Files
cuetools.net/CUETools.Codecs.FLACCL/flac.cl

913 lines
32 KiB
Common Lisp
Raw Normal View History

2010-09-20 05:32:05 +00:00
/**
* CUETools.FLACCL: FLAC audio encoder using OpenCL
* Copyright (c) 2009 Gregory S. Chudov
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _FLACCL_KERNEL_H_
#define _FLACCL_KERNEL_H_
typedef enum
{
Constant = 0,
Verbatim = 1,
Fixed = 8,
LPC = 32
} SubframeType;
typedef struct
{
int residualOrder; // <= 32
int samplesOffs;
int shift;
int cbits;
int size;
int type;
int obits;
int blocksize;
int best_index;
int channel;
int residualOffs;
int wbits;
int abits;
int porder;
int reserved[2];
} FLACCLSubframeData;
typedef struct
{
FLACCLSubframeData data;
2010-09-25 19:53:48 +00:00
int coefs[32]; // fixme: should be short?
2010-09-20 05:32:05 +00:00
} FLACCLSubframeTask;
__kernel void cudaStereoDecorr(
__global int *samples,
__global short2 *src,
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
samples[2 * offset + pos] = (s.x + s.y) >> 1;
samples[3 * offset + pos] = s.x - s.y;
}
}
__kernel void cudaChannelDecorr2(
__global int *samples,
__global short2 *src,
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
}
}
//__kernel void cudaChannelDecorr(
// int *samples,
// short *src,
// int offset
//)
//{
// int pos = get_global_id(0);
// if (pos < offset)
// samples[get_group_id(1) * offset + pos] = src[pos * get_num_groups(1) + get_group_id(1)];
//}
#define __ffs(a) (32 - clz(a & (-a)))
//#define __ffs(a) (33 - clz(~a & (a - 1)))
2010-09-25 19:53:48 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-09-20 05:32:05 +00:00
void cudaFindWastedBits(
__global FLACCLSubframeTask *tasks,
__global int *samples,
int tasksPerChannel
)
{
2010-09-25 19:53:48 +00:00
__local int abits[GROUP_SIZE];
__local int wbits[GROUP_SIZE];
2010-09-20 05:32:05 +00:00
__local FLACCLSubframeData task;
int tid = get_local_id(0);
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0) * tasksPerChannel].data))[tid];
barrier(CLK_LOCAL_MEM_FENCE);
int w = 0, a = 0;
for (int pos = 0; pos < task.blocksize; pos += get_local_size(0))
{
int smp = pos + tid < task.blocksize ? samples[task.samplesOffs + pos + tid] : 0;
w |= smp;
a |= smp ^ (smp >> 31);
}
wbits[tid] = w;
abits[tid] = a;
barrier(CLK_LOCAL_MEM_FENCE);
for (int s = get_local_size(0) / 2; s > 0; s >>= 1)
{
if (tid < s)
{
wbits[tid] |= wbits[tid + s];
abits[tid] |= abits[tid + s];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
2010-09-25 19:53:48 +00:00
w = max(0,__ffs(wbits[0]) - 1);
a = 32 - clz(abits[0]) - w;
2010-09-20 05:32:05 +00:00
if (tid < tasksPerChannel)
2010-09-25 19:53:48 +00:00
tasks[get_group_id(0) * tasksPerChannel + tid].data.wbits = w;
2010-09-20 05:32:05 +00:00
if (tid < tasksPerChannel)
2010-09-25 19:53:48 +00:00
tasks[get_group_id(0) * tasksPerChannel + tid].data.abits = a;
2010-09-20 05:32:05 +00:00
}
2010-09-25 19:53:48 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-09-20 05:32:05 +00:00
void cudaComputeAutocor(
__global float *output,
__global const int *samples,
__global const float *window,
__global FLACCLSubframeTask *tasks,
const int windowCount, // windows (log2: 0,1)
const int taskCount // tasks per block
)
{
2010-09-25 19:53:48 +00:00
__local float data[GROUP_SIZE * 2];
__local float product[GROUP_SIZE];
__local FLACCLSubframeData task;
const int tid = get_local_id(0);
2010-09-20 05:32:05 +00:00
// fetch task data
2010-09-25 19:53:48 +00:00
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(tasks + taskCount * (get_group_id(1) >> windowCount)))[tid];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
int bs = task.blocksize;
int windowOffs = (get_group_id(1) & ((1 << windowCount)-1)) * bs;
2010-09-20 05:32:05 +00:00
2010-09-25 19:53:48 +00:00
data[tid] = tid < bs ? samples[task.samplesOffs + tid] * window[windowOffs + tid] : 0.0f;
2010-09-20 05:32:05 +00:00
2010-09-25 19:53:48 +00:00
int tid0 = tid % (GROUP_SIZE >> 2);
int tid1 = tid / (GROUP_SIZE >> 2);
int lag0 = get_group_id(0) * 4;
__local float4 * dptr = ((__local float4 *)&data[0]) + tid0;
__local float4 * dptr1 = ((__local float4 *)&data[lag0 + tid1]) + tid0;
float prod = 0.0f;
