Files
cuetools.net/CUETools.FlaCuda/flacuda.cu

238 lines
8.4 KiB
Plaintext
Raw Normal View History

2009-09-09 09:46:13 +00:00
/**
* CUETools.FlaCuda: FLAC audio encoder using CUDA
* Copyright (c) 2009 Gregory S. Chudov
2009-09-07 12:39:31 +00:00
*
2009-09-09 09:46:13 +00:00
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
2009-09-07 12:39:31 +00:00
*
2009-09-09 09:46:13 +00:00
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
2009-09-07 12:39:31 +00:00
*
2009-09-09 09:46:13 +00:00
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
2009-09-07 12:39:31 +00:00
*/
#ifndef _FLACUDA_KERNEL_H_
#define _FLACUDA_KERNEL_H_
2009-09-09 09:46:13 +00:00
typedef struct
{
int samplesOffs;
int windowOffs;
} computeAutocorTaskStruct;
2009-09-08 04:56:34 +00:00
extern "C" __global__ void cudaComputeAutocor(
float *output,
const int *samples,
const float *window,
2009-09-09 09:46:13 +00:00
computeAutocorTaskStruct *tasks,
int max_order, // should be <= 32
2009-09-08 04:56:34 +00:00
int frameSize,
2009-09-09 14:40:34 +00:00
int partSize // should be <= 2*blockDim - max_order
2009-09-09 09:46:13 +00:00
)
2009-09-07 12:39:31 +00:00
{
2009-09-08 04:56:34 +00:00
__shared__ struct {
2009-09-09 14:40:34 +00:00
float data[512];
2009-09-09 09:46:13 +00:00
float product[256];
float sum[33];
computeAutocorTaskStruct task;
2009-09-08 04:56:34 +00:00
} shared;
2009-09-09 09:46:13 +00:00
const int tid = threadIdx.x;
2009-09-09 14:40:34 +00:00
const int tid2 = threadIdx.x + 256;
2009-09-09 09:46:13 +00:00
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
2009-09-07 12:39:31 +00:00
__syncthreads();
2009-09-09 09:46:13 +00:00
const int pos = blockIdx.x * partSize;
const int productLen = min(frameSize - pos - max_order, partSize);
const int dataLen = productLen + max_order;
// fetch samples
shared.data[tid] = tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] * window[shared.task.windowOffs + pos + tid]: 0.0f;
2009-09-09 14:40:34 +00:00
shared.data[tid2] = tid2 < dataLen ? samples[shared.task.samplesOffs + pos + tid2] * window[shared.task.windowOffs + pos + tid2]: 0.0f;
2009-09-07 12:39:31 +00:00
__syncthreads();
2009-09-09 09:46:13 +00:00
for (int lag = 0; lag <= max_order; lag++)
2009-09-07 12:39:31 +00:00
{
2009-09-09 14:40:34 +00:00
shared.product[tid] = (tid < productLen) * shared.data[tid] * shared.data[tid + lag] +
+ (tid2 < productLen) * shared.data[tid2] * shared.data[tid2 + lag];
2009-09-07 12:39:31 +00:00
__syncthreads();
2009-09-09 09:46:13 +00:00
// product sum: reduction in shared mem
//if (tid < 256) shared.product[tid] += shared.product[tid + 256]; __syncthreads();
if (tid < 128) shared.product[tid] += shared.product[tid + 128]; __syncthreads();
if (tid < 64) shared.product[tid] += shared.product[tid + 64]; __syncthreads();
if (tid < 32) shared.product[tid] += shared.product[tid + 32]; __syncthreads();
shared.product[tid] += shared.product[tid + 16];
shared.product[tid] += shared.product[tid + 8];
shared.product[tid] += shared.product[tid + 4];
shared.product[tid] += shared.product[tid + 2];
if (tid == 0) shared.sum[lag] = shared.product[0] + shared.product[1];
2009-09-09 14:40:34 +00:00
__syncthreads();
2009-09-07 12:39:31 +00:00
}
// return results
2009-09-09 09:46:13 +00:00
if (tid <= max_order)
output[(blockIdx.x + blockIdx.y * gridDim.x) * (max_order + 1) + tid] = shared.sum[tid];
2009-09-07 12:39:31 +00:00
}
2009-09-09 14:40:34 +00:00
extern "C" __global__ void cudaComputeLPC(
float*output,
float*autoc,
computeAutocorTaskStruct *tasks,
int max_order, // should be <= 32
int partCount // should be <= blockDim
)
{
__shared__ struct {
computeAutocorTaskStruct task;
float tmp[32];
float buf[32];
int bits[32];
float autoc[33];
} shared;
const int tid = threadIdx.x;
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
// initialize autoc sums
if (tid <= max_order)
shared.autoc[tid] = 0.0f;
__syncthreads();
// add up parts
for (int part = 0; part < partCount; part++)
if (tid <= max_order)
shared.autoc[tid] += autoc[(blockIdx.y * partCount + part) * (max_order + 1) + tid];
__syncthreads();
if (tid <= 32)
shared.tmp[tid] = 0.0f;
float err = shared.autoc[0];
for(int order = 0; order < max_order; order++)
{
if (tid < 32)
{
shared.buf[tid] = tid < order ? shared.tmp[tid] * shared.autoc[order - tid] : 0;
shared.buf[tid] += shared.buf[tid + 16];
shared.buf[tid] += shared.buf[tid + 8];
shared.buf[tid] += shared.buf[tid + 4];
