mirror of
https://github.com/claunia/cuetools.net.git
synced 2025-12-16 18:14:25 +00:00
opencl flac encoder
This commit is contained in:
@@ -20,6 +20,8 @@
|
||||
#ifndef _FLACCL_KERNEL_H_
|
||||
#define _FLACCL_KERNEL_H_
|
||||
|
||||
//#pragma OPENCL EXTENSION cl_amd_fp64 : enable
|
||||
|
||||
typedef enum
|
||||
{
|
||||
Constant = 0,
|
||||
@@ -116,7 +118,7 @@ void cudaFindWastedBits(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int w = 0, a = 0;
|
||||
for (int pos = 0; pos < task.blocksize; pos += get_local_size(0))
|
||||
for (int pos = 0; pos < task.blocksize; pos += GROUP_SIZE)
|
||||
{
|
||||
int smp = pos + tid < task.blocksize ? samples[task.samplesOffs + pos + tid] : 0;
|
||||
w |= smp;
|
||||
@@ -126,7 +128,7 @@ void cudaFindWastedBits(
|
||||
abits[tid] = a;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for (int s = get_local_size(0) / 2; s > 0; s >>= 1)
|
||||
for (int s = GROUP_SIZE / 2; s > 0; s >>= 1)
|
||||
{
|
||||
if (tid < s)
|
||||
{
|
||||
@@ -200,6 +202,12 @@ void cudaComputeAutocor(
|
||||
output[get_group_id(1) * (MAX_ORDER + 1) + tid + lag0] = product[tid * (GROUP_SIZE >> 2)];
|
||||
}
|
||||
|
||||
//#define DEBUGPRINT
|
||||
|
||||
#ifdef DEBUGPRINT
|
||||
#pragma OPENCL EXTENSION cl_amd_printf : enable
|
||||
#endif
|
||||
|
||||
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
|
||||
void cudaComputeLPC(
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
@@ -241,12 +249,20 @@ void cudaComputeLPC(
|
||||
float gen0 = shared.gen1[get_local_id(0)] = shared.autoc[get_local_id(0)+1];
|
||||
shared.ldr[get_local_id(0)] = 0.0f;
|
||||
float error = shared.autoc[0];
|
||||
|
||||
#ifdef DEBUGPRINT
|
||||
int magic = shared.autoc[0] == 177286873088.0f;
|
||||
if (magic && get_local_id(0) <= MAX_ORDER)
|
||||
printf("autoc[%d] == %f\n", get_local_id(0), shared.autoc[get_local_id(0)]);
|
||||
#endif
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for (int order = 0; order < MAX_ORDER; order++)
|
||||
{
|
||||
// Schur recursion
|
||||
float reff = -shared.gen1[0] / error;
|
||||
error += shared.gen1[0] * reff; // Equivalent to error *= (1 - reff * reff);
|
||||
//error *= (1 - reff * reff);
|
||||
float gen1;
|
||||
if (get_local_id(0) < MAX_ORDER - 1 - order)
|
||||
{
|
||||
@@ -256,6 +272,12 @@ void cudaComputeLPC(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (get_local_id(0) < MAX_ORDER - 1 - order)
|
||||
shared.gen1[get_local_id(0)] = gen1;
|
||||
#ifdef DEBUGPRINT
|
||||
if (magic && get_local_id(0) == 0)
|
||||
printf("order == %d, reff == %f, error = %f\n", order, reff, error);
|
||||
if (magic && get_local_id(0) <= MAX_ORDER)
|
||||
printf("gen[%d] == %f, %f\n", get_local_id(0), gen0, gen1);
|
||||
#endif
|
||||
|
||||
// Store prediction error
|
||||
if (get_local_id(0) == 0)
|
||||
@@ -272,6 +294,8 @@ void cudaComputeLPC(
|
||||
// Output coeffs
|
||||
if (get_local_id(0) <= order)
|
||||
lpcs[shared.lpcOffs + order * 32 + get_local_id(0)] = -shared.ldr[order - get_local_id(0)];
|
||||
//if (get_local_id(0) <= order + 1 && fabs(-shared.ldr[0]) > 3000)
|
||||
// printf("coef[%d] == %f, autoc == %f, error == %f\n", get_local_id(0), -shared.ldr[order - get_local_id(0)], shared.autoc[get_local_id(0)], shared.error[get_local_id(0)]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// Output prediction error estimates
|
||||
@@ -309,12 +333,12 @@ void cudaQuantizeLPC(
|
||||
// Select best orders based on Akaike's Criteria