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
2010-09-20 05:32:05 +00:00
{
2010-09-25 19:53:48 +00:00
// fetch samples
float nextData = pos + tid + GROUP_SIZE < bs ? samples[task.samplesOffs + pos + tid + GROUP_SIZE] * window[windowOffs + pos + tid + GROUP_SIZE] : 0.0f;
data[tid + GROUP_SIZE] = nextData;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
prod += dot(*dptr, *dptr1);
barrier(CLK_LOCAL_MEM_FENCE);
data[tid] = nextData;
}
product[tid] = prod;
barrier(CLK_LOCAL_MEM_FENCE);
for (int l = (GROUP_SIZE >> 3); l > 0; l >>= 1)
{
if (tid0 < l)
product[tid] = product[tid] + product[tid + l];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
}
2010-09-25 19:53:48 +00:00
if (tid < 4 && tid + lag0 <= MAX_ORDER)
output[get_group_id(1) * (MAX_ORDER + 1) + tid + lag0] = product[tid * (GROUP_SIZE >> 2)];
2010-09-20 05:32:05 +00:00
}
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void cudaComputeLPC(
__global FLACCLSubframeTask *tasks,
2010-09-25 19:53:48 +00:00
__global float *autoc,
2010-09-20 05:32:05 +00:00
__global float *lpcs,
2010-09-25 19:53:48 +00:00
int taskCount, // tasks per block
int windowCount
2010-09-20 05:32:05 +00:00
)
{
__local struct {
FLACCLSubframeData task;
volatile float ldr[32];
volatile float gen1[32];
volatile float error[32];
volatile float autoc[33];
volatile int lpcOffs;
volatile int autocOffs;
} shared;
const int tid = get_local_id(0);// + get_local_id(1) * 32;
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
2010-09-25 19:53:48 +00:00
((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1)))[tid];
2010-09-20 05:32:05 +00:00
if (tid == 0)
{
2010-09-25 19:53:48 +00:00
shared.lpcOffs = (get_group_id(0) + get_group_id(1) * windowCount) * (MAX_ORDER + 1) * 32;
shared.autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1);
2010-09-20 05:32:05 +00:00
}
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
if (get_local_id(0) <= MAX_ORDER)
shared.autoc[get_local_id(0)] = autoc[shared.autocOffs + get_local_id(0)];
if (get_local_id(0) + get_local_size(0) <= MAX_ORDER)
shared.autoc[get_local_id(0) + get_local_size(0)] = autoc[shared.autocOffs + get_local_id(0) + get_local_size(0)];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// Compute LPC using Schur and Levinson-Durbin recursion
float gen0 = shared.gen1[get_local_id(0)] = shared.autoc[get_local_id(0)+1];
shared.ldr[get_local_id(0)] = 0.0f;
float error = shared.autoc[0];
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
for (int order = 0; order < MAX_ORDER; order++)
2010-09-20 05:32:05 +00:00
{
// Schur recursion
float reff = -shared.gen1[0] / error;
error += shared.gen1[0] * reff; // Equivalent to error *= (1 - reff * reff);
float gen1;
2010-09-25 19:53:48 +00:00
if (get_local_id(0) < MAX_ORDER - 1 - order)
2010-09-20 05:32:05 +00:00
{
gen1 = shared.gen1[get_local_id(0) + 1] + reff * gen0;
gen0 += shared.gen1[get_local_id(0) + 1] * reff;
}
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
if (get_local_id(0) < MAX_ORDER - 1 - order)
2010-09-20 05:32:05 +00:00
shared.gen1[get_local_id(0)] = gen1;
// Store prediction error
if (get_local_id(0) == 0)
shared.error[order] = error;
// Levinson-Durbin recursion
float ldr =
select(0.0f, reff * shared.ldr[order - 1 - get_local_id(0)], get_local_id(0) < order) +
select(0.0f, reff, get_local_id(0) == order);
barrier(CLK_LOCAL_MEM_FENCE);
shared.ldr[get_local_id(0)] += ldr;
barrier(CLK_LOCAL_MEM_FENCE);
// Output coeffs
if (get_local_id(0) <= order)
lpcs[shared.lpcOffs + order * 32 + get_local_id(0)] = -shared.ldr[order - get_local_id(0)];
}
barrier(CLK_LOCAL_MEM_FENCE);
// Output prediction error estimates
2010-09-25 19:53:48 +00:00
if (get_local_id(0) < MAX_ORDER)
lpcs[shared.lpcOffs + MAX_ORDER * 32 + get_local_id(0)] = shared.error[get_local_id(0)];
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
2010-09-20 05:32:05 +00:00
void cudaQuantizeLPC(
__global FLACCLSubframeTask *tasks,
2010-09-25 19:53:48 +00:00
__global float*lpcs,
2010-09-20 05:32:05 +00:00
int taskCount, // tasks per block
