Files
cuetools.net/CUETools.Codecs.FLACCL/flaccpu.cl

760 lines
24 KiB
Common Lisp
Raw Normal View History

2010-10-25 04:50:36 +00:00
/**
* CUETools.FLACCL: FLAC audio encoder using OpenCL
* Copyright (c) 2010 Gregory S. Chudov
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _FLACCL_KERNEL_H_
#define _FLACCL_KERNEL_H_
#ifdef DEBUG
#pragma OPENCL EXTENSION cl_amd_printf : enable
#endif
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
typedef enum
{
Constant = 0,
Verbatim = 1,
Fixed = 8,
LPC = 32
} SubframeType;
typedef struct
{
int residualOrder; // <= 32
int samplesOffs;
int shift;
int cbits;
int size;
int type;
int obits;
int blocksize;
int best_index;
int channel;
int residualOffs;
int wbits;
int abits;
int porder;
2010-11-03 19:16:52 +00:00
int ignore;
int reserved;
2010-10-25 04:50:36 +00:00
} FLACCLSubframeData;
typedef struct
{
FLACCLSubframeData data;
int coefs[32]; // fixme: should be short?
} FLACCLSubframeTask;
__kernel void clStereoDecorr(
2010-11-03 19:16:52 +00:00
__global int4 *samples,
__global int4 *src,
2010-10-25 04:50:36 +00:00
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
2010-11-03 19:16:52 +00:00
int4 s = src[pos];
int4 x = (s << 16) >> 16;
int4 y = s >> 16;
samples[pos] = x;
samples[1 * offset + pos] = y;
samples[2 * offset + pos] = (x + y) >> 1;
samples[3 * offset + pos] = x - y;
2010-10-25 04:50:36 +00:00
}
}
2010-11-03 19:16:52 +00:00
__kernel void clWindowRectangle(__global float* window, int windowOffset)
{
window[get_global_id(0)] = 1.0f;
}
__kernel void clWindowFlattop(__global float* window, int windowOffset)
{
float p = M_PI * get_global_id(0) / (get_global_size(0) - 1);
window[get_global_id(0)] = 1.0f
- 1.93f * cos(2 * p)
+ 1.29f * cos(4 * p)
- 0.388f * cos(6 * p)
+ 0.0322f * cos(8 * p);
}
__kernel void clWindowTukey(__global float* window, int windowOffset, float p)
{
int Np = (int)(p / 2.0f * get_global_size(0)) - 1;
int n = select(max(Np, get_global_id(0) - (get_global_size(0) - Np - 1) + Np), get_global_id(0), get_global_id(0) <= Np);
window[get_global_id(0)] = 0.5f - 0.5f * cos(M_PI * n / Np);
}
2010-10-25 04:50:36 +00:00
__kernel void clChannelDecorr2(
2010-11-03 19:16:52 +00:00
__global int4 *samples,
__global int4 *src,
2010-10-25 04:50:36 +00:00
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
2010-11-03 19:16:52 +00:00
int4 s = src[pos];
int4 x = (s << 16) >> 16;
int4 y = s >> 16;
samples[pos] = x;
samples[1 * offset + pos] = y;
2010-10-25 04:50:36 +00:00
}
}
//__kernel void clChannelDecorr(
// int *samples,
// short *src,
// int offset
//)
//{
// int pos = get_global_id(0);
// if (pos < offset)
// samples[get_group_id(1) * offset + pos] = src[pos * get_num_groups(1) + get_group_id(1)];
//}
#define __ffs(a) (32 - clz(a & (-a)))
//#define __ffs(a) (33 - clz(~a & (a - 1)))
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clFindWastedBits(
__global FLACCLSubframeTask *tasks,
__global int *samples,
int tasksPerChannel
)
{
__global FLACCLSubframeTask* ptask = &tasks[get_group_id(0) * tasksPerChannel];
int w = 0, a = 0;
for (int pos = 0; pos < ptask->data.blocksize; pos ++)
{
int smp = samples[ptask->data.samplesOffs + pos];
