if (high)
switch (regm & 0x0f) {
case 0x04:
channel_set_4op(dev, val);
break;
case 0x05:
dev->newm = val & 0x01;
break;
}
else
switch (regm & 0x0f) {
case 0x08:
dev->nts = (val >> 6) & 0x01;
break;
}
break;
case 0x20:
case 0x30:
if (ad_slot[regm & 0x1f] >= 0)
slot_write_20(&dev->slot[18 * high + ad_slot[regm & 0x1f]], val);
break;
case 0x40:
case 0x50:
if (ad_slot[regm & 0x1f] >= 0)
slot_write_40(&dev->slot[18 * high + ad_slot[regm & 0x1f]], val);
break;
case 0x60:
case 0x70:
if (ad_slot[regm & 0x1f] >= 0)
slot_write_60(&dev->slot[18 * high + ad_slot[regm & 0x1f]], val);
break;
case 0x80:
case 0x90:
if (ad_slot[regm & 0x1f] >= 0)
slot_write_80(&dev->slot[18 * high + ad_slot[regm & 0x1f]], val);
break;
case 0xa0:
if ((regm & 0x0f) < 9)
channel_write_a0(&dev->chan[9 * high + (regm & 0x0f)], val);
break;
case 0xb0:
if (regm == 0xbd && !high) {
dev->tremoloshift = (((val >> 7) ^ 1) << 1) + 2;
dev->vibshift = ((val >> 6) & 0x01) ^ 1;
channel_update_rhythm(dev, val);
} else if ((regm & 0x0f) < 9) {
channel_write_b0(&dev->chan[9 * high + (regm & 0x0f)], val);
if (val & 0x20)
channel_key_on(&dev->chan[9 * high + (regm & 0x0f)]);
else
channel_key_off(&dev->chan[9 * high + (regm & 0x0f)]);
}
break;
case 0xc0:
if ((regm & 0x0f) < 9)
channel_write_c0(&dev->chan[9 * high + (regm & 0x0f)], val);
break;
case 0xe0:
case 0xf0:
if (ad_slot[regm & 0x1f] >= 0)
slot_write_e0(&dev->slot[18 * high + ad_slot[regm & 0x1f]], val);
break;
}
}
void
nuked_write_reg_buffered(void *priv, uint16_t reg, uint8_t val)
{
nuked_t *dev = (nuked_t *) priv;
uint64_t time1, time2;
if (dev->wrbuf[dev->wrbuf_last].reg & 0x0200) {
nuked_write_reg(dev, dev->wrbuf[dev->wrbuf_last].reg & 0x01ff,
dev->wrbuf[dev->wrbuf_last].data);
dev->wrbuf_cur = (dev->wrbuf_last + 1) % WRBUF_SIZE;
dev->wrbuf_samplecnt = dev->wrbuf[dev->wrbuf_last].time;
}
dev->wrbuf[dev->wrbuf_last].reg = reg | 0x0200;
dev->wrbuf[dev->wrbuf_last].data = val;
time1 = dev->wrbuf_lasttime + WRBUF_DELAY;
time2 = dev->wrbuf_samplecnt;
if (time1 < time2)
time1 = time2;
dev->wrbuf[dev->wrbuf_last].time = time1;
dev->wrbuf_lasttime = time1;
dev->wrbuf_last = (dev->wrbuf_last + 1) % WRBUF_SIZE;
}
void
nuked_generate(void *priv, int32_t *bufp)
{
nuked_t *dev = (nuked_t *) priv;
int16_t accm, shift = 0;
uint8_t i, j;
bufp[1] = dev->mixbuff[1];
for (i = 0; i < 15; i++) {
slot_calc_fb(&dev->slot[i]);
env_calc(&dev->slot[i]);
phase_generate(&dev->slot[i]);
slot_generate(&dev->slot[i]);
}
dev->mixbuff[0] = 0;
for (i = 0; i < 18; i++) {
accm = 0;
for (j = 0; j < 4; j++)
accm += *dev->chan[i].out[j];
dev->mixbuff[0] += (int16_t) (accm & dev->chan[i].cha);
}
for (i = 15; i < 18; i++) {
slot_calc_fb(&dev->slot[i]);