int taskCountLPC, // tasks per set of coeffs (<= 32)
int minprecision,
int precisions
)
{
__local struct {
FLACCLSubframeData task;
2010-10-06 11:16:41 +00:00
volatile int tmpi[32];
2010-09-20 05:32:05 +00:00
volatile int index[64];
volatile float error[64];
volatile int lpcOffs;
} shared;
2010-10-06 11:16:41 +00:00
const int tid = get_local_id(0);
2010-09-20 05:32:05 +00:00
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1) * taskCount))[tid];
if (tid == 0)
2010-09-25 19:53:48 +00:00
shared.lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
// Select best orders based on Akaike's Criteria
2010-10-06 11:16:41 +00:00
shared.index[tid] = min(MAX_ORDER - 1, tid);
shared.error[tid] = shared.task.blocksize * 64 + tid;
shared.index[32 + tid] = min(MAX_ORDER - 1, tid);
shared.error[32 + tid] = shared.task.blocksize * 64 + tid;
// Load prediction error estimates
if (tid < MAX_ORDER)
shared.error[tid] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + tid]) + tid * 5.12f * log(shared.task.blocksize);
//shared.error[get_local_id(0)] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + get_local_id(0)]) + get_local_id(0) * 0.30f * (shared.task.abits + 1) * log(shared.task.blocksize);
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// Sort using bitonic sort
for(int size = 2; size < 64; size <<= 1){
//Bitonic merge
2010-09-25 19:53:48 +00:00
int ddd = (tid & (size / 2)) == 0;
2010-09-20 05:32:05 +00:00
for(int stride = size / 2; stride > 0; stride >>= 1){
2010-09-25 19:53:48 +00:00
int pos = 2 * tid - (tid & (stride - 1));
2010-10-06 11:16:41 +00:00
float e0 = shared.error[pos];
float e1 = shared.error[pos + stride];
int i0 = shared.index[pos];
int i1 = shared.index[pos + stride];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-06 11:16:41 +00:00
if ((e0 >= e1) == ddd)
2010-09-20 05:32:05 +00:00
{
shared.error[pos] = e1;
shared.error[pos + stride] = e0;
shared.index[pos] = i1;
shared.index[pos + stride] = i0;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
//ddd == dir for the last bitonic merge step
{
for(int stride = 32; stride > 0; stride >>= 1){
//barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
int pos = 2 * tid - (tid & (stride - 1));
2010-10-06 11:16:41 +00:00
float e0 = shared.error[pos];
float e1 = shared.error[pos + stride];
int i0 = shared.index[pos];
int i1 = shared.index[pos + stride];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-06 11:16:41 +00:00
if (e0 >= e1)
2010-09-20 05:32:05 +00:00
{
shared.error[pos] = e1;
shared.error[pos + stride] = e0;
shared.index[pos] = i1;
shared.index[pos + stride] = i0;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
// Quantization
2010-10-06 11:16:41 +00:00
for (int i = 0; i < taskCountLPC; i ++)
2010-09-20 05:32:05 +00:00
{
int order = shared.index[i >> precisions];
2010-10-06 11:16:41 +00:00
float lpc = tid <= order ? lpcs[shared.lpcOffs + order * 32 + tid] : 0.0f;
2010-09-20 05:32:05 +00:00
// get 15 bits of each coeff
int coef = convert_int_rte(lpc * (1 << 15));
// remove sign bits
shared.tmpi[tid] = coef ^ (coef >> 31);
barrier(CLK_LOCAL_MEM_FENCE);
// OR reduction
for (int l = get_local_size(0) / 2; l > 1; l >>= 1)
{
2010-10-06 11:16:41 +00:00
if (tid < l)
2010-09-20 05:32:05 +00:00
shared.tmpi[tid] |= shared.tmpi[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
//SUM32(shared.tmpi,tid,|=);
// choose precision
//int cbits = max(3, min(10, 5 + (shared.task.abits >> 1))); // - convert_int_rte(shared.PE[order - 1])
int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (shared.task.blocksize <= 2304) - (shared.task.blocksize <= 1152) - (shared.task.blocksize <= 576), shared.task.abits), clz(order) + 1 - shared.task.abits));
// calculate shift based on precision and number of leading zeroes in coeffs
2010-10-06 11:16:41 +00:00
int shift = max(0,min(15, clz(shared.tmpi[0] | shared.tmpi[1]) - 18 + cbits));
2010-09-20 05:32:05 +00:00
//cbits = 13;
//shift = 15;
//if (shared.task.abits + 32 - clz(order) < shift
2010-10-06 11:16:41 +00:00
//int shift = max(0,min(15, (shared.task.abits >> 2) - 14 + clz(shared.tmpi[tid & ~31]) + ((32 - clz(order))>>1)));
