This repository has been archived on 2025-05-24. You can view files and clone it, but cannot push or open issues or pull requests.
Files
VARCem/src/mem.c

1891 lines
47 KiB
C
Raw Normal View History

/*
* VARCem Virtual ARchaeological Computer EMulator.
* An emulator of (mostly) x86-based PC systems and devices,
* using the ISA,EISA,VLB,MCA and PCI system buses, roughly
* spanning the era between 1981 and 1995.
*
* This file is part of the VARCem Project.
*
* Memory handling and MMU.
*
* NOTE: Experimenting with dynamically allocated lookup tables;
* the DYNAMIC_TABLES=1 enables this. Will eventually go
* away, either way...
*
* Version: @(#)mem.c 1.0.17 2018/08/20
*
* Authors: Fred N. van Kempen, <decwiz@yahoo.com>
* Miran Grca, <mgrca8@gmail.com>
* Sarah Walker, <tommowalker@tommowalker.co.uk>
*
* Copyright 2017,2018 Fred N. van Kempen.
* Copyright 2016-2018 Miran Grca.
* Copyright 2008-2018 Sarah Walker.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the:
*
* Free Software Foundation, Inc.
* 59 Temple Place - Suite 330
* Boston, MA 02111-1307
* USA.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <wchar.h>
#include "emu.h"
#include "cpu/cpu.h"
#include "cpu/x86_ops.h"
#include "cpu/x86.h"
#include "machines/machine.h"
#include "machines/m_xt_xi8088.h" //FIXME: remove?
#include "config.h"
#include "io.h"
#include "mem.h"
#include "rom.h"
#ifdef USE_DYNAREC
# include "cpu/codegen.h"
#else
# define PAGE_MASK_INDEX_MASK 3
# define PAGE_MASK_INDEX_SHIFT 10
# define PAGE_MASK_MASK 63
# define PAGE_MASK_SHIFT 4
#endif
#define DYNAMIC_TABLES 0 /* experimental */
mem_mapping_t base_mapping,
ram_low_mapping, /* 0..640K mapping */
#if 1
ram_mid_mapping,
#endif
ram_remapped_mapping, /* 640..1024K mapping */
ram_high_mapping, /* 1024K+ mapping */
bios_mapping[8],
bios_high_mapping[8],
romext_mapping;
page_t *pages, /* RAM page table */
**page_lookup; /* pagetable lookup */
uint32_t pages_sz = 0; /* #pages in table */
uint8_t *ram; /* the virtual RAM */
uint32_t rammask;
uint8_t *rom; /* the virtual ROM */
uint8_t romext[32768];
uint32_t biosmask;
uint32_t pccache;
uint8_t *pccache2;
int readlnext;
int readlookup[256],
readlookupp[256];
uintptr_t *readlookup2;
int writelnext;
int writelookup[256],
writelookupp[256];
uintptr_t *writelookup2;
uint32_t mem_logical_addr;
int shadowbios = 0,
shadowbios_write;
int readlnum = 0,
writelnum = 0;
int pctrans = 0;
int cachesize = 256;
uint32_t ram_mapped_addr[64];
uint32_t get_phys_virt,
get_phys_phys;
int mem_a20_key = 0,
mem_a20_alt = 0,
mem_a20_state = 0;
int mmuflush = 0;
int mmu_perm = 4;
/* FIXME: re-do this with a 'mem_ops' struct. */
static uint8_t (*_mem_read_b[0x40000])(uint32_t addr, void *priv);
static uint16_t (*_mem_read_w[0x40000])(uint32_t addr, void *priv);
static uint32_t (*_mem_read_l[0x40000])(uint32_t addr, void *priv);
static void (*_mem_write_b[0x40000])(uint32_t addr, uint8_t val, void *priv);
static void (*_mem_write_w[0x40000])(uint32_t addr, uint16_t val, void *priv);
static void (*_mem_write_l[0x40000])(uint32_t addr, uint32_t val, void *priv);
static uint8_t *_mem_exec[0x40000];
static void *_mem_priv_r[0x40000];
static void *_mem_priv_w[0x40000];
static mem_mapping_t *_mem_mapping_r[0x40000];
static mem_mapping_t *_mem_mapping_w[0x40000];
static int _mem_state[0x40000];
static uint8_t ff_pccache[4] = { 0xff, 0xff, 0xff, 0xff };
static int port_92_reg = 0;
void
resetreadlookup(void)
{
int c;
/* This is NULL after app startup, when mem_init() has not yet run. */
#if DYNAMIC_TABLES
pclog("MEM: reset_lookup: pages=%08lx, lookup=%08lx, pages_sz=%i\n", pages, page_lookup, pages_sz);
#endif
/* Initialize the page lookup table. */
#if DYNAMIC_TABLES
memset(page_lookup, 0x00, pages_sz*sizeof(page_t *));
#else
memset(page_lookup, 0x00, (1<<20)*sizeof(page_t *));
#endif
/* Initialize the tables for lower (<= 1024K) RAM. */
for (c = 0; c < 256; c++) {
readlookup[c] = 0xffffffff;
writelookup[c] = 0xffffffff;
}
/* Initialize the tables for high (> 1024K) RAM. */
#if DYNAMIC_TABLES
memset(readlookup2, 0xff, pages_sz*sizeof(uintptr_t));
memset(writelookup2, 0xff, pages_sz*sizeof(uintptr_t));
#else
memset(readlookup2, 0xff, (1<<20)*sizeof(uintptr_t));
memset(writelookup2, 0xff, (1<<20)*sizeof(uintptr_t));
#endif
readlnext = 0;
writelnext = 0;
pccache = 0xffffffff;
}
void
flushmmucache(void)
{
int c;
for (c = 0; c < 256; c++) {
if (readlookup[c] != 0xffffffff) {
readlookup2[readlookup[c]] = -1;
readlookup[c] = 0xffffffff;
}
if (writelookup[c] != 0xffffffff) {
page_lookup[writelookup[c]] = NULL;
writelookup2[writelookup[c]] = -1;
writelookup[c] = 0xffffffff;
}
}
mmuflush++;
pccache = (uint32_t)0xffffffff;
pccache2 = (uint8_t *)0xffffffff;
#ifdef USE_DYNAREC
codegen_flush();
#endif
}
void
flushmmucache_nopc(void)
{
int c;
for (c = 0; c < 256; c++) {
if (readlookup[c] != 0xffffffff) {
readlookup2[readlookup[c]] = -1;
readlookup[c] = 0xffffffff;
}
if (writelookup[c] != 0xffffffff) {
page_lookup[writelookup[c]] = NULL;
writelookup2[writelookup[c]] = -1;
writelookup[c] = 0xffffffff;
}
}
}
void
flushmmucache_cr3(void)
{
int c;
for (c = 0; c < 256; c++) {
if (readlookup[c] != 0xffffffff) {
readlookup2[readlookup[c]] = -1;
readlookup[c] = 0xffffffff;
}
if (writelookup[c] != 0xffffffff) {
page_lookup[writelookup[c]] = NULL;
writelookup2[writelookup[c]] = -1;
writelookup[c] = 0xffffffff;
}
}
}
void
mem_flush_write_page(uint32_t addr, uint32_t virt)