w |= smp;
a |= smp ^ (smp >> 31);
}
w = max(0,__ffs(w) - 1);
a = 32 - clz(a) - w;
for (int i = 0; i < tasksPerChannel; i++)
{
ptask[i].data.wbits = w;
ptask[i].data.abits = a;
2010-11-03 19:16:52 +00:00
ptask[i].data.ignore = 0;//i != 0;
ptask[i].data.size = ptask[i].data.obits * ptask[i].data.blocksize;
2010-10-25 04:50:36 +00:00
}
}
2010-11-01 17:09:48 +00:00
#define TEMPBLOCK 128
2010-10-31 18:09:45 +00:00
2010-11-01 17:09:48 +00:00
#if 0
2010-10-25 04:50:36 +00:00
// get_num_groups(0) == number of tasks
// get_num_groups(1) == number of windows
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clComputeAutocor(
__global float *output,
__global const int *samples,
__global const float *window,
__global FLACCLSubframeTask *tasks,
const int taskCount // tasks per block
)
{
FLACCLSubframeData task = tasks[get_group_id(0) * taskCount].data;
int len = task.blocksize;
int windowOffs = get_group_id(1) * len;
2010-10-31 18:09:45 +00:00
float data[TEMPBLOCK + MAX_ORDER + 3];
double ac[MAX_ORDER + 4];
2010-10-25 04:50:36 +00:00
for (int i = 0; i <= MAX_ORDER; ++i)
2010-10-31 18:09:45 +00:00
ac[i] = 0.0;
2010-10-25 04:50:36 +00:00
2010-10-31 18:09:45 +00:00
for (int pos = 0; pos < len; pos += TEMPBLOCK)
{
for (int tid = 0; tid < TEMPBLOCK + MAX_ORDER + 3; tid++)
data[tid] = tid < len - pos ? samples[task.samplesOffs + pos + tid] * window[windowOffs + pos + tid] : 0.0f;
for (int i = 0; i <= MAX_ORDER; i += 4)
2010-10-25 04:50:36 +00:00
{
2010-10-31 18:09:45 +00:00
float4 temp = 0.0;
for (int j = 0; j < min(TEMPBLOCK, len - pos); j++)
temp += data[j] * vload4(0, &data[j + i]);
ac[i] += temp.x;
ac[i+1] += temp.y;
ac[i+2] += temp.z;
ac[i+3] += temp.w;
2010-10-25 04:50:36 +00:00
}
}
2010-10-31 18:09:45 +00:00
__global float * pout = &output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1)];
for (int i = 0; i <= MAX_ORDER; ++i)
pout[i] = ac[i];
2010-10-25 04:50:36 +00:00
}
2010-11-01 17:09:48 +00:00
#else
#define STORE_AC(ro, val) if (ro <= MAX_ORDER) pout[ro] = val;
#define STORE_AC4(ro, val) STORE_AC(ro*4+0, val##ro.x) STORE_AC(ro*4+1, val##ro.y) STORE_AC(ro*4+2, val##ro.z) STORE_AC(ro*4+3, val##ro.w)
// get_num_groups(0) == number of tasks
// get_num_groups(1) == number of windows
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clComputeAutocor(
__global float *output,
__global const int *samples,
__global const float *window,
__global FLACCLSubframeTask *tasks,
const int taskCount // tasks per block
)
{
FLACCLSubframeData task = tasks[get_group_id(0) * taskCount].data;
int len = task.blocksize;
int windowOffs = get_group_id(1) * len;
float data[TEMPBLOCK + MAX_ORDER + 3];
double4 ac0 = 0.0, ac1 = 0.0, ac2 = 0.0, ac3 = 0.0, ac4 = 0.0, ac5 = 0.0, ac6 = 0.0, ac7 = 0.0, ac8 = 0.0;
for (int pos = 0; pos < len; pos += TEMPBLOCK)
{
for (int tid = 0; tid < TEMPBLOCK + MAX_ORDER + 3; tid++)
data[tid] = tid < len - pos ? samples[task.samplesOffs + pos + tid] * window[windowOffs + pos + tid] : 0.0f;
for (int j = 0; j < TEMPBLOCK;)
{
float4 temp0 = 0.0f, temp1 = 0.0f, temp2 = 0.0f, temp3 = 0.0f, temp4 = 0.0f, temp5 = 0.0f, temp6 = 0.0f, temp7 = 0.0f, temp8 = 0.0f;