2010-09-20 05:32:05 +00:00
// quantize coeffs with given shift
coef = convert_int_rte(clamp(lpc * (1 << shift), -1 << (cbits - 1), 1 << (cbits - 1)));
// error correction
2010-10-06 11:16:41 +00:00
//shared.tmp[tid] = (tid != 0) * (shared.arp[tid - 1]*(1 << shared.task.shift) - shared.task.coefs[tid - 1]);
//shared.task.coefs[tid] = max(-(1 << (shared.task.cbits - 1)), min((1 << (shared.task.cbits - 1))-1, convert_int_rte((shared.arp[tid]) * (1 << shared.task.shift) + shared.tmp[tid])));
2010-09-20 05:32:05 +00:00
// remove sign bits
shared.tmpi[tid] = coef ^ (coef >> 31);
barrier(CLK_LOCAL_MEM_FENCE);
// OR reduction
for (int l = get_local_size(0) / 2; l > 1; l >>= 1)
{
2010-10-06 11:16:41 +00:00
if (tid < l)
2010-09-20 05:32:05 +00:00
shared.tmpi[tid] |= shared.tmpi[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
//SUM32(shared.tmpi,tid,|=);
// calculate actual number of bits (+1 for sign)
2010-10-06 11:16:41 +00:00
cbits = 1 + 32 - clz(shared.tmpi[0] | shared.tmpi[1]);
2010-09-20 05:32:05 +00:00
// output shift, cbits and output coeffs
if (i < taskCountLPC)
{
int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i;
2010-10-06 11:16:41 +00:00
if (tid == 0)
2010-09-20 05:32:05 +00:00
tasks[taskNo].data.shift = shift;
2010-10-06 11:16:41 +00:00
if (tid == 0)
2010-09-20 05:32:05 +00:00
tasks[taskNo].data.cbits = cbits;
2010-10-06 11:16:41 +00:00
if (tid == 0)
2010-09-20 05:32:05 +00:00
tasks[taskNo].data.residualOrder = order + 1;
2010-10-06 11:16:41 +00:00
if (tid <= order)
tasks[taskNo].coefs[tid] = coef;
2010-09-20 05:32:05 +00:00
}
}
}
2010-09-25 19:53:48 +00:00
__kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-09-20 05:32:05 +00:00
void cudaEstimateResidual(
__global int*output,
__global int*samples,
__global FLACCLSubframeTask *tasks
)
{
2010-09-25 19:53:48 +00:00
__local float data[GROUP_SIZE * 2];
__local int residual[GROUP_SIZE];
2010-09-20 05:32:05 +00:00
__local FLACCLSubframeTask task;
__local float4 coefsf4[8];
const int tid = get_local_id(0);
if (tid < sizeof(task)/sizeof(int))
2010-09-25 19:53:48 +00:00
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid];
2010-09-20 05:32:05 +00:00
barrier(CLK_GLOBAL_MEM_FENCE);
int ro = task.data.residualOrder;
int bs = task.data.blocksize;
float res = 0;
if (tid < 32)
((__local float *)&coefsf4[0])[tid] = select(0.0f, ((float)task.coefs[tid]) / (1 << task.data.shift), tid < ro);
data[tid] = tid < bs ? (float)(samples[task.data.samplesOffs + tid] >> task.data.wbits) : 0.0f;
2010-09-25 19:53:48 +00:00
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
2010-09-20 05:32:05 +00:00
{
// fetch samples
2010-09-25 19:53:48 +00:00
float nextData = pos + tid + GROUP_SIZE < bs ? (float)(samples[task.data.samplesOffs + pos + tid + GROUP_SIZE] >> task.data.wbits) : 0.0f;
data[tid + GROUP_SIZE] = nextData;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// compute residual
__local float4 * dptr = (__local float4 *)&data[tid];
float sumf = data[tid + ro] -
( dot(dptr[0], coefsf4[0])
+ dot(dptr[1], coefsf4[1])
#if MAX_ORDER > 8
+ dot(dptr[2], coefsf4[2])
#if MAX_ORDER > 12
+ dot(dptr[3], coefsf4[3])
#if MAX_ORDER > 16
+ dot(dptr[4], coefsf4[4])
+ dot(dptr[5], coefsf4[5])
+ dot(dptr[6], coefsf4[6])
+ dot(dptr[7], coefsf4[7])
#endif
#endif
#endif
);
//residual[tid] = sum;
res += select(0.0f, min(fabs(sumf), (float)0x7fffff), pos + tid + ro < bs);
barrier(CLK_LOCAL_MEM_FENCE);
//int k = min(33 - clz(sum), 14);
//res += select(0, 1 + k, pos + tid + ro < bs);
//sum = residual[tid] + residual[tid + 1] + residual[tid + 2] + residual[tid + 3]
// + residual[tid + 4] + residual[tid + 5] + residual[tid + 6] + residual[tid + 7];
//int k = clamp(29 - clz(sum), 0, 14);
//res += select(0, 8 * (k + 1) + (sum >> k), pos + tid + ro < bs && !(tid & 7));
data[tid] = nextData;
}
2010-09-25 19:53:48 +00:00
int residualLen = (bs - ro) / GROUP_SIZE + select(0, 1, tid < (bs - ro) % GROUP_SIZE);
2010-09-20 05:32:05 +00:00
int k = clamp(convert_int_rtn(log2((res + 0.000001f) / (residualLen + 0.000001f))), 0, 14);