{
page_t *page_target = &pages[addr >> 12];
int c;
for (c = 0; c < 256; c++) {
if (writelookup[c] != 0xffffffff) {
uintptr_t target = (uintptr_t)&ram[(uintptr_t)(addr & ~0xfff) - (virt & ~0xfff)];
if (writelookup2[writelookup[c]] == target || page_lookup[writelookup[c]] == page_target) {
writelookup2[writelookup[c]] = -1;
page_lookup[writelookup[c]] = NULL;
writelookup[c] = 0xffffffff;
}
}
}
}
#define mmutranslate_read(addr) mmutranslatereal(addr,0)
#define mmutranslate_write(addr) mmutranslatereal(addr,1)
#define rammap(x) ((uint32_t *)(_mem_exec[(x) >> 14]))[((x) >> 2) & 0xfff]
uint32_t
mmutranslatereal(uint32_t addr, int rw)
{
uint32_t temp,temp2,temp3;
uint32_t addr2;
if (cpu_state.abrt) return -1;
addr2 = ((cr3 & ~0xfff) + ((addr >> 20) & 0xffc));
temp = temp2 = rammap(addr2);
if (! (temp&1)) {
cr2 = addr;
temp &= 1;
if (CPL == 3) temp |= 4;
if (rw) temp |= 2;
cpu_state.abrt = ABRT_PF;
abrt_error = temp;
return -1;
}
if ((temp & 0x80) && (cr4 & CR4_PSE)) {
/*4MB page*/
if ((CPL == 3 && !(temp & 4) && !cpl_override) || (rw && !(temp & 2) && ((CPL == 3 && !cpl_override) || cr0 & WP_FLAG))) {
cr2 = addr;
temp &= 1;
if (CPL == 3)
temp |= 4;
if (rw)
temp |= 2;
cpu_state.abrt = ABRT_PF;
abrt_error = temp;
return -1;
}
mmu_perm = temp & 4;
rammap(addr2) |= 0x20;
return (temp & ~0x3fffff) + (addr & 0x3fffff);
}
temp = rammap((temp & ~0xfff) + ((addr >> 10) & 0xffc));
temp3 = temp & temp2;
if (!(temp&1) || (CPL==3 && !(temp3&4) && !cpl_override) || (rw && !(temp3&2) && ((CPL == 3 && !cpl_override) || cr0&WP_FLAG))) {
cr2 = addr;
temp &= 1;
if (CPL == 3) temp |= 4;
if (rw) temp |= 2;
cpu_state.abrt = ABRT_PF;
abrt_error = temp;
return -1;
}
mmu_perm = temp & 4;
rammap(addr2) |= 0x20;
rammap((temp2 & ~0xfff) + ((addr >> 10) & 0xffc)) |= (rw?0x60:0x20);
return (temp&~0xfff)+(addr&0xfff);
}
uint32_t
mmutranslate_noabrt(uint32_t addr, int rw)
{
uint32_t temp,temp2,temp3;
uint32_t addr2;
if (cpu_state.abrt)
return -1;
addr2 = ((cr3 & ~0xfff) + ((addr >> 20) & 0xffc));
temp = temp2 = rammap(addr2);
if (! (temp & 1))
return -1;
if ((temp & 0x80) && (cr4 & CR4_PSE)) {
/*4MB page*/
if ((CPL == 3 && !(temp & 4) && !cpl_override) || (rw && !(temp & 2) && (CPL == 3 || cr0 & WP_FLAG)))
return -1;
return (temp & ~0x3fffff) + (addr & 0x3fffff);
}
temp = rammap((temp & ~0xfff) + ((addr >> 10) & 0xffc));
temp3 = temp & temp2;
if (!(temp&1) || (CPL==3 && !(temp3&4) && !cpl_override) || (rw && !(temp3&2) && (CPL==3 || cr0&WP_FLAG)))
return -1;
return (temp & ~0xfff) + (addr & 0xfff);
}
void
mmu_invalidate(uint32_t addr)
{
flushmmucache_cr3();
}
uint8_t
mem_addr_range_match(uint32_t addr, uint32_t start, uint32_t len)
{
if (addr < start)
return 0;
else if (addr >= (start + len))
return 0;
else
return 1;
}
uint32_t
mem_addr_translate(uint32_t addr, uint32_t chunk_start, uint32_t len)
{
uint32_t mask = len - 1;
return chunk_start + (addr & mask);
}
void
addreadlookup(uint32_t virt, uint32_t phys)
{
if (virt == 0xffffffff) return;
if (readlookup2[virt>>12] != -1) return;
if (readlookup[readlnext] != 0xffffffff)
readlookup2[readlookup[readlnext]] = -1;
readlookup2[virt>>12] = (uintptr_t)&ram[(uintptr_t)(phys & ~0xFFF) - (uintptr_t)(virt & ~0xfff)];
readlookupp[readlnext] = mmu_perm;
readlookup[readlnext++] = virt >> 12;
readlnext &= (cachesize-1);
cycles -= 9;
}
void
addwritelookup(uint32_t virt, uint32_t phys)
{
if (virt == 0xffffffff) return;
if (page_lookup[virt >> 12]) return;
if (writelookup[writelnext] != -1) {
page_lookup[writelookup[writelnext]] = NULL;
writelookup2[writelookup[writelnext]] = -1;
}
#ifdef USE_DYNAREC
if (pages[phys >> 12].block[0] || pages[phys >> 12].block[1] || pages[phys >> 12].block[2] || pages[phys >> 12].block[3] || (phys & ~0xfff) == recomp_page)
#else
if (pages[phys >> 12].block[0] || pages[phys >> 12].block[1] || pages[phys >> 12].block[2] || pages[phys >> 12].block[3])
#endif
page_lookup[virt >> 12] = &pages[phys >> 12];
else
writelookup2[virt>>12] = (uintptr_t)&ram[(uintptr_t)(phys & ~0xFFF) - (uintptr_t)(virt & ~0xfff)];
writelookupp[writelnext] = mmu_perm;
writelookup[writelnext++] = virt >> 12;
writelnext &= (cachesize - 1);
cycles -= 9;
}
uint8_t *
getpccache(uint32_t a)
{
uint32_t a2;
a2 = a;
if (a2 < 0x100000 && ram_mapped_addr[a2 >> 14]) {
a = (ram_mapped_addr[a2 >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? a2 : (ram_mapped_addr[a2 >> 14] & ~0x3FFF) + (a2 & 0x3FFF);
return &ram[(uintptr_t)(a & 0xFFFFF000) - (uintptr_t)(a2 & ~0xFFF)];
}
a2 = a;
if (cr0 >> 31) {
pctrans=1;
a = mmutranslate_read(a);
pctrans = 0;
if (a == 0xffffffff) return ram;
}
a &= rammask;
if (_mem_exec[a >> 14]) {
if (_mem_mapping_r[a >> 14]->flags & MEM_MAPPING_ROM)
cpu_prefetch_cycles = cpu_rom_prefetch_cycles;
else
cpu_prefetch_cycles = cpu_mem_prefetch_cycles;
return &_mem_exec[a >> 14][(uintptr_t)(a & 0x3000) - (uintptr_t)(a2 & ~0xfff)];
}
pclog("Bad getpccache %08X\n", a);
return (uint8_t *)&ff_pccache;
}
uint8_t
readmembl(uint32_t addr)
{
mem_logical_addr = addr;
if (addr < 0x100000 && ram_mapped_addr[addr >> 14]) {
addr = (ram_mapped_addr[addr >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr : (ram_mapped_addr[addr >> 14] & ~0x3fff) + (addr & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size)) return ram[addr];
return 0xff;
}
if (cr0 >> 31) {
addr = mmutranslate_read(addr);
if (addr == 0xffffffff) return 0xff;
}
addr &= rammask;
