This repository has been archived on 2025-05-24. You can view files and clone it, but cannot push or open issues or pull requests.
Files
VARCem/src/pci_dummy.c
2018-03-08 16:00:22 -05:00

299 lines
5.5 KiB
C

/*
* VARCem Virtual ARchaeological Computer EMulator.
* An emulator of (mostly) x86-based PC systems and devices,
* using the ISA,EISA,VLB,MCA and PCI system buses, roughly
* spanning the era between 1981 and 1995.
*
* This file is part of the VARCem Project.
*
* Example implementation of a PCI device.
*
* Version: @(#)pci_dummy.c 1.0.1 2018/02/14
*
* Author: Miran Grca, <mgrca8@gmail.com>
*
* Copyright 2016-2018 Miran Grca.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the:
*
* Free Software Foundation, Inc.
* 59 Temple Place - Suite 330
* Boston, MA 02111-1307
* USA.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <wchar.h>
#include "io.h"
#include "pci.h"
#include "pci_dummy.h"
static uint8_t pci_regs[256];
static bar_t pci_bar[2];
static uint8_t interrupt_on = 0x00;
static uint8_t card = 0;
static void
dummy_interrupt(int set)
{
if (set)
pci_set_irq(card, pci_regs[0x3d]);
else
pci_clear_irq(card, pci_regs[0x3d]);
}
static uint8_t
dummy_read(uint16_t port, void *priv)
{
uint8_t ret = 0;
switch(port & 0x20) {
case 0x00:
return(0x1a);
case 0x01:
return(0x07);
case 0x02:
return(0x0b);
case 0x03:
return(0xab);
case 0x04:
return(pci_regs[0x3c]);
case 0x05:
return(pci_regs[0x3d]);
case 0x06:
ret = interrupt_on;
if (interrupt_on) {
pci_dummy_interrupt(0);
interrupt_on = 0;
}
return(ret);
default:
return(0x00);
}
}
static uint16_t
dummy_readw(uint16_t port, void *priv)
{
return(dummy_read(port, priv));
}
static uint32_t
dummy_readl(uint16_t port, void *priv)
{
return(dummy_read(port, priv));
}
static void
dummy_write(uint16_t port, uint8_t val, void *priv)
{
switch(port & 0x20) {
case 0x06:
if (! interrupt_on) {
interrupt_on = 1;
pci_dummy_interrupt(1);
}
return;
default:
return;
}
}
static void
dummy_writew(uint16_t port, uint16_t val, void *priv)
{
dummy_write(port, val & 0xff, priv);
}
static void
dummy_writel(uint16_t port, uint32_t val, void *priv)
{
dummy_write(port, val & 0xff, priv);
}
static void
dummy_io_remove(void)
{
io_removehandler(pci_bar[0].addr, 32,
dummy_read,dummy_readw,dummy_readl, dummy_write,dummy_writew,dummy_writel, NULL);
}
static void
dummy_io_set(void)
{
io_sethandler(pci_bar[0].addr, 32,
dummy_read,dummy_readw,dummy_readl, dummy_write,dummy_writew,dummy_writel, NULL);
}
static uint8_t
dummy_pci_read(int func, int addr, void *priv)
{
pclog("AB0B:071A: PCI_Read(%d, %04x)\n", func, addr);
switch(addr) {
case 0x00:
return(0x1a);
case 0x01:
return(0x07);
break;
case 0x02:
return(0x0b);
case 0x03:
return(0xab);
case 0x04: /* PCI_COMMAND_LO */
case 0x05: /* PCI_COMMAND_HI */
return(pci_regs[addr]);
case 0x06: /* PCI_STATUS_LO */
case 0x07: /* PCI_STATUS_HI */
return(pci_regs[addr]);
case 0x08:
case 0x09:
return(0x00);
case 0x0a:
return(pci_regs[addr]);
case 0x0b:
return(pci_regs[addr]);
case 0x10: /* PCI_BAR 7:5 */
return((pci_bar[0].addr_regs[0] & 0xe0) | 0x01);
case 0x11: /* PCI_BAR 15:8 */
return(pci_bar[0].addr_regs[1]);
case 0x12: /* PCI_BAR 23:16 */
return(pci_bar[0].addr_regs[2]);
case 0x13: /* PCI_BAR 31:24 */
return(pci_bar[0].addr_regs[3]);
case 0x2c:
return(0x1a);
case 0x2d:
return(0x07);
case 0x2e:
return(0x0b);
case 0x2f:
return(0xab);
case 0x3c: /* PCI_ILR */
return(pci_regs[addr]);
case 0x3d: /* PCI_IPR */
return(pci_regs[addr]);
default:
return(0x00);
}
}
static void
dummy_pci_write(int func, int addr, uint8_t val, void *priv)
{
uint8_t valxor;
pclog("AB0B:071A: PCI_Write(%d, %04x, %02x)\n", func, addr, val);
switch(addr) {
case 0x04: /* PCI_COMMAND_LO */
valxor = (val & 0x03) ^ pci_regs[addr];
if (valxor & PCI_COMMAND_IO) {
dummy_io_remove();
if (((pci_bar[0].addr & 0xffe0) != 0) && (val & PCI_COMMAND_IO)) {
dummy_io_set();
}
}
pci_regs[addr] = val & 0x03;
break;
case 0x10: /* PCI_BAR */
val &= 0xe0; /* 0xe0 acc to RTL DS */
val |= 0x01; /* re-enable IOIN bit */
/*FALLTHROUGH*/
case 0x11: /* PCI_BAR */
case 0x12: /* PCI_BAR */
case 0x13: /* PCI_BAR */
/* Remove old I/O. */
dummy_io_remove();
/* Set new I/O as per PCI request. */
pci_bar[0].addr_regs[addr & 3] = val;
/* Then let's calculate the new I/O base. */
pci_bar[0].addr &= 0xffe0;
/* Log the new base. */
pclog("AB0B:071A: PCI: new I/O base is %04X\n", pci_bar[0].addr);
/* We're done, so get out of the here. */
if (pci_regs[4] & PCI_COMMAND_IO) {
if ((pci_bar[0].addr) != 0) {
dummy_io_set();
}
}
break;
case 0x3C: /* PCI_ILR */
pclog("AB0B:071A: IRQ now: %i\n", val);
pci_regs[addr] = val;
return;
}
}
void
pci_dummy_init(void)
{
card = pci_add_card(PCI_ADD_NORMAL,
dummy_pci_read, dummy_pci_write, NULL);
pci_bar[0].addr_regs[0] = 0x01;
pci_regs[0x04] = 0x03;
pci_regs[0x3D] = PCI_INTD;
}