From e0405a02188ef669bc29a2cd69c40fe720c6dae0 Mon Sep 17 00:00:00 2001 From: Natalia Portillo Date: Mon, 11 Feb 2019 01:36:33 +0000 Subject: [PATCH] Add Galois class. --- .../Claunia.ReedSolomon.csproj | 1 + Claunia.ReedSolomon/Galois.cs | 238 ++++++++++++++++++ 2 files changed, 239 insertions(+) create mode 100644 Claunia.ReedSolomon/Galois.cs diff --git a/Claunia.ReedSolomon/Claunia.ReedSolomon.csproj b/Claunia.ReedSolomon/Claunia.ReedSolomon.csproj index 84d2703..4b4e0b6 100644 --- a/Claunia.ReedSolomon/Claunia.ReedSolomon.csproj +++ b/Claunia.ReedSolomon/Claunia.ReedSolomon.csproj @@ -38,6 +38,7 @@ + diff --git a/Claunia.ReedSolomon/Galois.cs b/Claunia.ReedSolomon/Galois.cs new file mode 100644 index 0000000..7df7269 --- /dev/null +++ b/Claunia.ReedSolomon/Galois.cs @@ -0,0 +1,238 @@ +/** + * 8-bit Galois Field + * + * Copyright 2015, Backblaze, Inc. All rights reserved. + * Copyright © 2019 Natalia Portillo + */ + +using System; +using System.Collections.Generic; +using System.Diagnostics.CodeAnalysis; + +namespace Claunia.ReedSolomon +{ + /// + /// 8-bit Galois Field This class implements multiplication, division, addition, subtraction, and exponentiation. + /// The multiplication operation is in the inner loop of erasure coding, so it's been optimized. Having the class be + /// "final" helps a little, and having the EXP_TABLE repeat the data, so there's no need to bound the sum of two + /// logarithms to 255 helps a lot. + /// + public sealed class Galois + { + /// The number of elements in the field. + [SuppressMessage("ReSharper", "InconsistentNaming")] + public const int FIELD_SIZE = 256; + + /// + /// The polynomial used to generate the logarithm table. There are a number of polynomials that work to generate a + /// Galois field of 256 elements. The choice is arbitrary, and we just use the first one. The possibilities are: 29, + /// 43, 45, 77, 95, 99, 101, 105, 113, 135, 141, 169, 195, 207, 231, and 245. + /// + [SuppressMessage("ReSharper", "InconsistentNaming")] + public const int GENERATING_POLYNOMIAL = 29; + + /// + /// Mapping from members of the Galois Field to their integer logarithms. The entry for 0 is meaningless because + /// there is no log of 0. This array is shorts, not bytes, so that they can be used directly to index arrays without + /// casting. The values (except the non-value at index 0) are all really bytes, so they range from 0 to 255. This table + /// was generated by java_tables.py, and the unit tests check it against the Java implementation. + /// + [SuppressMessage("ReSharper", "InconsistentNaming")] + public static readonly short[] LOG_TABLE = + { + -1, 0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4, 100, 224, 14, 52, 141, 239, 129, 28, + 193, 105, 248, 200, 8, 76, 113, 5, 138, 101, 47, 225, 36, 15, 33, 53, 147, 142, 218, 240, 18, 130, 69, 29, + 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114, 166, 6, 191, 139, 98, 102, 221, 48, 253, + 226, 152, 37, 179, 16, 145, 34, 136, 54, 208, 148, 206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, + 64, 30, 66, 182, 163, 195, 72, 126, 110, 107, 58, 40, 84, 250, 133, 186, 61, 202, 94, 155, 159, 10, 21, 121, + 43, 78, 212, 229, 172, 115, 243, 167, 87, 7, 112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, + 254, 24, 227, 165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55, 63, 209, 91, 149, + 188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242, 86, 211, 171, 20, 42, 93, 158, 132, 60, 57, 83, + 71, 109, 65, 162, 31, 45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12, 111, 246, 108, 161, 59, + 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203, 89, 95, 176, 156, 169, 160, 81, 11, 245, 22, + 235, 122, 117, 44, 215, 79, 174, 213, 233, 230, 231, 173, 232, 116, 214, 244, 234, 168, 80, 88, 175 + }; + + /// + /// Inverse of the logarithm table. Maps integer logarithms to members of the field. There is no entry for 255 + /// because the highest log is 254. This table was generated by java_tables.py. + /// + [SuppressMessage("ReSharper", "InconsistentNaming")] + static readonly byte[] EXP_TABLE = + { + 1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, 180, 117, 234, 201, 143, + 3, 6, 12, 24, 48, 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35, 70, + 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161, 95, 190, 97, 194, 153, 47, 94, 188, 101, + 202, 137, 15, 30, 60, 120, 240, 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, + 226, 217, 175, 67, 134, 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, + 199, 147, 59, 118, 236, 197, 151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, + 21, 42, 84, 168, 77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, + 198, 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, 150, 49, 98, 196, 149, 55, + 110, 220, 165, 87, 