if (_mem_read_b[addr >> 14])
return _mem_read_b[addr >> 14](addr, _mem_priv_r[addr >> 14]);
return 0xff;
}
void
writemembl(uint32_t addr, uint8_t val)
{
mem_logical_addr = addr;
if (addr < 0x100000 && ram_mapped_addr[addr >> 14]) {
addr = (ram_mapped_addr[addr >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr : (ram_mapped_addr[addr >> 14] & ~0x3fff) + (addr & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size))
ram[addr] = val;
return;
}
if (page_lookup[addr>>12]) {
page_lookup[addr>>12]->write_b(addr, val, page_lookup[addr>>12]);
return;
}
if (cr0 >> 31) {
addr = mmutranslate_write(addr);
if (addr == 0xffffffff) return;
}
addr &= rammask;
if (_mem_write_b[addr >> 14])
_mem_write_b[addr >> 14](addr, val, _mem_priv_w[addr >> 14]);
}
uint8_t
readmemb386l(uint32_t seg, uint32_t addr)
{
if (seg == -1) {
x86gpf("NULL segment", 0);
return -1;
}
mem_logical_addr = addr = addr + seg;
if (addr < 0x100000 && ram_mapped_addr[addr >> 14]) {
addr = (ram_mapped_addr[addr >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr : (ram_mapped_addr[addr >> 14] & ~0x3fff) + (addr & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size))
return ram[addr];
return 0xff;
}
if (cr0 >> 31) {
addr = mmutranslate_read(addr);
if (addr == 0xffffffff)
return 0xff;
}
addr &= rammask;
if (_mem_read_b[addr >> 14])
return _mem_read_b[addr >> 14](addr, _mem_priv_r[addr >> 14]);
return 0xff;
}
void
writememb386l(uint32_t seg, uint32_t addr, uint8_t val)
{
if (seg == -1) {
x86gpf("NULL segment", 0);
return;
}
mem_logical_addr = addr = addr + seg;
if (addr < 0x100000 && ram_mapped_addr[addr >> 14]) {
addr = (ram_mapped_addr[addr >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr : (ram_mapped_addr[addr >> 14] & ~0x3fff) + (addr & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size))
ram[addr] = val;
return;
}
if (page_lookup[addr>>12]) {
page_lookup[addr>>12]->write_b(addr, val, page_lookup[addr>>12]);
return;
}
if (cr0 >> 31) {
addr = mmutranslate_write(addr);
if (addr == 0xffffffff) return;
}
addr &= rammask;
if (_mem_write_b[addr >> 14])
_mem_write_b[addr >> 14](addr, val, _mem_priv_w[addr >> 14]);
}
uint16_t
readmemwl(uint32_t seg, uint32_t addr)
{
uint32_t addr2 = mem_logical_addr = seg + addr;
if (seg == -1) {
x86gpf("NULL segment", 0);
return -1;
}
if (addr2 & 1) {
if (!cpu_cyrix_alignment || (addr2 & 7) == 7)
cycles -= timing_misaligned;
if ((addr2 & 0xFFF) > 0xffe) {
if (cr0 >> 31) {
if (mmutranslate_read(addr2) == 0xffffffff) return 0xffff;
if (mmutranslate_read(addr2+1) == 0xffffffff) return 0xffff;
}
if (is386) return readmemb386l(seg,addr)|(readmemb386l(seg,addr+1)<<8);
else return readmembl(seg+addr)|(readmembl(seg+addr+1)<<8);
}
else if (readlookup2[addr2 >> 12] != -1)
return *(uint16_t *)(readlookup2[addr2 >> 12] + addr2);
}
if (addr2 < 0x100000 && ram_mapped_addr[addr2 >> 14]) {
addr = (ram_mapped_addr[addr2 >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr2 : (ram_mapped_addr[addr2 >> 14] & ~0x3fff) + (addr2 & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size))
return *((uint16_t *)&ram[addr]);
return 0xffff;
}
if (cr0 >> 31) {
addr2 = mmutranslate_read(addr2);
if (addr2 == 0xffffffff)
return 0xFFFF;
}
addr2 &= rammask;
if (_mem_read_w[addr2 >> 14])
return _mem_read_w[addr2 >> 14](addr2, _mem_priv_r[addr2 >> 14]);
if (_mem_read_b[addr2 >> 14]) {
if (AT)
return _mem_read_b[addr2 >> 14](addr2, _mem_priv_r[addr2 >> 14]) | (_mem_read_b[(addr2 + 1) >> 14](addr2 + 1, _mem_priv_r[addr2 >> 14]) << 8);
else
return _mem_read_b[addr2 >> 14](addr2, _mem_priv_r[addr2 >> 14]) | (_mem_read_b[(seg + ((addr + 1) & 0xffff)) >> 14](seg + ((addr + 1) & 0xffff), _mem_priv_r[addr2 >> 14]) << 8);
}
return 0xffff;
}
void
writememwl(uint32_t seg, uint32_t addr, uint16_t val)
{
uint32_t addr2 = mem_logical_addr = seg + addr;
if (seg == -1) {
x86gpf("NULL segment", 0);
return;
}
if (addr2 < 0x100000 && ram_mapped_addr[addr2 >> 14]) {
addr = (ram_mapped_addr[addr2 >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr2 : (ram_mapped_addr[addr2 >> 14] & ~0x3fff) + (addr2 & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size))
*((uint16_t *)&ram[addr]) = val;
return;
}
if (addr2 & 1) {
if (!cpu_cyrix_alignment || (addr2 & 7) == 7)
cycles -= timing_misaligned;
if ((addr2 & 0xFFF) > 0xffe) {
if (cr0 >> 31) {
if (mmutranslate_write(addr2) == 0xffffffff) return;
if (mmutranslate_write(addr2+1) == 0xffffffff) return;
}
if (is386) {
writememb386l(seg,addr,(uint8_t)(val&0xff));
writememb386l(seg,addr+1,(uint8_t)(val>>8));
} else {
writemembl(seg+addr,(uint8_t)(val&0xff));
writemembl(seg+addr+1,(uint8_t)(val>>8));
}
return;
} else if (writelookup2[addr2 >> 12] != -1) {
*(uint16_t *)(writelookup2[addr2 >> 12] + addr2) = val;
return;
}
}
if (page_lookup[addr2>>12]) {
page_lookup[addr2>>12]->write_w(addr2, val, page_lookup[addr2>>12]);
return;
}
if (cr0 >> 31) {
addr2 = mmutranslate_write(addr2);
if (addr2 == 0xffffffff) return;
}
addr2 &= rammask;
#if 0
if (addr2 >= 0xa0000 && addr2 < 0xc0000)
pclog("writememwl %08X %02X\n", addr2, val);
#endif
if (_mem_write_w[addr2 >> 14]) {
_mem_write_w[addr2 >> 14](addr2, val, _mem_priv_w[addr2 >> 14]);
return;
}
if (_mem_write_b[addr2 >> 14]) {
_mem_write_b[addr2 >> 14](addr2, (uint8_t)(val&0xff), _mem_priv_w[addr2 >> 14]);
_mem_write_b[(addr2 + 1) >> 14](addr2 + 1, (uint8_t)(val>>8), _mem_priv_w[addr2 >> 14]);
return;
}
}
uint32_t