|
||||
shared.index[tid] = min(MAX_ORDER - 1, tid);
|
||||
shared.error[tid] = shared.task.blocksize * 64 + tid;
|
||||
shared.index[32 + tid] = min(MAX_ORDER - 1, tid);
|
||||
shared.error[32 + tid] = shared.task.blocksize * 64 + tid;
|
||||
shared.index[32 + tid] = MAX_ORDER - 1;
|
||||
shared.error[32 + tid] = shared.task.blocksize * 64 + tid + 32;
|
||||
|
||||
// Load prediction error estimates
|
||||
if (tid < MAX_ORDER)
|
||||
shared.error[tid] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + tid]) + tid * 5.12f * log(shared.task.blocksize);
|
||||
shared.error[tid] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log(shared.task.blocksize);
|
||||
//shared.error[get_local_id(0)] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + get_local_id(0)]) + get_local_id(0) * 0.30f * (shared.task.abits + 1) * log(shared.task.blocksize);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
@@ -361,6 +385,9 @@ void cudaQuantizeLPC(
|
||||
}
|
||||
}
|
||||
|
||||
//shared.index[tid] = MAX_ORDER - 1;
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
// Quantization
|
||||
for (int i = 0; i < taskCountLPC; i ++)
|
||||
{
|
||||
@@ -410,21 +437,20 @@ void cudaQuantizeLPC(
|
||||
cbits = 1 + 32 - clz(shared.tmpi[0] | shared.tmpi[1]);
|
||||
|
||||
// output shift, cbits and output coeffs
|
||||
if (i < taskCountLPC)
|
||||
{
|
||||
int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i;
|
||||
if (tid == 0)
|
||||
tasks[taskNo].data.shift = shift;
|
||||
if (tid == 0)
|
||||
tasks[taskNo].data.cbits = cbits;
|
||||
if (tid == 0)
|
||||
tasks[taskNo].data.residualOrder = order + 1;
|
||||
if (tid <= order)
|
||||
tasks[taskNo].coefs[tid] = coef;
|
||||
}
|
||||
int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i;
|
||||
if (tid == 0)
|
||||
tasks[taskNo].data.shift = shift;
|
||||
if (tid == 0)
|
||||
tasks[taskNo].data.cbits = cbits;
|
||||
if (tid == 0)
|
||||
tasks[taskNo].data.residualOrder = order + 1;
|
||||
if (tid <= order)
|
||||
tasks[taskNo].coefs[tid] = coef;
|
||||
}
|
||||
}
|
||||
|
||||
#define DONT_BEACCURATE
|
||||
|
||||
__kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void cudaEstimateResidual(
|
||||
__global int*output,
|
||||
@@ -432,10 +458,14 @@ void cudaEstimateResidual(
|
||||
__global FLACCLSubframeTask *tasks
|
||||
)
|
||||
{
|
||||
__local float data[GROUP_SIZE * 2];
|
||||
__local int residual[GROUP_SIZE];
|
||||
__local int data[GROUP_SIZE * 2];
|
||||
__local FLACCLSubframeTask task;
|
||||
__local float4 coefsf4[8];
|
||||
#ifdef BEACCURATE
|
||||
__local int residual[GROUP_SIZE];
|
||||
__local int len[GROUP_SIZE / 16];
|
||||
#else
|
||||
__local float residual[GROUP_SIZE];
|
||||
#endif
|
||||
|
||||
const int tid = get_local_id(0);
|
||||
if (tid < sizeof(task)/sizeof(int))
|
||||
@@ -444,56 +474,79 @@ void cudaEstimateResidual(
|
||||
|
||||
int ro = task.data.residualOrder;
|
||||
int bs = task.data.blocksize;
|
||||
float res = 0;
|
||||
|
||||
if (tid < 32)
|
||||
((__local float *)&coefsf4[0])[tid] = select(0.0f, ((float)task.coefs[tid]) / (1 << task.data.shift), tid < ro);
|
||||
data[tid] = tid < bs ? (float)(samples[task.data.samplesOffs + tid] >> task.data.wbits) : 0.0f;
|
||||
if (tid < 32 && tid >= ro)
|
||||
task.coefs[tid] = 0;
|
||||
#ifdef BEACCURATE
|
||||
if (tid < GROUP_SIZE / 16)
|
||||
len[tid] = 0;
|
||||
#else
|
||||
float res = 0.0f;
|
||||
#endif
|
||||
data[tid] = tid < bs ? samples[task.data.samplesOffs + tid] >> task.data.wbits : 0;