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81, 162, + 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, 36, 72, 144, 61, 122, 244, 245, 247, + 243, 251, 235, 203, 139, 11, 22, 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71, 142, + + // Repeat the table a second time, so multiply() + // does not have to check bounds. + 1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, 180, 117, 234, 201, 143, + 3, 6, 12, 24, 48, 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35, 70, + 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161, 95, 190, 97, 194, 153, 47, 94, 188, 101, + 202, 137, 15, 30, 60, 120, 240, 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, + 226, 217, 175, 67, 134, 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, + 199, 147, 59, 118, 236, 197, 151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, + 21, 42, 84, 168, 77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, + 198, 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, 150, 49, 98, 196, 149, 55, + 110, 220, 165, 87, 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81, 162, + 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, 36, 72, 144, 61, 122, 244, 245, 247, + 243, 251, 235, 203, 139, 11, 22, 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71, 142 + }; + /// + /// A multiplication table for the Galois field. Using this table is an alternative to using the multiply() + /// method, which uses log/exp table lookups. + /// + [SuppressMessage("ReSharper", "InconsistentNaming")] + public static readonly byte[][] MULTIPLICATION_TABLE = GenerateMultiplicationTable(); + + /// Adds two elements of the field. If you're in an inner loop, you should inline this function: it's just XOR. + public static byte Add(byte a, byte b) => (byte)(a ^ b); + + /// Inverse of addition. If you're in an inner loop, you should inline this function: it's just XOR. + public static byte Subtract(byte a, byte b) => (byte)(a ^ b); + + /// Multiplies two elements of the field. + public static byte Multiply(byte a, byte b) + { + if(a == 0 || + b == 0) + return 0; + + int logA = LOG_TABLE[a & 255]; + int logB = LOG_TABLE[b & 255]; + int logResult = logA + logB; + + return EXP_TABLE[logResult]; + } + + /// Inverse of multiplication. + public static byte Divide(byte a, byte b) + { + if(a == 0) + return 0; + + if(b == 0) + throw new ArgumentException("Argument 'divisor' is 0"); + + int logA = LOG_TABLE[a & 255]; + int logB = LOG_TABLE[b & 255]; + int logResult = logA - logB; + + if(logResult < 0) + logResult += 255; + + return EXP_TABLE[logResult]; + } + + /// Computes a**n. The result will be the same as multiplying a times itself n times. + /// A member of the field. + /// A plain-old integer. + /// The result of multiplying a by itself n times. + public static byte Exp(byte a, int n) + { + if(n == 0) + return 1; + + if(a == 0) + return 0; + + int logA = LOG_TABLE[a & 255]; + int logResult = logA * n; + + while(255 <= logResult) + logResult -= 255; + + return EXP_TABLE[logResult]; + } + + /// Generates a logarithm table given a starting polynomial. + public static short[] GenerateLogTable(int polynomial) + { + short[] result = new short[FIELD_SIZE]; + + for(int i = 0; i < FIELD_SIZE; i++) + result[i] = -1; // -1 means "not set" + + int b = 1; + + for(int log = 0; log < FIELD_SIZE - 1; log++) + { + if(result[b] != -1) + throw new Exception("BUG: duplicate logarithm (bad polynomial?)"); + + result[b] = (short)log; + b = b << 1; + + if(FIELD_SIZE <= b) + b = (b - FIELD_SIZE) ^ polynomial; + } + + return result; + } + + /// Generates the inverse log table. + public static byte[] GenerateExpTable(short[] logTable) + { + byte[] result = new byte [FIELD_SIZE * 2 - 2]; + + for(int i = 1; i < FIELD_SIZE; i++) + { + int log = logTable[i]; + result[log] = (byte)i; + result[log + FIELD_SIZE - 1] = (byte)i; + } + + return result; + } + + /// + /// Generates a multiplication table as an array of byte arrays. To get the result of multiplying a and b: + /// MULTIPLICATION_TABLE[a][b] + /// + public static byte[][] GenerateMultiplicationTable() + { + byte[][] result = new byte [256][]; + + for(int i = 0; i < 256; i++) + result[i] = new byte[256]; + + for(int a = 0; a < FIELD_SIZE; a++) + { + for(int b = 0; b < FIELD_SIZE; b++) + result[a][b] = Multiply((byte)a, (byte)b); + } + + return result; + } + + /// + /// Returns a list of all polynomials that can be used to generate the field. This is never used in the code; it's + /// just here for completeness. + /// + public static int[] AllPossiblePolynomials() + { + List result = new List(); + + for(int i = 0; i < FIELD_SIZE; i++) + try + { + GenerateLogTable(i); + result.Add(i); + } + catch(Exception e) + { + // this one didn't work + } + + return result.ToArray(); + } + } +} \ No newline at end of file