readmemll(uint32_t seg, uint32_t addr)
{
uint32_t addr2 = mem_logical_addr = seg + addr;
if (seg == -1) {
x86gpf("NULL segment", 0);
return -1;
}
if (addr2 < 0x100000 && ram_mapped_addr[addr2 >> 14]) {
addr = (ram_mapped_addr[addr2 >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr2 : (ram_mapped_addr[addr2 >> 14] & ~0x3fff) + (addr2 & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size))
return *((uint32_t *)&ram[addr]);
return 0xffffffff;
}
if (addr2 & 3) {
if (!cpu_cyrix_alignment || (addr2 & 7) > 4)
cycles -= timing_misaligned;
if ((addr2 & 0xfff) > 0xffc) {
if (cr0 >> 31) {
if (mmutranslate_read(addr2) == 0xffffffff) return 0xffffffff;
if (mmutranslate_read(addr2+3) == 0xffffffff) return 0xffffffff;
}
return readmemwl(seg,addr)|(readmemwl(seg,addr+2)<<16);
} else if (readlookup2[addr2 >> 12] != -1)
return *(uint32_t *)(readlookup2[addr2 >> 12] + addr2);
}
if (cr0 >> 31) {
addr2 = mmutranslate_read(addr2);
if (addr2 == 0xffffffff)
return 0xffffffff;
}
addr2 &= rammask;
if (_mem_read_l[addr2 >> 14])
return _mem_read_l[addr2 >> 14](addr2, _mem_priv_r[addr2 >> 14]);
if (_mem_read_w[addr2 >> 14])
return _mem_read_w[addr2 >> 14](addr2, _mem_priv_r[addr2 >> 14]) | (_mem_read_w[addr2 >> 14](addr2 + 2, _mem_priv_r[addr2 >> 14]) << 16);
if (_mem_read_b[addr2 >> 14])
return _mem_read_b[addr2 >> 14](addr2, _mem_priv_r[addr2 >> 14]) | (_mem_read_b[addr2 >> 14](addr2 + 1, _mem_priv_r[addr2 >> 14]) << 8) | (_mem_read_b[addr2 >> 14](addr2 + 2, _mem_priv_r[addr2 >> 14]) << 16) | (_mem_read_b[addr2 >> 14](addr2 + 3, _mem_priv_r[addr2 >> 14]) << 24);
return 0xffffffff;
}
void
writememll(uint32_t seg, uint32_t addr, uint32_t val)
{
uint32_t addr2 = mem_logical_addr = seg + addr;
if (seg == -1) {
x86gpf("NULL segment", 0);
return;
}
if (addr2 < 0x100000 && ram_mapped_addr[addr2 >> 14]) {
addr = (ram_mapped_addr[addr2 >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr2 : (ram_mapped_addr[addr2 >> 14] & ~0x3fff) + (addr2 & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size))
*((uint32_t *)&ram[addr]) = val;
return;
}
if (addr2 & 3) {
if (!cpu_cyrix_alignment || (addr2 & 7) > 4)
cycles -= timing_misaligned;
if ((addr2 & 0xfff) > 0xffc) {
if (cr0 >> 31) {
if (mmutranslate_write(addr2) == 0xffffffff) return;
if (mmutranslate_write(addr2+3) == 0xffffffff) return;
}
writememwl(seg,addr,val);
writememwl(seg,addr+2,val>>16);
return;
} else if (writelookup2[addr2 >> 12] != -1) {
*(uint32_t *)(writelookup2[addr2 >> 12] + addr2) = val;
return;
}
}
if (page_lookup[addr2>>12]) {
page_lookup[addr2>>12]->write_l(addr2, val, page_lookup[addr2>>12]);
return;
}
if (cr0 >> 31) {
addr2 = mmutranslate_write(addr2);
if (addr2 == 0xffffffff) return;
}
addr2 &= rammask;
if (_mem_write_l[addr2 >> 14]) {
_mem_write_l[addr2 >> 14](addr2, val, _mem_priv_w[addr2 >> 14]);
return;
}
if (_mem_write_w[addr2 >> 14]) {
_mem_write_w[addr2 >> 14](addr2, val, _mem_priv_w[addr2 >> 14]);
_mem_write_w[addr2 >> 14](addr2 + 2, val >> 16, _mem_priv_w[addr2 >> 14]);
return;
}
if (_mem_write_b[addr2 >> 14]) {
_mem_write_b[addr2 >> 14](addr2, val, _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2 + 1, val >> 8, _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2 + 2, val >> 16, _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2 + 3, val >> 24, _mem_priv_w[addr2 >> 14]);
return;
}
}
uint64_t
readmemql(uint32_t seg, uint32_t addr)
{
uint32_t addr2 = mem_logical_addr = seg + addr;
if (seg == -1) {
x86gpf("NULL segment", 0);
return -1;
}
if (addr2 < 0x100000 && ram_mapped_addr[addr2 >> 14]) {
addr = (ram_mapped_addr[addr2 >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr2 : (ram_mapped_addr[addr2 >> 14] & ~0x3fff) + (addr2 & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size))
return *((uint64_t *)&ram[addr]);
return -1;
}
if (addr2 & 7) {
cycles -= timing_misaligned;
if ((addr2 & 0xfff) > 0xff8) {
if (cr0 >> 31) {
if (mmutranslate_read(addr2) == 0xffffffff) return 0xffffffff;
if (mmutranslate_read(addr2+7) == 0xffffffff) return 0xffffffff;
}
return readmemll(seg,addr)|((uint64_t)readmemll(seg,addr+4)<<32);
} else if (readlookup2[addr2 >> 12] != -1)
return *(uint64_t *)(readlookup2[addr2 >> 12] + addr2);
}
if (cr0 >> 31) {
addr2 = mmutranslate_read(addr2);
if (addr2 == 0xffffffff)
return -1;
}
addr2 &= rammask;
if (_mem_read_l[addr2 >> 14])
return _mem_read_l[addr2 >> 14](addr2, _mem_priv_r[addr2 >> 14]) |
((uint64_t)_mem_read_l[addr2 >> 14](addr2 + 4, _mem_priv_r[addr2 >> 14]) << 32);
return readmemll(seg,addr) | ((uint64_t)readmemll(seg,addr+4)<<32);
}
void
writememql(uint32_t seg, uint32_t addr, uint64_t val)
{
uint32_t addr2 = mem_logical_addr = seg + addr;
if (seg == -1) {
x86gpf("NULL segment", 0);
return;
}
if (addr2 < 0x100000 && ram_mapped_addr[addr2 >> 14]) {
addr = (ram_mapped_addr[addr2 >> 14] & MEM_MAP_TO_SHADOW_RAM_MASK) ? addr2 : (ram_mapped_addr[addr2 >> 14] & ~0x3fff) + (addr2 & 0x3fff);
if (addr < (uint32_t)(1024UL * mem_size))
*((uint64_t *)&ram[addr]) = val;
return;
}
if (addr2 & 7) {
cycles -= timing_misaligned;
if ((addr2 & 0xfff) > 0xff8) {
if (cr0 >> 31) {
if (mmutranslate_write(addr2) == 0xffffffff) return;
if (mmutranslate_write(addr2+7) == 0xffffffff) return;
}
writememll(seg, addr, (uint32_t)(val&0xffffffff));
writememll(seg, addr+4, (uint32_t)(val>>32));
return;
} else if (writelookup2[addr2 >> 12] != -1) {
*(uint64_t *)(writelookup2[addr2 >> 12] + addr2) = val;