|
||||
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
|
||||
{
|
||||
// fetch samples
|
||||
float nextData = pos + tid + GROUP_SIZE < bs ? (float)(samples[task.data.samplesOffs + pos + tid + GROUP_SIZE] >> task.data.wbits) : 0.0f;
|
||||
int nextData = pos + tid + GROUP_SIZE < bs ? samples[task.data.samplesOffs + pos + tid + GROUP_SIZE] >> task.data.wbits : 0;
|
||||
data[tid + GROUP_SIZE] = nextData;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
// compute residual
|
||||
__local float4 * dptr = (__local float4 *)&data[tid];
|
||||
float sumf = data[tid + ro] -
|
||||
( dot(dptr[0], coefsf4[0])
|
||||
+ dot(dptr[1], coefsf4[1])
|
||||
__local int4 * dptr = (__local int4 *)&data[tid];
|
||||
__local int4 * cptr = (__local int4 *)&task.coefs[0];
|
||||
int4 sum = dptr[0] * cptr[0]
|
||||
#if MAX_ORDER > 4
|
||||
+ dptr[1] * cptr[1]
|
||||
#if MAX_ORDER > 8
|
||||
+ dot(dptr[2], coefsf4[2])
|
||||
+ dptr[2] * cptr[2]
|
||||
#if MAX_ORDER > 12
|
||||
+ dot(dptr[3], coefsf4[3])
|
||||
+ dptr[3] * cptr[3]
|
||||
#if MAX_ORDER > 16
|
||||
+ dot(dptr[4], coefsf4[4])
|
||||
+ dot(dptr[5], coefsf4[5])
|
||||
+ dot(dptr[6], coefsf4[6])
|
||||
+ dot(dptr[7], coefsf4[7])
|
||||
+ dptr[4] * cptr[4]
|
||||
+ dptr[5] * cptr[5]
|
||||
+ dptr[6] * cptr[6]
|
||||
+ dptr[7] * cptr[7]
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
);
|
||||
//residual[tid] = sum;
|
||||
#endif
|
||||
;
|
||||
|
||||
res += select(0.0f, min(fabs(sumf), (float)0x7fffff), pos + tid + ro < bs);
|
||||
int t = select(0, data[tid + ro] - ((sum.x + sum.y + sum.z + sum.w) >> task.data.shift), pos + tid + ro < bs);
|
||||
#ifdef BEACCURATE
|
||||
residual[tid] = min((t << 1) ^ (t >> 31), 0x7fffff);
|
||||
#else
|
||||
res += fabs(t);
|
||||
#endif
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
//int k = min(33 - clz(sum), 14);
|
||||
//res += select(0, 1 + k, pos + tid + ro < bs);
|
||||
|
||||
//sum = residual[tid] + residual[tid + 1] + residual[tid + 2] + residual[tid + 3]
|
||||
// + residual[tid + 4] + residual[tid + 5] + residual[tid + 6] + residual[tid + 7];
|
||||
//int k = clamp(29 - clz(sum), 0, 14);
|
||||
//res += select(0, 8 * (k + 1) + (sum >> k), pos + tid + ro < bs && !(tid & 7));
|
||||
|
||||
#ifdef BEACCURATE
|
||||
if (tid < GROUP_SIZE / 16)
|
||||
{
|
||||
__local int4 * chunk = ((__local int4 *)residual) + tid * 4;
|
||||
int4 sum = chunk[0] + chunk[1] + chunk[2] + chunk[3];
|
||||
int res = sum.x + sum.y + sum.z + sum.w;
|
||||
int k = clamp(clz(16) - clz(res), 0, 14);
|
||||
len[tid] += 16 * k + (res >> k);
|
||||
k = clamp(clz(16) - clz(res), 0, 14);
|
||||
}
|
||||
#endif
|
||||
|
||||
data[tid] = nextData;
|
||||
}
|
||||
|
||||
int residualLen = (bs - ro) / GROUP_SIZE + select(0, 1, tid < (bs - ro) % GROUP_SIZE);
|
||||
int k = clamp(convert_int_rtn(log2((res + 0.000001f) / (residualLen + 0.000001f))), 0, 14);
|
||||
residual[tid] = residualLen * (k + 1) + (convert_int_rtz(res) >> k);
|
||||
|
||||
#ifdef BEACCURATE
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for (int l = GROUP_SIZE / 32; l > 0; l >>= 1)
|
||||
{
|
||||
if (tid < l)
|
||||
len[tid] += len[tid + l];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if (tid == 0)
|
||||
output[get_group_id(0)] = len[0] + (bs - ro);
|
||||
#else
|
||||
residual[tid] = res;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for (int l = GROUP_SIZE / 2; l > 0; l >>= 1)
|
||||
{
|