for (int k = 0; k < 32; k++)
{
float d0 = data[j];
temp0 += d0 * vload4(0, &data[j]);
temp1 += d0 * vload4(1, &data[j]);
#if MAX_ORDER >= 8
temp2 += d0 * vload4(2, &data[j]);
#if MAX_ORDER >= 12
temp3 += d0 * vload4(3, &data[j]);
#if MAX_ORDER >= 16
temp4 += d0 * vload4(4, &data[j]);
temp5 += d0 * vload4(5, &data[j]);
temp6 += d0 * vload4(6, &data[j]);
temp7 += d0 * vload4(7, &data[j]);
temp8 += d0 * vload4(8, &data[j]);
#endif
#endif
#endif
j++;
}
ac0 += convert_double4(temp0);
ac1 += convert_double4(temp1);
#if MAX_ORDER >= 8
ac2 += convert_double4(temp2);
#if MAX_ORDER >= 12
ac3 += convert_double4(temp3);
#if MAX_ORDER >= 16
ac4 += convert_double4(temp4);
ac5 += convert_double4(temp5);
ac6 += convert_double4(temp6);
ac7 += convert_double4(temp7);
ac8 += convert_double4(temp8);
#endif
#endif
#endif
}
}
__global float * pout = &output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1)];
STORE_AC4(0, ac) STORE_AC4(1, ac) STORE_AC4(2, ac) STORE_AC4(3, ac)
STORE_AC4(4, ac) STORE_AC4(5, ac) STORE_AC4(6, ac) STORE_AC4(7, ac)
STORE_AC4(8, ac)
}
#endif
2010-10-25 04:50:36 +00:00
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clComputeLPC(
__global float *pautoc,
__global float *lpcs,
int windowCount
)
{
int lpcOffs = (get_group_id(0) + get_group_id(1) * windowCount) * (MAX_ORDER + 1) * 32;
int autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1);
volatile double ldr[32];
volatile double gen0[32];
volatile double gen1[32];
volatile double err[32];
__global float* autoc = pautoc + autocOffs;
for (int i = 0; i < MAX_ORDER; i++)
{
gen0[i] = gen1[i] = autoc[i + 1];
ldr[i] = 0.0;
}
// Compute LPC using Schur and Levinson-Durbin recursion
double error = autoc[0];
for (int order = 0; order < MAX_ORDER; order++)
{
// Schur recursion
double reff = -gen1[0] / error;
//error += gen1[0] * reff; // Equivalent to error *= (1 - reff * reff);
error *= (1 - reff * reff);
for (int j = 0; j < MAX_ORDER - 1 - order; j++)
{
gen1[j] = gen1[j + 1] + reff * gen0[j];
gen0[j] = gen1[j + 1] * reff + gen0[j];
}
err[order] = error;
// Levinson-Durbin recursion
ldr[order] = reff;
for (int j = 0; j < order / 2; j++)
{
double tmp = ldr[j];
ldr[j] += reff * ldr[order - 1 - j];
ldr[order - 1 - j] += reff * tmp;
}
if (0 != (order & 1))
ldr[order / 2] += ldr[order / 2] * reff;
// Output coeffs
for (int j = 0; j <= order; j++)
lpcs[lpcOffs + order * 32 + j] = -ldr[order - j];
}
// Output prediction error estimates
for (int j = 0; j < MAX_ORDER; j++)
lpcs[lpcOffs + MAX_ORDER * 32 + j] = err[j];
}
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clQuantizeLPC(
__global FLACCLSubframeTask *tasks,
__global float*lpcs,
int taskCount, // tasks per block
int taskCountLPC, // tasks per set of coeffs (<= 32)
int minprecision,
int precisions
)
{
int bs = tasks[get_group_id(1) * taskCount].data.blocksize;
int abits = tasks[get_group_id(1) * taskCount].data.abits;
int lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32;
float error[MAX_ORDER];
int best_orders[MAX_ORDER];
// Load prediction error estimates based on Akaike's Criteria
for (int tid = 0; tid < MAX_ORDER; tid++)
{
error[tid] = bs * log(lpcs[lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log(bs);