residual[tid] = residualLen * (k + 1) + (convert_int_rtz(res) >> k);
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
for (int l = GROUP_SIZE / 2; l > 0; l >>= 1)
2010-09-20 05:32:05 +00:00
{
if (tid < l)
residual[tid] += residual[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0)
2010-09-25 19:53:48 +00:00
output[get_group_id(0)] = residual[0];
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void cudaChooseBestMethod(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks,
__global int *residual,
int taskCount
)
{
__local struct {
2010-10-06 11:16:41 +00:00
volatile int index[32];
volatile int length[32];
2010-09-20 05:32:05 +00:00
} shared;
2010-10-06 11:16:41 +00:00
__local FLACCLSubframeData task;
const int tid = get_local_id(0);
2010-09-20 05:32:05 +00:00
shared.length[tid] = 0x7fffffff;
shared.index[tid] = tid;
2010-10-06 11:16:41 +00:00
for (int taskNo = 0; taskNo < taskCount; taskNo++)
{
// fetch task data
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[taskNo + taskCount * get_group_id(1)].data))[tid];
2010-09-20 05:32:05 +00:00
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-20 05:32:05 +00:00
2010-10-06 11:16:41 +00:00
if (tid == 0)
{
// fetch part sum
int partLen = residual[taskNo + taskCount * get_group_id(1)];
//// calculate part size
//int residualLen = task[get_local_id(1)].data.blocksize - task[get_local_id(1)].data.residualOrder;
//residualLen = residualLen * (task[get_local_id(1)].data.type != Constant || psum != 0);
//// calculate rice parameter
//int k = max(0, min(14, convert_int_rtz(log2((psum + 0.000001f) / (residualLen + 0.000001f) + 0.5f))));
//// calculate part bit length
//int partLen = residualLen * (k + 1) + (psum >> k);
int obits = task.obits - task.wbits;
shared.length[taskNo] =
min(obits * task.blocksize,
task.type == Fixed ? task.residualOrder * obits + 6 + (4 * 1/2) + partLen :
task.type == LPC ? task.residualOrder * obits + 4 + 5 + task.residualOrder * task.cbits + 6 + (4 * 1/2)/* << porder */ + partLen :
task.type == Constant ? obits * (1 + task.blocksize * (partLen != 0)) :
obits * task.blocksize);
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
}
2010-09-20 05:32:05 +00:00
//shared.index[get_local_id(0)] = get_local_id(0);
//shared.length[get_local_id(0)] = (get_local_id(0) < taskCount) ? tasks[get_local_id(0) + taskCount * get_group_id(1)].size : 0x7fffffff;
if (tid < taskCount)
tasks[tid + taskCount * get_group_id(1)].data.size = shared.length[tid];
int l1 = shared.length[tid];
2010-10-06 11:16:41 +00:00
for (int sh = 4; sh > 0; sh --)
2010-09-20 05:32:05 +00:00
{
2010-10-06 11:16:41 +00:00
if (tid < (1 << sh))
2010-09-20 05:32:05 +00:00
{
int l2 = shared.length[tid + (1 << sh)];
shared.index[tid] = shared.index[tid + ((l2 < l1) << sh)];
shared.length[tid] = l1 = min(l1, l2);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0)
tasks[taskCount * get_group_id(1)].data.best_index = taskCount * get_group_id(1) + shared.index[shared.length[1] < shared.length[0]];
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
void cudaCopyBestMethod(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
)
{
__local int best_index;
if (get_local_id(0) == 0)
best_index = tasks[count * get_group_id(1)].data.best_index;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
((__global int*)(tasks_out + get_group_id(1)))[get_local_id(0)] = ((__global int*)(tasks + best_index))[get_local_id(0)];
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
void cudaCopyBestMethodStereo(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
)
{
__local struct {
int best_index[4];
int best_size[4];
int lr_index[2];
} shared;
if (get_local_id(0) < 4)
shared.best_index[get_local_id(0)] = tasks[count * (get_group_id(1) * 4 + get_local_id(0))].data.best_index;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < 4)
shared.best_size[get_local_id(0)] = tasks[shared.best_index[get_local_id(0)]].data.size;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) == 0)
{
int bitsBest = shared.best_size[2] + shared.best_size[3]; // MidSide
shared.lr_index[0] = shared.best_index[2];