||||
@@ -502,7 +555,16 @@ void cudaEstimateResidual(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if (tid == 0)
|
||||
output[get_group_id(0)] = residual[0];
|
||||
{
|
||||
int residualLen = (bs - ro);
|
||||
float sum = residual[0] * 2;// + residualLen / 2;
|
||||
//int k = clamp(convert_int_rtn(log2((sum + 0.000001f) / (residualLen + 0.000001f))), 0, 14);
|
||||
int k;
|
||||
frexp((sum + 0.000001f) / residualLen, &k);
|
||||
k = clamp(k - 1, 0, 14);
|
||||
output[get_group_id(0)] = residualLen * (k + 1) + convert_int_rtn(min((float)0xffffff, sum / (1 << k)));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
|
||||
@@ -641,6 +703,7 @@ void cudaCopyBestMethodStereo(
|
||||
tasks_out[2 * get_group_id(1) + 1].data.residualOffs = tasks[shared.best_index[1]].data.residualOffs;
|
||||
}
|
||||
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void cudaEncodeResidual(
|
||||
__global int *output,
|
||||
@@ -652,7 +715,7 @@ void cudaEncodeResidual(
|
||||
__local int data[GROUP_SIZE * 2];
|
||||
const int tid = get_local_id(0);
|
||||
if (get_local_id(0) < sizeof(task) / sizeof(int))
|
||||
((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(1)]))[get_local_id(0)];
|
||||
((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int bs = task.data.blocksize;
|
||||
@@ -679,6 +742,8 @@ void cudaEncodeResidual(
|
||||
}
|
||||
}
|
||||
|
||||
// get_group_id(0) == partition index
|
||||
// get_group_id(1) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void cudaCalcPartition(
|
||||
__global int *partition_lengths,
|
||||
@@ -697,8 +762,8 @@ void cudaCalcPartition(
|
||||
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(1)]))[tid];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int k = tid % (GROUP_SIZE / 16);
|
||||
int x = tid / (GROUP_SIZE / 16);
|
||||
int k = tid % 16;
|
||||
int x = tid / 16;
|
||||
|
||||
int sum = 0;
|
||||
for (int pos0 = 0; pos0 < psize; pos0 += GROUP_SIZE)
|
||||
@@ -707,7 +772,7 @@ void cudaCalcPartition(
|
||||
// fetch residual
|
||||
int s = (offs >= task.residualOrder && pos0 + tid < psize) ? residual[task.residualOffs + offs] : 0;
|
||||
// convert to unsigned
|
||||
data[tid] = min(0xfffff, (s << 1) ^ (s >> 31));
|
||||
data[tid] = min(0x7fffff, (s << 1) ^ (s >> 31));
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
// calc number of unary bits for each residual sample with each rice paramater
|
||||
@@ -716,7 +781,7 @@ void cudaCalcPartition(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
length[x][k] = min(0xfffff, sum);
|
||||
length[x][k] = min(0x7fffff, sum);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (x == 0)
|
||||
@@ -726,174 +791,180 @@ void cudaCalcPartition(
|
||||
// output length
|
||||
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1));
|
||||
if (k <= 14)
|
||||
partition_lengths[pos + get_group_id(0)] = min(0xfffff,length[0][k]) + (psize - task.residualOrder * (get_group_id(0) == 0)) * (k + 1);
|
||||
partition_lengths[pos + get_group_id(0)] = min(0x7fffff,length[0][k]) + (psize - task.residualOrder * (get_group_id(0) == 0)) * (k + 1);
|
||||
}
|
||||
}
|
||||
|
||||
//// Sums partition lengths for a certain k == get_group_id(0)
|
||||
//// Requires 128 threads
|
||||
//__kernel void cudaSumPartition(
|
||||
// int* partition_lengths,
|
||||
// int max_porder
|
||||
// )
|
||||
//{
|
||||
// __local struct {
|
||||
// volatile int data[512+32]; // max_porder <= 8, data length <= 1 << 9.