return;
}
}
if (page_lookup[addr2>>12]) {
page_lookup[addr2>>12]->write_l(addr2, (uint32_t)(val&0xffffffff), page_lookup[addr2>>12]);
page_lookup[addr2>>12]->write_l(addr2 + 4, (uint32_t)(val>>32), page_lookup[addr2>>12]);
return;
}
if (cr0 >> 31) {
addr2 = mmutranslate_write(addr2);
if (addr2 == 0xffffffff) return;
}
addr2 &= rammask;
if (_mem_write_l[addr2 >> 14]) {
_mem_write_l[addr2 >> 14](addr2, (uint32_t)(val&0xffffffff), _mem_priv_w[addr2 >> 14]);
_mem_write_l[addr2 >> 14](addr2+4, (uint32_t)(val>>32), _mem_priv_w[addr2 >> 14]);
return;
}
if (_mem_write_w[addr2 >> 14]) {
_mem_write_w[addr2 >> 14](addr2, (uint16_t)(val&0xffff), _mem_priv_w[addr2 >> 14]);
_mem_write_w[addr2 >> 14](addr2+2, (uint16_t)(val>>16), _mem_priv_w[addr2 >> 14]);
_mem_write_w[addr2 >> 14](addr2+4, (uint16_t)(val>>32), _mem_priv_w[addr2 >> 14]);
_mem_write_w[addr2 >> 14](addr2+6, (uint16_t)(val>>48), _mem_priv_w[addr2 >> 14]);
return;
}
if (_mem_write_b[addr2 >> 14]) {
_mem_write_b[addr2 >> 14](addr2, (uint8_t)(val&0xff), _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2+1, (uint8_t)(val>>8), _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2+2, (uint8_t)(val>>16), _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2+3, (uint8_t)(val>>24), _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2+4, (uint8_t)(val>>32), _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2+5, (uint8_t)(val>>40), _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2+6, (uint8_t)(val>>48), _mem_priv_w[addr2 >> 14]);
_mem_write_b[addr2 >> 14](addr2+7, (uint8_t)(val>>56), _mem_priv_w[addr2 >> 14]);
return;
}
}
uint8_t
mem_readb_phys(uint32_t addr)
{
mem_logical_addr = 0xffffffff;
if (_mem_read_b[addr >> 14])
return _mem_read_b[addr >> 14](addr, _mem_priv_r[addr >> 14]);
return 0xff;
}
/*
* Version of mem_readby_phys that doesn't go through
* the CPU paging mechanism.
*/
uint8_t
mem_readb_phys_dma(uint32_t addr)
{
#if 0
mem_logical_addr = 0xffffffff;
#endif
if (_mem_exec[addr >> 14])
return _mem_exec[addr >> 14][addr & 0x3fff];
else if (_mem_read_b[addr >> 14])
return _mem_read_b[addr >> 14](addr, _mem_priv_r[addr >> 14]);
else
return 0xff;
}
uint16_t
mem_readw_phys(uint32_t addr)
{
mem_logical_addr = 0xffffffff;
if (_mem_read_w[addr >> 14])
return _mem_read_w[addr >> 14](addr, _mem_priv_r[addr >> 14]);
return 0xff;
}
void
mem_writeb_phys(uint32_t addr, uint8_t val)
{
mem_logical_addr = 0xffffffff;
if (_mem_write_b[addr >> 14])
_mem_write_b[addr >> 14](addr, val, _mem_priv_w[addr >> 14]);
}
/*
* Version of mem_readby_phys that doesn't go through
* the CPU paging mechanism.
*/
void
mem_writeb_phys_dma(uint32_t addr, uint8_t val)
{
#if 0
mem_logical_addr = 0xffffffff;
#endif
if (_mem_exec[addr >> 14])
_mem_exec[addr >> 14][addr & 0x3fff] = val;
else if (_mem_write_b[addr >> 14])
_mem_write_b[addr >> 14](addr, val, _mem_priv_w[addr >> 14]);
}
void
mem_writew_phys(uint32_t addr, uint16_t val)
{
mem_logical_addr = 0xffffffff;
if (_mem_write_w[addr >> 14])
_mem_write_w[addr >> 14](addr, val, _mem_priv_w[addr >> 14]);
}
uint8_t
mem_read_ram(uint32_t addr, void *priv)
{
addreadlookup(mem_logical_addr, addr);
return ram[addr];
}
uint16_t
mem_read_ramw(uint32_t addr, void *priv)
{
addreadlookup(mem_logical_addr, addr);
return *(uint16_t *)&ram[addr];
}
uint32_t
mem_read_raml(uint32_t addr, void *priv)
{
addreadlookup(mem_logical_addr, addr);
return *(uint32_t *)&ram[addr];
}
void
mem_write_ramb_page(uint32_t addr, uint8_t val, page_t *p)
{
#ifdef USE_DYNAREC
if (val != p->mem[addr & 0xfff] || codegen_in_recompile) {
#else
if (val != p->mem[addr & 0xfff]) {
#endif
uint64_t mask = (uint64_t)1 << ((addr >> PAGE_MASK_SHIFT) & PAGE_MASK_MASK);
p->dirty_mask[(addr >> PAGE_MASK_INDEX_SHIFT) & PAGE_MASK_INDEX_MASK] |= mask;
p->mem[addr & 0xfff] = val;
}
}
void
mem_write_ramw_page(uint32_t addr, uint16_t val, page_t *p)
{
#ifdef USE_DYNAREC
if (val != *(uint16_t *)&p->mem[addr & 0xfff] || codegen_in_recompile) {
#else
if (val != *(uint16_t *)&p->mem[addr & 0xfff]) {
#endif
uint64_t mask = (uint64_t)1 << ((addr >> PAGE_MASK_SHIFT) & PAGE_MASK_MASK);
if ((addr & 0xf) == 0xf)
mask |= (mask << 1);
p->dirty_mask[(addr >> PAGE_MASK_INDEX_SHIFT) & PAGE_MASK_INDEX_MASK] |= mask;
*(uint16_t *)&p->mem[addr & 0xfff] = val;
}
}
void
mem_write_raml_page(uint32_t addr, uint32_t val, page_t *p)
{
#ifdef USE_DYNAREC
if (val != *(uint32_t *)&p->mem[addr & 0xfff] || codegen_in_recompile) {
#else
if (val != *(uint32_t *)&p->mem[addr & 0xfff]) {
#endif
uint64_t mask = (uint64_t)1 << ((addr >> PAGE_MASK_SHIFT) & PAGE_MASK_MASK);
if ((addr & 0xf) >= 0xd)
mask |= (mask << 1);
p->dirty_mask[(addr >> PAGE_MASK_INDEX_SHIFT) & PAGE_MASK_INDEX_MASK] |= mask;
*(uint32_t *)&p->mem[addr & 0xfff] = val;
}
}
void
mem_write_ram(uint32_t addr, uint8_t val, void *priv)
{
addwritelookup(mem_logical_addr, addr);
mem_write_ramb_page(addr, val, &pages[addr >> 12]);
}
void
mem_write_ramw(uint32_t addr, uint16_t val, void *priv)
{
addwritelookup(mem_logical_addr, addr);
mem_write_ramw_page(addr, val, &pages[addr >> 12]);
}
void
mem_write_raml(uint32_t addr, uint32_t val, void *priv)
{
addwritelookup(mem_logical_addr, addr);
mem_write_raml_page(addr, val, &pages[addr >> 12]);
}
uint8_t
mem_read_bios(uint32_t addr, void *priv)
{
return rom[addr & biosmask];
}
uint16_t
mem_read_biosw(uint32_t addr, void *priv)
{
return *(uint16_t *)&rom[addr & biosmask];