best_orders[tid] = tid;
}
// Select best orders
for (int i = 0; i < MAX_ORDER && i < taskCountLPC; i++)
{
for (int j = i + 1; j < MAX_ORDER; j++)
{
if (error[best_orders[j]] < error[best_orders[i]])
{
int tmp = best_orders[j];
best_orders[j] = best_orders[i];
best_orders[i] = tmp;
}
}
}
// Quantization
for (int i = 0; i < taskCountLPC; i ++)
{
int order = best_orders[i >> precisions];
int tmpi = 0;
for (int tid = 0; tid <= order; tid ++)
{
float lpc = lpcs[lpcOffs + order * 32 + tid];
// get 15 bits of each coeff
int c = convert_int_rte(lpc * (1 << 15));
// remove sign bits
tmpi |= c ^ (c >> 31);
}
// choose precision
//int cbits = max(3, min(10, 5 + (abits >> 1))); // - convert_int_rte(shared.PE[order - 1])
int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (bs <= 2304) - (bs <= 1152) - (bs <= 576), abits), clz(order) + 1 - abits));
// calculate shift based on precision and number of leading zeroes in coeffs
int shift = max(0,min(15, clz(tmpi) - 18 + cbits));
int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i;
tmpi = 0;
for (int tid = 0; tid <= order; tid ++)
{
float lpc = lpcs[lpcOffs + order * 32 + tid];
// quantize coeffs with given shift
int c = convert_int_rte(clamp(lpc * (1 << shift), -1 << (cbits - 1), 1 << (cbits - 1)));
// remove sign bits
tmpi |= c ^ (c >> 31);
tasks[taskNo].coefs[tid] = c;
}
// calculate actual number of bits (+1 for sign)
cbits = 1 + 32 - clz(tmpi);
// output shift, cbits, ro
tasks[taskNo].data.shift = shift;
tasks[taskNo].data.cbits = cbits;
tasks[taskNo].data.residualOrder = order + 1;
}
}
2010-10-31 18:09:45 +00:00
inline int calc_residual(__global int *ptr, int * coefs, int ro)
{
int sum = 0;
for (int i = 0; i < ro; i++)
sum += ptr[i] * coefs[i];
return sum;
}
2010-10-25 04:50:36 +00:00
2010-10-31 18:09:45 +00:00
#define ENCODE_N(cro,action) for (int pos = cro; pos < bs; pos ++) { \
int t = (data[pos] - (calc_residual(data + pos - cro, task.coefs, cro) >> task.data.shift)) >> task.data.wbits; \
action; \
}
#define SWITCH_N(action) \
switch (ro) \
{ \
case 0: ENCODE_N(0, action) break; \
case 1: ENCODE_N(1, action) break; \
case 2: ENCODE_N(2, action) /*if (task.coefs[0] == -1 && task.coefs[1] == 2) ENCODE_N(2, 2 * ptr[1] - ptr[0], action) else*/ break; \
case 3: ENCODE_N(3, action) break; \
case 4: ENCODE_N(4, action) break; \
case 5: ENCODE_N(5, action) break; \
case 6: ENCODE_N(6, action) break; \
case 7: ENCODE_N(7, action) break; \
case 8: ENCODE_N(8, action) break; \
case 9: ENCODE_N(9, action) break; \
case 10: ENCODE_N(10, action) break; \
case 11: ENCODE_N(11, action) break; \
case 12: ENCODE_N(12, action) break; \
default: ENCODE_N(ro, action) \
}
2010-10-25 04:50:36 +00:00
2010-11-03 19:16:52 +00:00
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clSelectStereoTasks(
__global FLACCLSubframeTask *tasks,
int count
)
{
for (int i = 0; i < count; i++)
{
__global FLACCLSubframeTask* ptask = tasks + count * get_group_id(0) + i;
ptask->data.ignore = i != 0;
ptask->data.size = ptask->data.obits * ptask->data.blocksize;
}
}
2010-10-25 04:50:36 +00:00
__kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(1, 1, 1)))
void clEstimateResidual(
__global int*samples,
__global FLACCLSubframeTask *tasks
)
{
FLACCLSubframeTask task = tasks[get_group_id(0)];
int ro = task.data.residualOrder;
int bs = task.data.blocksize;
#define EPO 6
2010-10-31 18:09:45 +00:00
int len[1 << EPO]; // blocksize / 64!!!!
2010-11-03 19:16:52 +00:00
if (task.data.ignore)
{
tasks[get_group_id(0)].data.size = task.data.obits * bs;
return;
}
2010-10-25 04:50:36 +00:00
__global int *data = &samples[task.data.samplesOffs];
2010-10-31 18:09:45 +00:00
// for (int i = ro; i < 32; i++)
//task.coefs[i] = 0;
2010-10-25 04:50:36 +00:00
for (int i = 0; i < 1 << EPO; i++)
len[i] = 0;
2010-10-31 18:09:45 +00:00
SWITCH_N((t = clamp(t, -0x7fffff, 0x7fffff), len[pos >> (12 - EPO)] += (t << 1) ^ (t >> 31)))
2010-10-25 04:50:36 +00:00
int total = 0;
for (int i = 0; i < 1 << EPO; i++)
{
int res = min(0x7fffff,len[i]);
int k = clamp(clz(1 << (12 - EPO)) - clz(res), 0, 14); // 27 - clz(res) == clz(16) - clz(res) == log2(res / 16)
total += (k << (12 - EPO)) + (res >> k);
}
2010-10-31 07:42:09 +00:00
int partLen = min(0x7ffffff, total) + (bs - ro);
int obits = task.data.obits - task.data.wbits;
tasks[get_group_id(0)].data.size = min(obits * bs,
task.data.type == Fixed ? ro * obits + 6 + (4 * 1/2) + partLen :
task.data.type == LPC ? ro * obits + 4 + 5 + ro * task.data.cbits + 6 + (4 * 1/2)/* << porder */ + partLen :
task.data.type == Constant ? obits * select(1, bs, partLen != bs - ro) :
obits * bs);
2010-10-25 04:50:36 +00:00
}
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clChooseBestMethod(
__global FLACCLSubframeTask *tasks,
int taskCount
)
{
int best_length = 0x7fffff;
int best_no = 0;
for (int taskNo = 0; taskNo < taskCount; taskNo++)
{
2010-10-31 07:42:09 +00:00
int len = tasks[taskNo + taskCount * get_group_id(0)].data.size;
2010-10-25 04:50:36 +00:00
if (len < best_length)
{
best_length = len;
best_no = taskNo;
}
}
tasks[taskCount * get_group_id(0)].data.best_index = taskCount * get_group_id(0) + best_no;
}
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clCopyBestMethod(
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
)
{
int best_index = tasks[count * get_group_id(0)].data.best_index;
tasks_out[get_group_id(0)] = tasks[best_index];
}
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clCopyBestMethodStereo(
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
)
{
int best_index[4];
int best_size[4];
int lr_index[2];
for (int i = 0; i < 4; i++)
{
int best = tasks[count * (get_group_id(0) * 4 + i)].data.best_index;
best_index[i] = best;
best_size[i] = tasks[best].data.size;
}
int bitsBest = best_size[2] + best_size[3]; // MidSide
lr_index[0] = best_index[2];
lr_index[1] = best_index[3];
if (bitsBest > best_size[3] + best_size[1]) // RightSide
{
bitsBest = best_size[3] + best_size[1];
lr_index[0] = best_index[3];
lr_index[1] = best_index[1];
}
if (bitsBest > best_size[0] + best_size[3]) // LeftSide
{
bitsBest = best_size[0] + best_size[3];
lr_index[0] = best_index[0];
lr_index[1] = best_index[3];
}
if (bitsBest > best_size[0] + best_size[1]) // LeftRight
{
bitsBest = best_size[0] + best_size[1];