shared.lr_index[1] = shared.best_index[3];
if (bitsBest > shared.best_size[3] + shared.best_size[1]) // RightSide
{
bitsBest = shared.best_size[3] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[3];
shared.lr_index[1] = shared.best_index[1];
}
if (bitsBest > shared.best_size[0] + shared.best_size[3]) // LeftSide
{
bitsBest = shared.best_size[0] + shared.best_size[3];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[3];
}
if (bitsBest > shared.best_size[0] + shared.best_size[1]) // LeftRight
{
bitsBest = shared.best_size[0] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[1];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
((__global int*)(tasks_out + 2 * get_group_id(1)))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[0]))[get_local_id(0)];
if (get_local_id(0) == 0)
tasks_out[2 * get_group_id(1)].data.residualOffs = tasks[shared.best_index[0]].data.residualOffs;
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
((__global int*)(tasks_out + 2 * get_group_id(1) + 1))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[1]))[get_local_id(0)];
if (get_local_id(0) == 0)
tasks_out[2 * get_group_id(1) + 1].data.residualOffs = tasks[shared.best_index[1]].data.residualOffs;
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void cudaEncodeResidual(
__global int *output,
__global int *samples,
__global FLACCLSubframeTask *tasks
)
{
__local FLACCLSubframeTask task;
__local int data[GROUP_SIZE * 2];
const int tid = get_local_id(0);
if (get_local_id(0) < sizeof(task) / sizeof(int))
((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(1)]))[get_local_id(0)];
barrier(CLK_LOCAL_MEM_FENCE);
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
data[tid] = tid < bs ? samples[task.data.samplesOffs + tid] >> task.data.wbits : 0;
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
{
// fetch samples
float nextData = pos + tid + GROUP_SIZE < bs ? samples[task.data.samplesOffs + pos + tid + GROUP_SIZE] >> task.data.wbits : 0;
data[tid + GROUP_SIZE] = nextData;
barrier(CLK_LOCAL_MEM_FENCE);
// compute residual
int sum = 0;
for (int c = 0; c < ro; c++)
sum += data[tid + c] * task.coefs[c];
sum = data[tid + ro] - (sum >> task.data.shift);
if (pos + tid + ro < bs)
output[task.data.residualOffs + pos + tid + ro] = sum;
barrier(CLK_LOCAL_MEM_FENCE);
data[tid] = nextData;
}
}
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void cudaCalcPartition(
__global int *partition_lengths,
__global int *residual,
__global FLACCLSubframeTask *tasks,
int max_porder, // <= 8
int psize // == task.blocksize >> max_porder?
)
{
__local int data[GROUP_SIZE];
__local int length[GROUP_SIZE / 16][16];
__local FLACCLSubframeData task;
const int tid = get_local_id(0);
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(1)]))[tid];
barrier(CLK_LOCAL_MEM_FENCE);
int k = tid % (GROUP_SIZE / 16);
int x = tid / (GROUP_SIZE / 16);
int sum = 0;
for (int pos0 = 0; pos0 < psize; pos0 += GROUP_SIZE)
{
int offs = get_group_id(0) * psize + pos0 + tid;
// fetch residual
int s = (offs >= task.residualOrder && pos0 + tid < psize) ? residual[task.residualOffs + offs] : 0;
// convert to unsigned
data[tid] = min(0xfffff, (s << 1) ^ (s >> 31));
barrier(CLK_LOCAL_MEM_FENCE);
// calc number of unary bits for each residual sample with each rice paramater
for (int pos = 0; pos < psize && pos < GROUP_SIZE; pos += GROUP_SIZE / 16)
sum += data[pos + x] >> k;
barrier(CLK_LOCAL_MEM_FENCE);
}
length[x][k] = min(0xfffff, sum);
barrier(CLK_LOCAL_MEM_FENCE);
if (x == 0)
{
for (int i = 1; i < GROUP_SIZE / 16; i++)
length[0][k] += length[i][k];
// output length
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1));
if (k <= 14)
partition_lengths[pos + get_group_id(0)] = min(0xfffff,length[0][k]) + (psize - task.residualOrder * (get_group_id(0) == 0)) * (k + 1);
}
}
2010-09-20 05:32:05 +00:00
//// Sums partition lengths for a certain k == get_group_id(0)
//// Requires 128 threads
//__kernel void cudaSumPartition(
// int* partition_lengths,
// int max_porder
// )
//{
// __local struct {
// volatile int data[512+32]; // max_porder <= 8, data length <= 1 << 9.