}
uint32_t
mem_read_biosl(uint32_t addr, void *priv)
{
return *(uint32_t *)&rom[addr & biosmask];
}
uint8_t
mem_read_romext(uint32_t addr, void *priv)
{
return romext[addr & 0x7fff];
}
uint16_t
mem_read_romextw(uint32_t addr, void *priv)
{
uint16_t *p = (uint16_t *)&romext[addr & 0x7fff];
return *p;
}
uint32_t
mem_read_romextl(uint32_t addr, void *priv)
{
uint32_t *p = (uint32_t *)&romext[addr & 0x7fff];
return *p;
}
void
mem_write_null(uint32_t addr, uint8_t val, void *p)
{
}
void
mem_write_nullw(uint32_t addr, uint16_t val, void *p)
{
}
void
mem_write_nulll(uint32_t addr, uint32_t val, void *p)
{
}
void
mem_invalidate_range(uint32_t start_addr, uint32_t end_addr)
{
start_addr &= ~PAGE_MASK_MASK;
end_addr = (end_addr + PAGE_MASK_MASK) & ~PAGE_MASK_MASK;
for (; start_addr <= end_addr; start_addr += (1 << PAGE_MASK_SHIFT)) {
uint64_t mask = (uint64_t)1 << ((start_addr >> PAGE_MASK_SHIFT) & PAGE_MASK_MASK);
pages[start_addr >> 12].dirty_mask[(start_addr >> PAGE_MASK_INDEX_SHIFT) & PAGE_MASK_INDEX_MASK] |= mask;
}
}
static __inline int
mem_mapping_read_allowed(uint32_t fl, int state)
{
switch (state & MEM_READ_MASK) {
case MEM_READ_ANY:
return 1;
case MEM_READ_EXTERNAL:
return !(fl & MEM_MAPPING_INTERNAL);
case MEM_READ_INTERNAL:
return !(fl & MEM_MAPPING_EXTERNAL);
default:
fatal("mem_mapping_read_allowed : bad state %x\n", state);
}
return 0;
}
static __inline int
mem_mapping_write_allowed(uint32_t fl, int state)
{
switch (state & MEM_WRITE_MASK) {
case MEM_WRITE_DISABLED:
return 0;
case MEM_WRITE_ANY:
return 1;
case MEM_WRITE_EXTERNAL:
return !(fl & MEM_MAPPING_INTERNAL);
case MEM_WRITE_INTERNAL:
return !(fl & MEM_MAPPING_EXTERNAL);
default:
fatal("mem_mapping_write_allowed : bad state %x\n", state);
}
return 0;
}
static void
mem_mapping_recalc(uint64_t base, uint64_t size)
{
mem_mapping_t *map = base_mapping.next;
uint64_t c;
if (! size) return;
/* Clear out old mappings. */
for (c = base; c < base + size; c += 0x4000) {
_mem_read_b[c >> 14] = NULL;
_mem_read_w[c >> 14] = NULL;
_mem_read_l[c >> 14] = NULL;
_mem_priv_r[c >> 14] = NULL;
_mem_mapping_r[c >> 14] = NULL;
_mem_write_b[c >> 14] = NULL;
_mem_write_w[c >> 14] = NULL;
_mem_write_l[c >> 14] = NULL;
_mem_priv_w[c >> 14] = NULL;
_mem_mapping_w[c >> 14] = NULL;
}
/* Walk mapping list. */
while (map != NULL) {
/*In range?*/
if (map->enable && (uint64_t)map->base < ((uint64_t)base + (uint64_t)size) && ((uint64_t)map->base + (uint64_t)map->size) > (uint64_t)base) {
uint64_t start = (map->base < base) ? map->base : base;
uint64_t end = (((uint64_t)map->base + (uint64_t)map->size) < (base + size)) ? ((uint64_t)map->base + (uint64_t)map->size) : (base + size);
if (start < map->base)
start = map->base;
for (c = start; c < end; c += 0x4000) {
if ((map->read_b || map->read_w || map->read_l) &&
mem_mapping_read_allowed(map->flags, _mem_state[c >> 14])) {
_mem_read_b[c >> 14] = map->read_b;
_mem_read_w[c >> 14] = map->read_w;
_mem_read_l[c >> 14] = map->read_l;
if (map->exec)
_mem_exec[c >> 14] = map->exec + (c - map->base);
else
_mem_exec[c >> 14] = NULL;
_mem_priv_r[c >> 14] = map->p;
_mem_mapping_r[c >> 14] = map;
}
if ((map->write_b || map->write_w || map->write_l) &&
mem_mapping_write_allowed(map->flags, _mem_state[c >> 14])) {
_mem_write_b[c >> 14] = map->write_b;
_mem_write_w[c >> 14] = map->write_w;
_mem_write_l[c >> 14] = map->write_l;
_mem_priv_w[c >> 14] = map->p;
_mem_mapping_w[c >> 14] = map;
}
}
}
map = map->next;
}
flushmmucache_cr3();
}
void
mem_mapping_del(mem_mapping_t *map)
{
mem_mapping_t *ptr;
/* Disable the entry. */
mem_mapping_disable(map);
/* Zap it from the list. */
for (ptr = &base_mapping; ptr->next != NULL; ptr = ptr->next) {
if (ptr->next == map) {
ptr->next = map->next;
break;
}
}
}
void
mem_mapping_add(mem_mapping_t *map,
uint32_t base,
uint32_t size,
uint8_t (*read_b)(uint32_t addr, void *p),
uint16_t (*read_w)(uint32_t addr, void *p),
uint32_t (*read_l)(uint32_t addr, void *p),
void (*write_b)(uint32_t addr, uint8_t val, void *p),
void (*write_w)(uint32_t addr, uint16_t val, void *p),
void (*write_l)(uint32_t addr, uint32_t val, void *p),
uint8_t *exec,
uint32_t fl,
void *p)
{
mem_mapping_t *dest = &base_mapping;
/* Add mapping to the end of the list.*/
while (dest->next)
dest = dest->next;
dest->next = map;
map->prev = dest;
if (size)
map->enable = 1;
else
map->enable = 0;
map->base = base;
map->size = size;
map->read_b = read_b;
map->read_w = read_w;
map->read_l = read_l;
map->write_b = write_b;
map->write_w = write_w;
map->write_l = write_l;
map->exec = exec;
map->flags = fl;
map->p = p;
map->dev = NULL;
map->next = NULL;
mem_mapping_recalc(map->base, map->size);
}
void
mem_mapping_set_handler(mem_mapping_t *map,
uint8_t (*read_b)(uint32_t addr, void *p),
uint16_t (*read_w)(uint32_t addr, void *p),
uint32_t (*read_l)(uint32_t addr, void *p),
void (*write_b)(uint32_t addr, uint8_t val, void *p),
void (*write_w)(uint32_t addr, uint16_t val, void *p),
void (*write_l)(uint32_t addr, uint32_t val, void *p))
{
map->read_b = read_b;
map->read_w = read_w;
map->read_l = read_l;
map->write_b = write_b;
map->write_w = write_w;
map->write_l = write_l;
mem_mapping_recalc(map->base, map->size);
}
void
mem_mapping_set_addr(mem_mapping_t *map, uint32_t base, uint32_t size)
{
/* Remove old mapping. */
map->enable = 0;
mem_mapping_recalc(map->base, map->size);
/* Set new mapping. */
map->enable = 1;