lr_index[0] = best_index[0];
lr_index[1] = best_index[1];
}
tasks_out[2 * get_group_id(0)] = tasks[lr_index[0]];
tasks_out[2 * get_group_id(0)].data.residualOffs = tasks[best_index[0]].data.residualOffs;
tasks_out[2 * get_group_id(0) + 1] = tasks[lr_index[1]];
tasks_out[2 * get_group_id(0) + 1].data.residualOffs = tasks[best_index[1]].data.residualOffs;
}
2010-10-31 18:09:45 +00:00
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clEncodeResidual(
__global int *residual,
__global int *samples,
__global FLACCLSubframeTask *tasks
)
{
FLACCLSubframeTask task = tasks[get_group_id(0)];
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
__global int *data = &samples[task.data.samplesOffs];
SWITCH_N(residual[task.data.residualOffs + pos] = t);
}
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clCalcPartition(
__global int *partition_lengths,
__global int *residual,
__global FLACCLSubframeTask *tasks,
int max_porder, // <= 8
int psize // == task.blocksize >> max_porder?
)
{
FLACCLSubframeTask task = tasks[get_group_id(1)];
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
//int psize = bs >> max_porder;
__global int *pl = partition_lengths + (1 << (max_porder + 1)) * get_group_id(1);
for (int p = 0; p < (1 << max_porder); p++)
pl[p] = 0;
for (int pos = ro; pos < bs; pos ++)
{
int t = residual[task.data.residualOffs + pos];
// overflow protection
t = clamp(t, -0x7fffff, 0x7fffff);
// convert to unsigned
t = (t << 1) ^ (t >> 31);
pl[pos / psize] += t;
}
}
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clCalcPartition16(
__global int *partition_lengths,
__global int *residual,
__global int *samples,
__global FLACCLSubframeTask *tasks,
int max_porder // <= 8
)
{
2010-11-03 19:16:52 +00:00
FLACCLSubframeTask task = tasks[get_global_id(0)];
2010-10-31 18:09:45 +00:00
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
__global int *data = &samples[task.data.samplesOffs];
2010-11-03 19:16:52 +00:00
__global int *pl = partition_lengths + (1 << (max_porder + 1)) * get_global_id(0);
2010-10-31 18:09:45 +00:00
for (int p = 0; p < (1 << max_porder); p++)
pl[p] = 0;
2010-11-03 19:16:52 +00:00
//__global int *rptr = residual + task.data.residualOffs;
//SWITCH_N((rptr[pos] = t, pl[pos >> 4] += (t << 1) ^ (t >> 31)));
2010-10-31 18:09:45 +00:00
SWITCH_N((residual[task.data.residualOffs + pos] = t, t = clamp(t, -0x7fffff, 0x7fffff), t = (t << 1) ^ (t >> 31), pl[pos >> 4] += t));
}
// Sums partition lengths for a certain k == get_group_id(0)
// get_group_id(0) == k
// get_group_id(1) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clSumPartition(
__global int* partition_lengths,
int max_porder
)
{
if (get_group_id(0) != 0) // ignore k != 0
return;
__global int * sums = partition_lengths + (1 << (max_porder + 1)) * get_group_id(1);
for (int i = max_porder - 1; i >= 0; i--)
{
for (int j = 0; j < (1 << i); j++)
{
sums[(2 << i) + j] = sums[2 * j] + sums[2 * j + 1];
// if (get_group_id(1) == 0)
//printf("[%d][%d]: %d + %d == %d\n", i, j, sums[2 * j], sums[2 * j + 1], sums[2 * j] + sums[2 * j + 1]);
}
sums += 2 << i;
}
}
// Finds optimal rice parameter for each partition.