// } shared;
//
// const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (get_group_id(0) << (max_porder + 1));
//
// // fetch partition lengths
// shared.data[get_local_id(0)] = get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_id(0)] : 0;
// shared.data[get_local_size(0) + get_local_id(0)] = get_local_size(0) + get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_size(0) + get_local_id(0)] : 0;
// barrier(CLK_LOCAL_MEM_FENCE);
//
// int in_pos = (get_local_id(0) << 1);
// int out_pos = (1 << max_porder) + get_local_id(0);
// int bs;
// for (bs = 1 << (max_porder - 1); bs > 32; bs >>= 1)
// {
// if (get_local_id(0) < bs) shared.data[out_pos] = shared.data[in_pos] + shared.data[in_pos + 1];
// in_pos += bs << 1;
// out_pos += bs;
// barrier(CLK_LOCAL_MEM_FENCE);
// }
// if (get_local_id(0) < 32)
// for (; bs > 0; bs >>= 1)
// {
// shared.data[out_pos] = shared.data[in_pos] + shared.data[in_pos + 1];
// in_pos += bs << 1;
// out_pos += bs;
// }
// barrier(CLK_LOCAL_MEM_FENCE);
// if (get_local_id(0) < (1 << max_porder))
// partition_lengths[pos + (1 << max_porder) + get_local_id(0)] = shared.data[(1 << max_porder) + get_local_id(0)];
// if (get_local_size(0) + get_local_id(0) < (1 << max_porder))
// partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = shared.data[(1 << max_porder) + get_local_size(0) + get_local_id(0)];
//}
//
//// Finds optimal rice parameter for up to 16 partitions at a time.
//// Requires 16x16 threads
//__kernel void cudaFindRiceParameter(
// int* rice_parameters,
// int* partition_lengths,
// int max_porder
// )
//{
// __local struct {
// volatile int length[256];
// volatile int index[256];
// } shared;
// const int tid = get_local_id(0) + (get_local_id(1) << 5);
// const int parts = min(32, 2 << max_porder);
// const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (get_local_id(1) << (max_porder + 1));
//
// // read length for 32 partitions
// int l1 = (get_local_id(0) < parts) ? partition_lengths[pos + get_group_id(0) * 32 + get_local_id(0)] : 0xffffff;
// int l2 = (get_local_id(1) + 8 <= 14 && get_local_id(0) < parts) ? partition_lengths[pos + (8 << (max_porder + 1)) + get_group_id(0) * 32 + get_local_id(0)] : 0xffffff;
// // find best rice parameter
// shared.index[tid] = get_local_id(1) + ((l2 < l1) << 3);
// shared.length[tid] = l1 = min(l1, l2);
// barrier(CLK_LOCAL_MEM_FENCE);
//#pragma unroll 3
// for (int sh = 7; sh >= 5; sh --)
// {
// if (tid < (1 << sh))
// {
// l2 = shared.length[tid + (1 << sh)];
// shared.index[tid] = shared.index[tid + ((l2 < l1) << sh)];
// shared.length[tid] = l1 = min(l1, l2);
// }
// barrier(CLK_LOCAL_MEM_FENCE);
// }
// if (tid < parts)
// {
// // output rice parameter
// rice_parameters[(get_group_id(1) << (max_porder + 2)) + get_group_id(0) * parts + tid] = shared.index[tid];
// // output length
// rice_parameters[(get_group_id(1) << (max_porder + 2)) + (1 << (max_porder + 1)) + get_group_id(0) * parts + tid] = shared.length[tid];
// }
//}
//
//__kernel void cudaFindPartitionOrder(
// int* best_rice_parameters,
// FLACCLSubframeTask *tasks,
// int* rice_parameters,
// int max_porder
// )
//{
// __local struct {
// int data[512];
// volatile int tmp[256];
// int length[32];
// int index[32];
// //char4 ch[64];
// FLACCLSubframeTask task;
// } shared;
// const int pos = (get_group_id(1) << (max_porder + 2)) + (2 << max_porder);