map->base = base;
map->size = size;
mem_mapping_recalc(map->base, map->size);
}
void
mem_mapping_set_exec(mem_mapping_t *map, uint8_t *exec)
{
map->exec = exec;
mem_mapping_recalc(map->base, map->size);
}
void
mem_mapping_set_p(mem_mapping_t *map, void *p)
{
map->p = p;
}
void
mem_mapping_set_dev(mem_mapping_t *map, void *p)
{
map->dev = p;
}
void
mem_mapping_disable(mem_mapping_t *map)
{
map->enable = 0;
mem_mapping_recalc(map->base, map->size);
}
void
mem_mapping_enable(mem_mapping_t *map)
{
map->enable = 1;
mem_mapping_recalc(map->base, map->size);
}
void
mem_set_mem_state(uint32_t base, uint32_t size, int state)
{
uint32_t c;
for (c = 0; c < size; c += 0x4000)
_mem_state[(c + base) >> 14] = state;
mem_mapping_recalc(base, size);
}
void
mem_add_bios(void)
{
if (AT || (romset == ROM_XI8088 && xi8088_bios_128kb())) {
mem_mapping_add(&bios_mapping[0], 0xe0000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom,MEM_MAPPING_EXTERNAL|MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_mapping[1], 0xe4000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x4000 & biosmask),
MEM_MAPPING_EXTERNAL|MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_mapping[2], 0xe8000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x8000 & biosmask),
MEM_MAPPING_EXTERNAL|MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_mapping[3], 0xec000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0xc000 & biosmask),
MEM_MAPPING_EXTERNAL|MEM_MAPPING_ROM, 0);
}
mem_mapping_add(&bios_mapping[4], 0xf0000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x10000 & biosmask),
MEM_MAPPING_EXTERNAL|MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_mapping[5], 0xf4000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x14000 & biosmask),
MEM_MAPPING_EXTERNAL|MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_mapping[6], 0xf8000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x18000 & biosmask),
MEM_MAPPING_EXTERNAL|MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_mapping[7], 0xfc000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x1c000 & biosmask),
MEM_MAPPING_EXTERNAL|MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_high_mapping[0],
(AT && cpu_16bitbus) ? 0xfe0000 : 0xfffe0000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom, MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_high_mapping[1],
(AT && cpu_16bitbus) ? 0xfe4000 : 0xfffe4000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x4000 & biosmask), MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_high_mapping[2],
(AT && cpu_16bitbus) ? 0xfe8000 : 0xfffe8000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x8000 & biosmask), MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_high_mapping[3],
(AT && cpu_16bitbus) ? 0xfec000 : 0xfffec000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0xc000 & biosmask), MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_high_mapping[4],
(AT && cpu_16bitbus) ? 0xff0000 : 0xffff0000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x10000 & biosmask), MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_high_mapping[5],
(AT && cpu_16bitbus) ? 0xff4000 : 0xffff4000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x14000 & biosmask), MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_high_mapping[6],
(AT && cpu_16bitbus) ? 0xff8000 : 0xffff8000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x18000 & biosmask), MEM_MAPPING_ROM, 0);
mem_mapping_add(&bios_high_mapping[7],
(AT && cpu_16bitbus) ? 0xffc000 : 0xffffc000, 0x04000,
mem_read_bios,mem_read_biosw,mem_read_biosl,
mem_write_null,mem_write_nullw,mem_write_nulll,
rom + (0x1c000 & biosmask), MEM_MAPPING_ROM, 0);
}
void
mem_a20_init(void)
{
if (AT) {
rammask = cpu_16bitbus ? 0xefffff : 0xffefffff;
flushmmucache();
mem_a20_state = mem_a20_key | mem_a20_alt;
} else {
rammask = 0xfffff;
flushmmucache();
mem_a20_key = mem_a20_alt = mem_a20_state = 0;
}
}
/* Reset the memory state. */
void
mem_reset(void)
{
uint32_t c, m;
/* Free the ROM memory and reset size mask. */
if (rom != NULL) {
free(rom);
rom = NULL;
}
biosmask = 0xffff;
/*
* Make sure the configured amount of RAM does not
* exceed the physical limit of the machine to avoid
* nasty crashes all over the place.
*/
m = mem_size;
c = machines[machine].max_ram;
if (AT)
c <<= 10; /* make KB */
if (m > c) {
pclog("MEM: %luKB exceeds machine limit (%luKB), adjusted!\n", m, c);
mem_size = c;
}
/*
* Always allocate the full 16 MB memory space if memory size
* is smaller, we'll need this for stupid things like the PS/2
* split mapping.
*/
if (mem_size < 16384)
m = 1024UL * 16384;
else
m = 1024UL * (mem_size + 384); /* 386 extra kB for top remapping */
if (ram != NULL) free(ram);
ram = (uint8_t *)malloc(m); /* allocate and clear the RAM block */
memset(ram, 0x00, m);
/*
* Allocate the page table based on how much RAM we have.
* We re-allocate the table on each (hard) reset, as the
* memory amount could have changed.
*/
if (AT) {
if (cpu_16bitbus) {
/* 80186/286; maximum address space is 16MB. */
m = 4096;
} else {
/* 80386+; maximum address space is 4GB. */
m = (mem_size + 384) >> 2;
if ((m << 2) < ((uint32_t)mem_size + 384))
m++;
if (m < 4096)
m = 4096;
}
} else {
/* 8088/86; maximum address space is 1MB. */
m = 256;
}
/*
* Allocate and initialize the (new) page table.
* We only do this if the size of the page table has changed.