env_calc(&dev->slot[i]);
phase_generate(&dev->slot[i]);
slot_generate(&dev->slot[i]);
}
bufp[0] = dev->mixbuff[0];
for (i = 18; i < 33; i++) {
slot_calc_fb(&dev->slot[i]);
env_calc(&dev->slot[i]);
phase_generate(&dev->slot[i]);
slot_generate(&dev->slot[i]);
}
dev->mixbuff[1] = 0;
for (i = 0; i < 18; i++) {
accm = 0;
for (j = 0; j < 4; j++)
accm += *dev->chan[i].out[j];
dev->mixbuff[1] += (int16_t) (accm & dev->chan[i].chb);
}
for (i = 33; i < 36; i++) {
slot_calc_fb(&dev->slot[i]);
env_calc(&dev->slot[i]);
phase_generate(&dev->slot[i]);
slot_generate(&dev->slot[i]);
}
if ((dev->timer & 0x3f) == 0x3f)
dev->tremolopos = (dev->tremolopos + 1) % 210;
if (dev->tremolopos < 105)
dev->tremolo = dev->tremolopos >> dev->tremoloshift;
else
dev->tremolo = (210 - dev->tremolopos) >> dev->tremoloshift;
if ((dev->timer & 0x03ff) == 0x03ff)
dev->vibpos = (dev->vibpos + 1) & 7;
dev->timer++;
dev->eg_add = 0;
if (dev->eg_timer) {
while (shift < 36 && ((dev->eg_timer >> shift) & 1) == 0)
shift++;
if (shift > 12)
dev->eg_add = 0;
else
dev->eg_add = shift + 1;
}
if (dev->eg_timerrem || dev->eg_state) {
if (dev->eg_timer == 0xfffffffff) {
dev->eg_timer = 0;
dev->eg_timerrem = 1;
} else {
dev->eg_timer++;
dev->eg_timerrem = 0;
}
}
dev->eg_state ^= 1;
while (dev->wrbuf[dev->wrbuf_cur].time <= dev->wrbuf_samplecnt) {
if (!(dev->wrbuf[dev->wrbuf_cur].reg & 0x200))
break;
dev->wrbuf[dev->wrbuf_cur].reg &= 0x01ff;
nuked_write_reg(dev, dev->wrbuf[dev->wrbuf_cur].reg,
dev->wrbuf[dev->wrbuf_cur].data);
dev->wrbuf_cur = (dev->wrbuf_cur + 1) % WRBUF_SIZE;
}
dev->wrbuf_samplecnt++;
}
void
nuked_generate_resampled(nuked_t *dev, int32_t *bufp)
{
while (dev->samplecnt >= dev->rateratio) {
dev->oldsamples[0] = dev->samples[0];
dev->oldsamples[1] = dev->samples[1];
nuked_generate(dev, dev->samples);
dev->samplecnt -= dev->rateratio;
}
bufp[0] = (int32_t) ((dev->oldsamples[0] * (dev->rateratio - dev->samplecnt)
+ dev->samples[0] * dev->samplecnt)
/ dev->rateratio);
bufp[1] = (int32_t) ((dev->oldsamples[1] * (dev->rateratio - dev->samplecnt)
+ dev->samples[1] * dev->samplecnt)
/ dev->rateratio);
dev->samplecnt += 1 << RSM_FRAC;
}
void
nuked_generate_stream(nuked_t *dev, int32_t *sndptr, uint32_t num)
{
uint32_t i;
for (i = 0; i < num; i++) {
nuked_generate_resampled(dev, sndptr);
sndptr += 2;
}
}
void
nuked_init(nuked_t *dev, uint32_t samplerate)
{
uint8_t i;
memset(dev, 0x00, sizeof(nuked_t));
for (i = 0; i < 36; i++) {
dev->slot[i].dev = dev;
dev->slot[i].mod = &dev->zeromod;
dev->slot[i].eg_rout = 0x01ff;
dev->slot[i].eg_out = 0x01ff;
dev->slot[i].eg_gen = envelope_gen_num_release;
dev->slot[i].trem = (uint8_t *) &dev->zeromod;
dev->slot[i].slot_num = i;
}