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clFindRiceParameter(
__global FLACCLSubframeTask *tasks,
__global int* rice_parameters,
__global int* partition_lengths,
int max_porder
)
{
__global FLACCLSubframeTask* task = tasks + get_group_id(0);
const int tid = get_local_id(0);
int lim = (2 << max_porder) - 1;
int psize = task->data.blocksize >> max_porder;
int bs = task->data.blocksize;
int ro = task->data.residualOrder;
for (int offs = 0; offs < lim; offs ++)
{
int pl = partition_lengths[(1 << (max_porder + 1)) * get_group_id(0) + offs];
int porder = 31 - clz(lim - offs);
int ps = (bs >> porder) - select(0, ro, offs == lim + 1 - (2 << porder));
//if (ps <= 0)
// printf("max_porder == %d, porder == %d, ro == %d\n", max_porder, porder, ro);
int k = clamp(31 - clz(pl / max(1, ps)), 0, 14);
int plk = ps * (k + 1) + (pl >> k);
// output rice parameter
rice_parameters[(get_group_id(0) << (max_porder + 2)) + offs] = k;
// output length
rice_parameters[(get_group_id(0) << (max_porder + 2)) + (1 << (max_porder + 1)) + offs] = plk;
}
}
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clFindPartitionOrder(
__global int *residual,
__global int* best_rice_parameters,
__global FLACCLSubframeTask *tasks,
__global int* rice_parameters,
int max_porder
)
{
__global FLACCLSubframeTask* task = tasks + get_group_id(0);
int partlen[9];
for (int p = 0; p < 9; p++)
partlen[p] = 0;
// fetch partition lengths
const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder);
int lim = (2 << max_porder) - 1;
for (int offs = 0; offs < lim; offs ++)
{
int len = rice_parameters[pos + offs];
int porder = 31 - clz(lim - offs);
partlen[porder] += len;
}
int best_length = partlen[0] + 4;
int best_porder = 0;
for (int porder = 1; porder <= max_porder; porder++)
{
int length = (4 << porder) + partlen[porder];
best_porder = select(best_porder, porder, length < best_length);
best_length = min(best_length, length);
}
best_length = (4 << best_porder) + task->data.blocksize - task->data.residualOrder;
int best_psize = task->data.blocksize >> best_porder;
int start = task->data.residualOffs + task->data.residualOrder;
int fin = task->data.residualOffs + best_psize;
for (int p = 0; p < (1 << best_porder); p++)
{
int k = rice_parameters[pos - (2 << best_porder) + p];
best_length += k * (fin - start);
for (int i = start; i < fin; i++)
{
int t = residual[i];
best_length += ((t << 1) ^ (t >> 31)) >> k;
}
start = fin;
fin += best_psize;
}
int obits = task->data.obits - task->data.wbits;
task->data.porder = best_porder;
task->data.size =
task->data.type == Fixed ? task->data.residualOrder * obits + 6 + best_length :
task->data.type == LPC ? task->data.residualOrder * obits + 6 + best_length + 4 + 5 + task->data.residualOrder * task->data.cbits :
task->data.type == Constant ? obits : obits * task->data.blocksize;
for (int offs = 0; offs < (1 << best_porder); offs ++)
best_rice_parameters[(get_group_id(0) << max_porder) + offs] = rice_parameters[pos - (2 << best_porder) + offs];
}
2010-10-25 04:50:36 +00:00
#endif