|
||||
// } shared;
|
||||
//
|
||||
// const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (get_group_id(0) << (max_porder + 1));
|
||||
//
|
||||
// // fetch partition lengths
|
||||
// shared.data[get_local_id(0)] = get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_id(0)] : 0;
|
||||
// shared.data[get_local_size(0) + get_local_id(0)] = get_local_size(0) + get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_size(0) + get_local_id(0)] : 0;
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//
|
||||
// int in_pos = (get_local_id(0) << 1);
|
||||
// int out_pos = (1 << max_porder) + get_local_id(0);
|
||||
// int bs;
|
||||
// for (bs = 1 << (max_porder - 1); bs > 32; bs >>= 1)
|
||||
// {
|
||||
// if (get_local_id(0) < bs) shared.data[out_pos] = shared.data[in_pos] + shared.data[in_pos + 1];
|
||||
// in_pos += bs << 1;
|
||||
// out_pos += bs;
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// }
|
||||
// if (get_local_id(0) < 32)
|
||||
// for (; bs > 0; bs >>= 1)
|
||||
// {
|
||||
// shared.data[out_pos] = shared.data[in_pos] + shared.data[in_pos + 1];
|
||||
// in_pos += bs << 1;
|
||||
// out_pos += bs;
|
||||
// }
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// if (get_local_id(0) < (1 << max_porder))
|
||||
// partition_lengths[pos + (1 << max_porder) + get_local_id(0)] = shared.data[(1 << max_porder) + get_local_id(0)];
|
||||
// if (get_local_size(0) + get_local_id(0) < (1 << max_porder))
|
||||
// partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = shared.data[(1 << max_porder) + get_local_size(0) + get_local_id(0)];
|
||||
//}
|
||||
//
|
||||
//// Finds optimal rice parameter for up to 16 partitions at a time.
|
||||
//// Requires 16x16 threads
|
||||
//__kernel void cudaFindRiceParameter(
|
||||
// int* rice_parameters,
|
||||
// int* partition_lengths,
|
||||
// int max_porder
|
||||
// )
|
||||
//{
|
||||
// __local struct {
|
||||
// volatile int length[256];
|
||||
// volatile int index[256];
|
||||
// } shared;
|
||||
// const int tid = get_local_id(0) + (get_local_id(1) << 5);
|
||||
// const int parts = min(32, 2 << max_porder);
|
||||
// const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (get_local_id(1) << (max_porder + 1));
|
||||
//
|
||||
// // read length for 32 partitions
|
||||
// int l1 = (get_local_id(0) < parts) ? partition_lengths[pos + get_group_id(0) * 32 + get_local_id(0)] : 0xffffff;
|
||||
// int l2 = (get_local_id(1) + 8 <= 14 && get_local_id(0) < parts) ? partition_lengths[pos + (8 << (max_porder + 1)) + get_group_id(0) * 32 + get_local_id(0)] : 0xffffff;
|
||||
// // find best rice parameter
|
||||
// shared.index[tid] = get_local_id(1) + ((l2 < l1) << 3);
|
||||
// shared.length[tid] = l1 = min(l1, l2);
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// Sums partition lengths for a certain k == get_group_id(0)
|
||||
// Requires 128 threads
|
||||
// get_group_id(0) == k
|
||||
// get_group_id(1) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(128, 1, 1)))
|
||||
void cudaSumPartition(
|
||||
__global int* partition_lengths,
|
||||
int max_porder
|
||||
)