*/
#if DYNAMIC_TABLES
pclog("MEM: reset: previous pages=%08lx, pages_sz=%i\n", pages, pages_sz);
#endif
if (pages_sz != m || pages_sz == 0) {
pages_sz = m;
free(pages);
pages = (page_t *)malloc(m*sizeof(page_t));
memset(pages, 0x00, m*sizeof(page_t));
#if DYNAMIC_TABLES
pclog("MEM: reset: new pages=%08lx, pages_sz=%i\n", pages, pages_sz);
/* Allocate the (new) lookup tables. */
if (page_lookup != NULL) free(page_lookup);
page_lookup = (page_t **)malloc(pages_sz*sizeof(page_t *));
if (readlookup2 != NULL) free(readlookup2);
readlookup2 = malloc(pages_sz*sizeof(uintptr_t));
if (writelookup2 != NULL) free(writelookup2);
writelookup2 = malloc(pages_sz*sizeof(uintptr_t));
#endif
}
/* Initialize the page table. */
for (c = 0; c < m; c++) {
pages[c].mem = &ram[c << 12];
pages[c].write_b = mem_write_ramb_page;
pages[c].write_w = mem_write_ramw_page;
pages[c].write_l = mem_write_raml_page;
}
/* Initialize the tables. */
resetreadlookup();
memset(_mem_read_b, 0x00, sizeof(_mem_read_b));
memset(_mem_read_w, 0x00, sizeof(_mem_read_w));
memset(_mem_read_l, 0x00, sizeof(_mem_read_l));
memset(_mem_write_b, 0x00, sizeof(_mem_write_b));
memset(_mem_write_w, 0x00, sizeof(_mem_write_w));
memset(_mem_write_l, 0x00, sizeof(_mem_write_l));
memset(_mem_exec, 0x00, sizeof(_mem_exec));
memset(&base_mapping, 0x00, sizeof(base_mapping));
memset(_mem_state, 0x00, sizeof(_mem_state));
mem_set_mem_state(0x000000, (mem_size > 640) ? 0xa0000 : mem_size * 1024,
MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
mem_set_mem_state(0x0c0000, 0x40000,
MEM_READ_EXTERNAL | MEM_WRITE_EXTERNAL);
mem_mapping_add(&ram_low_mapping, 0x00000,
(mem_size > 640) ? 0xa0000 : mem_size * 1024,
mem_read_ram,mem_read_ramw,mem_read_raml,
mem_write_ram,mem_write_ramw,mem_write_raml,
ram, MEM_MAPPING_INTERNAL, NULL);
if (mem_size > 1024) {
if (cpu_16bitbus && mem_size > 16256) {
mem_set_mem_state(0x100000, (16256 - 1024) * 1024,
MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
mem_mapping_add(&ram_high_mapping, 0x100000,
((16256 - 1024) * 1024),
mem_read_ram,mem_read_ramw,mem_read_raml,
mem_write_ram,mem_write_ramw,mem_write_raml,
ram + 0x100000, MEM_MAPPING_INTERNAL, NULL);
} else {
mem_set_mem_state(0x100000, (mem_size - 1024) * 1024,
MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
mem_mapping_add(&ram_high_mapping, 0x100000,
((mem_size - 1024) * 1024),
mem_read_ram,mem_read_ramw,mem_read_raml,
mem_write_ram,mem_write_ramw,mem_write_raml,
ram + 0x100000, MEM_MAPPING_INTERNAL, NULL);
}
}
#if 1
if (mem_size > 768)
mem_mapping_add(&ram_mid_mapping, 0xc0000, 0x40000,
mem_read_ram,mem_read_ramw,mem_read_raml,
mem_write_ram,mem_write_ramw,mem_write_raml,
ram + 0xc0000, MEM_MAPPING_INTERNAL, NULL);
#endif
if (romset == ROM_IBMPS1_2011)
mem_mapping_add(&romext_mapping, 0xc8000, 0x08000,
mem_read_romext,mem_read_romextw,mem_read_romextl,
NULL,NULL, NULL, romext, 0, NULL);
mem_mapping_add(&ram_remapped_mapping, mem_size * 1024, 384 * 1024,
mem_read_ram,mem_read_ramw,mem_read_raml,
mem_write_ram,mem_write_ramw,mem_write_raml,
ram + (1 << 20), MEM_MAPPING_INTERNAL, NULL);
mem_mapping_disable(&ram_remapped_mapping);
mem_a20_init();
}
/* Perform a one-time memory initialization. */
void
mem_init(void)
{
/* Perform a one-time init. */
ram = rom = NULL;
pages = NULL;
pages_sz = 0;
#if DYNAMIC_TABLES
page_lookup = NULL;
readlookup2 = NULL;
writelookup2 = NULL;
#else
/* Allocate the lookup tables. */
page_lookup = (page_t **)malloc((1<<20)*sizeof(page_t *));
readlookup2 = malloc((1<<20)*sizeof(uintptr_t));
writelookup2 = malloc((1<<20)*sizeof(uintptr_t));
#endif
memset(ram_mapped_addr, 0x00, 64 * sizeof(uint32_t));
}
void
mem_remap_top(int kb)
{
uint32_t start = (mem_size >= 1024) ? mem_size : 1024;
int size = mem_size - 640;
pclog("MEM: remapping top %iKB (mem=%i)\n", kb, mem_size);
if (mem_size <= 640) return;
if (size > kb)
size = kb;
mem_set_mem_state(start * 1024, size * 1024,
MEM_READ_INTERNAL | MEM_WRITE_INTERNAL);
mem_mapping_set_addr(&ram_remapped_mapping, start * 1024, size * 1024);
#if 0
//FIXME: was this a typo for mem_remapped_mapping? --FvK
mem_mapping_set_exec(&ram_split_mapping, ram + (start * 1024));
#endif
flushmmucache();
}
void
mem_reset_page_blocks(void)
{
int c;
if (pages == NULL) return;
for (c = 0; c < ((mem_size * 1024) >> 12); c++) {
pages[c].write_b = mem_write_ramb_page;
pages[c].write_w = mem_write_ramw_page;
pages[c].write_l = mem_write_raml_page;
pages[c].block[0] = pages[c].block[1] =
pages[c].block[2] = pages[c].block[3] = NULL;
pages[c].block_2[0] = pages[c].block_2[1] =
pages[c].block_2[2] = pages[c].block_2[3] = NULL;
}
}
void
mem_a20_recalc(void)
{
int state;
if (! AT) {
rammask = 0xfffff;
flushmmucache();
mem_a20_key = mem_a20_alt = mem_a20_state = 0;
return;
}
state = mem_a20_key | mem_a20_alt;
if (state && !mem_a20_state) {
rammask = (AT && cpu_16bitbus) ? 0xffffff : 0xffffffff;
flushmmucache();
} else if (!state && mem_a20_state) {
rammask = (AT && cpu_16bitbus) ? 0xefffff : 0xffefffff;
flushmmucache();
}
mem_a20_state = state;
}
uint8_t
port_92_read(uint16_t port, void *priv)
{
return port_92_reg;
}
void
port_92_write(uint16_t port, uint8_t val, void *priv)
{
if ((mem_a20_alt ^ val) & 2) {
mem_a20_alt = (val & 2);
mem_a20_recalc();
}
if ((~port_92_reg & val) & 1) {
softresetx86();
cpu_set_edx();
}
port_92_reg = val;
}
void
port_92_clear_reset(void)
{
port_92_reg &= 2;
}
void
port_92_add(void)
{
io_sethandler(0x0092, 1,
port_92_read,NULL,NULL, port_92_write, NULL,NULL,NULL);
}
void
port_92_remove(void)
{
io_removehandler(0x0092, 1,
port_92_read,NULL,NULL, port_92_write,NULL,NULL, NULL);
}
void
port_92_reset(void)
{
port_92_reg = 0;
mem_a20_alt = 0;
mem_a20_recalc();
flushmmucache();
}