for (i = 0; i < 18; i++) {
dev->chan[i].slots[0] = &dev->slot[ch_slot[i]];
dev->chan[i].slots[1] = &dev->slot[ch_slot[i] + 3];
dev->slot[ch_slot[i]].chan = &dev->chan[i];
dev->slot[ch_slot[i] + 3].chan = &dev->chan[i];
if ((i % 9) < 3)
dev->chan[i].pair = &dev->chan[i + 3];
else if ((i % 9) < 6)
dev->chan[i].pair = &dev->chan[i - 3];
dev->chan[i].dev = dev;
dev->chan[i].out[0] = &dev->zeromod;
dev->chan[i].out[1] = &dev->zeromod;
dev->chan[i].out[2] = &dev->zeromod;
dev->chan[i].out[3] = &dev->zeromod;
dev->chan[i].chtype = ch_2op;
dev->chan[i].cha = 0xffff;
dev->chan[i].chb = 0xffff;
dev->chan[i].ch_num = i;
channel_setup_alg(&dev->chan[i]);
}
dev->noise = 1;
dev->rateratio = (samplerate << RSM_FRAC) / 49716;
dev->tremoloshift = 4;
dev->vibshift = 1;
}
static void
nuked_timer_tick(nuked_drv_t *dev, int tmr)
{
dev->timer_cur_count[tmr] = (dev->timer_cur_count[tmr] + 1) & 0xff;
nuked_log("Ticking timer %i, count now %02X...\n", tmr, dev->timer_cur_count[tmr]);
if (dev->timer_cur_count[tmr] == 0x00) {
dev->status |= ((STAT_TMR1_OVER >> tmr) & ~dev->timer_ctrl);
dev->timer_cur_count[tmr] = dev->timer_count[tmr];
nuked_log("Count wrapped around to zero, reloading timer %i (%02X), status = %02X...\n", tmr, (STAT_TMR1_OVER >> tmr), dev->status);
}
timer_on_auto(&dev->timers[tmr], (tmr == 1) ? 320.0 : 80.0);
}
static void
nuked_timer_control(nuked_drv_t *dev, int tmr, int start)
{
timer_on_auto(&dev->timers[tmr], 0.0);
if (start) {
nuked_log("Loading timer %i count: %02X = %02X\n", tmr, dev->timer_cur_count[tmr], dev->timer_count[tmr]);
dev->timer_cur_count[tmr] = dev->timer_count[tmr];
if (dev->flags & FLAG_OPL3)
nuked_timer_tick(dev, tmr); /* Per the YMF 262 datasheet, OPL3 starts counting immediately, unlike OPL2. */
else
timer_on_auto(&dev->timers[tmr], (tmr == 1) ? 320.0 : 80.0);
} else {
nuked_log("Timer %i stopped\n", tmr);
if (tmr == 1) {
dev->status &= ~STAT_TMR2_OVER;
} else
dev->status &= ~STAT_TMR1_OVER;
}
}
static void
nuked_timer_1(void *priv)
{
nuked_drv_t *dev = (nuked_drv_t *) priv;
nuked_timer_tick(dev, 0);
}
static void
nuked_timer_2(void *priv)
{
nuked_drv_t *dev = (nuked_drv_t *) priv;
nuked_timer_tick(dev, 1);
}
static void
nuked_drv_set_do_cycles(void *priv, int8_t do_cycles)
{
nuked_drv_t *dev = (nuked_drv_t *)priv;
if (do_cycles)
dev->flags |= FLAG_CYCLES;
else
dev->flags &= ~FLAG_CYCLES;
}
static void *
nuked_drv_init(const device_t *info)
{
nuked_drv_t *dev = (nuked_drv_t *) calloc(1, sizeof(nuked_drv_t));
dev->flags = FLAG_CYCLES;
if (info->local == FM_YMF262)
dev->flags |= FLAG_OPL3;
else
dev->status = 0x06;
/* Initialize the NukedOPL object. */
nuked_init(&dev->opl, 48000);
timer_add(&dev->timers[0], nuked_timer_1, dev, 0);