|
||||
{
|
||||
__local int data[512]; // max_porder <= 8, data length <= 1 << 9.
|
||||
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (get_group_id(0) << (max_porder + 1));
|
||||
|
||||
// fetch partition lengths
|
||||
data[get_local_id(0)] = get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_id(0)] : 0;
|
||||
data[get_local_size(0) + get_local_id(0)] = get_local_size(0) + get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_size(0) + get_local_id(0)] : 0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int in_pos = (get_local_id(0) << 1);
|
||||
int out_pos = (1 << max_porder) + get_local_id(0);
|
||||
for (int bs = 1 << (max_porder - 1); bs > 0; bs >>= 1)
|
||||
{
|
||||
if (get_local_id(0) < bs) data[out_pos] = data[in_pos] + data[in_pos + 1];
|
||||
in_pos += bs << 1;
|
||||
out_pos += bs;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if (get_local_id(0) < (1 << max_porder))
|
||||
partition_lengths[pos + (1 << max_porder) + get_local_id(0)] = data[(1 << max_porder) + get_local_id(0)];
|
||||
if (get_local_size(0) + get_local_id(0) < (1 << max_porder))
|
||||
partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = data[(1 << max_porder) + get_local_size(0) + get_local_id(0)];
|
||||
}
|
||||
|
||||
// Finds optimal rice parameter for several partitions at a time.
|
||||
// get_group_id(0) == chunk index (chunk size is GROUP_SIZE / 8, so total task size is 8 * (2 << max_porder))
|
||||
// get_group_id(1) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void cudaFindRiceParameter(
|
||||
__global int* rice_parameters,
|
||||
__global int* partition_lengths,
|
||||
int max_porder
|
||||
)
|
||||
{
|
||||
__local struct {
|
||||
volatile int length[GROUP_SIZE];
|
||||
volatile int index[GROUP_SIZE];
|
||||
} shared;
|
||||
const int tid = get_local_id(0);
|
||||
const int ws = GROUP_SIZE / 8;
|
||||
const int parts = min(ws, 2 << max_porder);
|
||||
const int p = tid % ws;
|
||||
const int k = tid / ws; // 0..7
|
||||
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1));
|
||||
|
||||
// read length for 32 partitions
|
||||
int l1 = (p < parts) ? partition_lengths[pos + get_group_id(0) * ws + p] : 0xffffff;
|
||||
int l2 = (k + 8 <= 14 && p < parts) ? partition_lengths[pos + (8 << (max_porder + 1)) + get_group_id(0) * ws + p] : 0xffffff;
|
||||
// find best rice parameter
|
||||
shared.index[tid] = k + ((l2 < l1) << 3);
|
||||
shared.length[tid] = l1 = min(l1, l2);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//#pragma unroll 3
|
||||
// for (int sh = 7; sh >= 5; sh --)
|
||||
// {
|
||||
// if (tid < (1 << sh))
|
||||
// {
|
||||
// l2 = shared.length[tid + (1 << sh)];
|
||||
// shared.index[tid] = shared.index[tid + ((l2 < l1) << sh)];
|
||||
// shared.length[tid] = l1 = min(l1, l2);
|
||||
// }
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// }
|
||||
// if (tid < parts)
|
||||
// {
|
||||
// // output rice parameter
|
||||
// rice_parameters[(get_group_id(1) << (max_porder + 2)) + get_group_id(0) * parts + tid] = shared.index[tid];
|
||||
// // output length
|
||||
// rice_parameters[(get_group_id(1) << (max_porder + 2)) + (1 << (max_porder + 1)) + get_group_id(0) * parts + tid] = shared.length[tid];
|
||||
// }
|
||||
//}
|
||||
//
|
||||
//__kernel void cudaFindPartitionOrder(
|
||||
// int* best_rice_parameters,
|
||||
// FLACCLSubframeTask *tasks,
|
||||
// int* rice_parameters,
|
||||
// int max_porder
|
||||
// )
|
||||
//{
|
||||
// __local struct {
|
||||
// int data[512];
|
||||
// volatile int tmp[256];
|
||||
// int length[32];
|
||||
// int index[32];
|
||||
// //char4 ch[64];
|
||||
// FLACCLSubframeTask task;
|
||||
// } shared;
|
||||
// const int pos = (get_group_id(1) << (max_porder + 2)) + (2 << max_porder);
|
||||
// if (get_local_id(0) < sizeof(shared.task) / sizeof(int))
|
||||