shared.buf[tid] += shared.buf[tid + 2];
shared.buf[tid] += shared.buf[tid + 1];
}
__syncthreads();
float r = (- shared.autoc[order+1] - shared.buf[0]) / err;
err *= 1.0f - (r * r);
if (tid == 0)
shared.tmp[order] = r; // we could also set shared.tmp[-1] to 1.0f
if (tid < order)
shared.tmp[tid] += r * shared.tmp[order - 1 - tid];
if (tid <= order)
output[((blockIdx.x + blockIdx.y * gridDim.x) * max_order + order) * max_order + tid] = -shared.tmp[tid];
//{
// int precision = 13;
// shared.bits[tid] = 32 - __clz(__float2int_rn(fabs(shared.tmp[tid]) * (1 << 15))) - precision;
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 16]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 8]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 4]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 2]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 1]);
// int sh = max(0,min(15, 15 - shared.bits[0]));
// shared.bits[tid] = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(-shared.tmp[tid] * (1 << sh))));
// if (tid == 0)
// output[((blockIdx.x + blockIdx.y * gridDim.x) * max_order + order) * (1 + max_order) + order + 1] = sh;
// output[((blockIdx.x + blockIdx.y * gridDim.x) * max_order + order) * (1 + max_order) + tid] = shared.bits[tid];
//}
__syncthreads();
}
}
2009-09-08 16:26:53 +00:00
typedef struct
{
2009-09-09 09:46:13 +00:00
int residualOrder; // <= 32
2009-09-08 16:26:53 +00:00
int samplesOffs;
2009-09-08 20:21:30 +00:00
int shift;
int reserved;
int coefs[32];
2009-09-08 16:26:53 +00:00
} encodeResidualTaskStruct;
2009-09-07 12:39:31 +00:00
extern "C" __global__ void cudaEncodeResidual(
int*output,
int*samples,
2009-09-08 16:26:53 +00:00
encodeResidualTaskStruct *tasks,
2009-09-07 12:39:31 +00:00
int frameSize,
2009-09-09 09:46:13 +00:00
int partSize // should be <= blockDim - max_order
2009-09-08 16:26:53 +00:00
)
2009-09-07 12:39:31 +00:00
{
__shared__ struct {
int data[256];
int residual[256];
2009-09-08 16:26:53 +00:00
int rice[32];
encodeResidualTaskStruct task;
2009-09-07 12:39:31 +00:00
} shared;
2009-09-08 16:26:53 +00:00
const int tid = threadIdx.x;
// fetch task data
if (tid < sizeof(encodeResidualTaskStruct) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
__syncthreads();
const int pos = blockIdx.x * partSize;
2009-09-09 14:40:34 +00:00
const int residualOrder = shared.task.residualOrder + 1;
const int residualLen = min(frameSize - pos - residualOrder, partSize);
const int dataLen = residualLen + residualOrder;
2009-09-07 12:39:31 +00:00
2009-09-08 16:26:53 +00:00
// fetch samples
shared.data[tid] = (tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] : 0);
2009-09-09 14:40:34 +00:00
// reverse coefs
if (tid < residualOrder) shared.task.coefs[tid] = shared.task.coefs[residualOrder - 1 - tid];
2009-09-07 12:39:31 +00:00
2009-09-08 16:26:53 +00:00
// compute residual
__syncthreads();
long sum = 0;
2009-09-09 14:40:34 +00:00
for (int c = 0; c < residualOrder; c++)
sum += __mul24(shared.data[tid + c], shared.task.coefs[c]);
int res = shared.data[tid + residualOrder] - (sum >> shared.task.shift);
2009-09-08 16:26:53 +00:00
shared.residual[tid] = __mul24(tid < residualLen, (2 * res) ^ (res >> 31));
__syncthreads();
// residual sum: reduction in shared mem
if (tid < 128) shared.residual[tid] += shared.residual[tid + 128]; __syncthreads();
if (tid < 64) shared.residual[tid] += shared.residual[tid + 64]; __syncthreads();
if (tid < 32) shared.residual[tid] += shared.residual[tid + 32]; __syncthreads();
shared.residual[tid] += shared.residual[tid + 16];
shared.residual[tid] += shared.residual[tid + 8];
shared.residual[tid] += shared.residual[tid + 4];
shared.residual[tid] += shared.residual[tid + 2];
shared.residual[tid] += shared.residual[tid + 1];
__syncthreads();
2009-09-08 09:51:33 +00:00
2009-09-08 16:26:53 +00:00
if (tid < 32)
{
// rice parameter search
shared.rice[tid] = __mul24(tid >= 15, 0x7fffff) + residualLen * (tid + 1) + ((shared.residual[0] - (residualLen >> 1)) >> tid);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 8]);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 4]);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 2]);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 1]);
2009-09-07 12:39:31 +00:00
}
if (tid == 0)
2009-09-08 16:26:53 +00:00
output[blockIdx.x + blockIdx.y * gridDim.x] = shared.rice[0];
2009-09-07 12:39:31 +00:00
}
#endif