timer_add(&dev->timers[1], nuked_timer_2, dev, 0);
return dev;
}
static void
nuked_drv_close(void *priv)
{
nuked_drv_t *dev = (nuked_drv_t *)priv;
free(dev);
}
static int32_t *
nuked_drv_update(void *priv)
{
nuked_drv_t *dev = (nuked_drv_t *)priv;
if (dev->pos >= sound_pos_global)
return dev->buffer;
nuked_generate_stream(&dev->opl,
&dev->buffer[dev->pos * 2],
sound_pos_global - dev->pos);
for (; dev->pos < sound_pos_global; dev->pos++) {
dev->buffer[dev->pos * 2] /= 2;
dev->buffer[(dev->pos * 2) + 1] /= 2;
}
return dev->buffer;
}
static uint8_t
nuked_drv_read(uint16_t port, void *priv)
{
nuked_drv_t *dev = (nuked_drv_t *) priv;
if (dev->flags & FLAG_CYCLES)
cycles -= ((int) (isa_timing * 8));
nuked_drv_update(dev);
uint8_t ret = 0xff;
if ((port & 0x0003) == 0x0000) {
ret = dev->status;
if (dev->status & STAT_TMR_OVER)
ret |= STAT_TMR_ANY;
}
nuked_log("OPL statret = %02x, status = %02x\n", ret, dev->status);
return ret;
}
static void
nuked_drv_write(uint16_t port, uint8_t val, void *priv)
{
nuked_drv_t *dev = (nuked_drv_t *)priv;
nuked_drv_update(dev);
if ((port & 0x0001) == 0x0001) {
nuked_write_reg_buffered(&dev->opl, dev->port, val);
switch (dev->port) {
case 0x02: /* Timer 1 */
dev->timer_count[0] = val;
nuked_log("Timer 0 count now: %i\n", dev->timer_count[0]);
break;
case 0x03: /* Timer 2 */
dev->timer_count[1] = val;
nuked_log("Timer 1 count now: %i\n", dev->timer_count[1]);
break;
case 0x04: /* Timer control */
if (val & CTRL_RESET) {
nuked_log("Resetting timer status...\n");
dev->status &= ~STAT_TMR_OVER;
} else {
dev->timer_ctrl = val;
nuked_timer_control(dev, 0, val & CTRL_TMR1_START);
nuked_timer_control(dev, 1, val & CTRL_TMR2_START);
nuked_log("Status mask now %02X (val = %02X)\n", (val & ~CTRL_TMR_MASK) & CTRL_TMR_MASK, val);
}
break;
}
} else {
dev->port = nuked_write_addr(&dev->opl, port, val) & 0x01ff;
if (!(dev->flags & FLAG_OPL3))
dev->port &= 0x00ff;
}
}
static void
nuked_drv_reset_buffer(void *priv) {
nuked_drv_t *dev = (nuked_drv_t *)priv;
dev->pos = 0;
}
const device_t ym3812_nuked_device = {
.name = "Yamaha YM3812 OPL2 (NUKED)",
.internal_name = "ym3812_nuked",
.flags = 0,
.local = FM_YM3812,
.init = nuked_drv_init,
.close = nuked_drv_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const device_t ymf262_nuked_device = {
.name = "Yamaha YMF262 OPL3 (NUKED)",
.internal_name = "ymf262_nuked",
.flags = 0,
.local = FM_YMF262,
.init = nuked_drv_init,
.close = nuked_drv_close,
.reset = NULL,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = NULL
};
const fm_drv_t nuked_opl_drv = {
&nuked_drv_read,
&nuked_drv_write,
&nuked_drv_update,
&nuked_drv_reset_buffer,
&nuked_drv_set_do_cycles,
NULL,
};