// if (get_local_id(0) < sizeof(shared.task) / sizeof(int))
// ((int*)&shared.task)[get_local_id(0)] = ((int*)(&tasks[get_group_id(1)]))[get_local_id(0)];
// // fetch partition lengths
// shared.data[get_local_id(0)] = get_local_id(0) < (2 << max_porder) ? rice_parameters[pos + get_local_id(0)] : 0;
// shared.data[get_local_id(0) + 256] = get_local_id(0) + 256 < (2 << max_porder) ? rice_parameters[pos + 256 + get_local_id(0)] : 0;
// barrier(CLK_LOCAL_MEM_FENCE);
//
// for (int porder = max_porder; porder >= 0; porder--)
// {
// shared.tmp[get_local_id(0)] = (get_local_id(0) < (1 << porder)) * shared.data[(2 << max_porder) - (2 << porder) + get_local_id(0)];
// barrier(CLK_LOCAL_MEM_FENCE);
// SUM256(shared.tmp, get_local_id(0), +=);
// if (get_local_id(0) == 0)
// shared.length[porder] = shared.tmp[0] + (4 << porder);
// barrier(CLK_LOCAL_MEM_FENCE);
// }
//
// if (get_local_id(0) < 32)
// {
// shared.index[get_local_id(0)] = get_local_id(0);
// if (get_local_id(0) > max_porder)
// shared.length[get_local_id(0)] = 0xfffffff;
// int l1 = shared.length[get_local_id(0)];
// #pragma unroll 4
// for (int sh = 3; sh >= 0; sh --)
// {
// int l2 = shared.length[get_local_id(0) + (1 << sh)];
// shared.index[get_local_id(0)] = shared.index[get_local_id(0) + ((l2 < l1) << sh)];
// shared.length[get_local_id(0)] = l1 = min(l1, l2);
// }
// if (get_local_id(0) == 0)
// tasks[get_group_id(1)].data.porder = shared.index[0];
// if (get_local_id(0) == 0)
// {
// int obits = shared.task.data.obits - shared.task.data.wbits;
// tasks[get_group_id(1)].data.size =
// shared.task.data.type == Fixed ? shared.task.data.residualOrder * obits + 6 + l1 :
// shared.task.data.type == LPC ? shared.task.data.residualOrder * obits + 6 + l1 + 4 + 5 + shared.task.data.residualOrder * shared.task.data.cbits :
// shared.task.data.type == Constant ? obits : obits * shared.task.data.blocksize;
// }
// }
// barrier(CLK_LOCAL_MEM_FENCE);
// int porder = shared.index[0];
// if (get_local_id(0) < (1 << porder))
// best_rice_parameters[(get_group_id(1) << max_porder) + get_local_id(0)] = rice_parameters[pos - (2 << porder) + get_local_id(0)];
// // FIXME: should be bytes?
// // if (get_local_id(0) < (1 << porder))
// //shared.tmp[get_local_id(0)] = rice_parameters[pos - (2 << porder) + get_local_id(0)];
// // barrier(CLK_LOCAL_MEM_FENCE);
// // if (get_local_id(0) < max(1, (1 << porder) >> 2))
// // {
// //char4 ch;
// //ch.x = shared.tmp[(get_local_id(0) << 2)];
// //ch.y = shared.tmp[(get_local_id(0) << 2) + 1];
// //ch.z = shared.tmp[(get_local_id(0) << 2) + 2];
// //ch.w = shared.tmp[(get_local_id(0) << 2) + 3];
// //shared.ch[get_local_id(0)] = ch
// // }
// // barrier(CLK_LOCAL_MEM_FENCE);
// // if (get_local_id(0) < max(1, (1 << porder) >> 2))
// //best_rice_parameters[(get_group_id(1) << max_porder) + get_local_id(0)] = shared.ch[get_local_id(0)];
//}
//
//#endif
//
//#if 0
// if (get_local_id(0) < order)
// {
// for (int i = 0; i < order; i++)
// if (get_local_id(0) >= i)
// sum[get_local_id(0) - i] += coefs[get_local_id(0)] * sample[order - i - 1];
// fot (int i = order; i < blocksize; i++)
// {
// if (!get_local_id(0)) sample[order + i] = s = residual[order + i] + (sum[order + i] >> shift);
// sum[get_local_id(0) + i + 1] += coefs[get_local_id(0)] * s;
// }
// }
//#endif
#endif