// ((int*)&shared.task)[get_local_id(0)] = ((int*)(&tasks[get_group_id(1)]))[get_local_id(0)];
|
||||
// // fetch partition lengths
|
||||
// shared.data[get_local_id(0)] = get_local_id(0) < (2 << max_porder) ? rice_parameters[pos + get_local_id(0)] : 0;
|
||||
// shared.data[get_local_id(0) + 256] = get_local_id(0) + 256 < (2 << max_porder) ? rice_parameters[pos + 256 + get_local_id(0)] : 0;
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//
|
||||
// for (int porder = max_porder; porder >= 0; porder--)
|
||||
// {
|
||||
// shared.tmp[get_local_id(0)] = (get_local_id(0) < (1 << porder)) * shared.data[(2 << max_porder) - (2 << porder) + get_local_id(0)];
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// SUM256(shared.tmp, get_local_id(0), +=);
|
||||
// if (get_local_id(0) == 0)
|
||||
// shared.length[porder] = shared.tmp[0] + (4 << porder);
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// }
|
||||
//
|
||||
// if (get_local_id(0) < 32)
|
||||
// {
|
||||
// shared.index[get_local_id(0)] = get_local_id(0);
|
||||
// if (get_local_id(0) > max_porder)
|
||||
// shared.length[get_local_id(0)] = 0xfffffff;
|
||||
// int l1 = shared.length[get_local_id(0)];
|
||||
// #pragma unroll 4
|
||||
// for (int sh = 3; sh >= 0; sh --)
|
||||
// {
|
||||
// int l2 = shared.length[get_local_id(0) + (1 << sh)];
|
||||
// shared.index[get_local_id(0)] = shared.index[get_local_id(0) + ((l2 < l1) << sh)];
|
||||
// shared.length[get_local_id(0)] = l1 = min(l1, l2);
|
||||
// }
|
||||
// if (get_local_id(0) == 0)
|
||||
// tasks[get_group_id(1)].data.porder = shared.index[0];
|
||||
// if (get_local_id(0) == 0)
|
||||
// {
|
||||
// int obits = shared.task.data.obits - shared.task.data.wbits;
|
||||
// tasks[get_group_id(1)].data.size =
|
||||
// shared.task.data.type == Fixed ? shared.task.data.residualOrder * obits + 6 + l1 :
|
||||
// shared.task.data.type == LPC ? shared.task.data.residualOrder * obits + 6 + l1 + 4 + 5 + shared.task.data.residualOrder * shared.task.data.cbits :
|
||||
// shared.task.data.type == Constant ? obits : obits * shared.task.data.blocksize;
|
||||
// }
|
||||
// }
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// int porder = shared.index[0];
|
||||
// if (get_local_id(0) < (1 << porder))
|
||||
// best_rice_parameters[(get_group_id(1) << max_porder) + get_local_id(0)] = rice_parameters[pos - (2 << porder) + get_local_id(0)];
|
||||
// // FIXME: should be bytes?
|
||||
// // if (get_local_id(0) < (1 << porder))
|
||||
// //shared.tmp[get_local_id(0)] = rice_parameters[pos - (2 << porder) + get_local_id(0)];
|
||||
// // barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// // if (get_local_id(0) < max(1, (1 << porder) >> 2))
|
||||
// // {
|
||||
// //char4 ch;
|
||||
// //ch.x = shared.tmp[(get_local_id(0) << 2)];
|
||||
// //ch.y = shared.tmp[(get_local_id(0) << 2) + 1];
|
||||
// //ch.z = shared.tmp[(get_local_id(0) << 2) + 2];
|
||||
// //ch.w = shared.tmp[(get_local_id(0) << 2) + 3];
|
||||
// //shared.ch[get_local_id(0)] = ch
|
||||
// // }
|
||||
// // barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// // if (get_local_id(0) < max(1, (1 << porder) >> 2))
|
||||
// //best_rice_parameters[(get_group_id(1) << max_porder) + get_local_id(0)] = shared.ch[get_local_id(0)];
|
||||
//}
|
||||
//
|
||||
for (int lsh = GROUP_SIZE / 2; lsh >= ws; lsh >>= 1)
|
||||
{
|
||||
if (tid < lsh)
|
||||
{
|
||||
l2 = shared.length[tid + lsh];
|
||||
shared.index[tid] = shared.index[tid + (l2 < l1) * lsh];
|
||||
shared.length[tid] = l1 = min(l1, l2);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if (tid < parts)
|
||||
{
|
||||
// output rice parameter
|
||||
rice_parameters[(get_group_id(1) << (max_porder + 2)) + get_group_id(0) * parts + tid] = shared.index[tid];
|
||||
// output length
|
||||
rice_parameters[(get_group_id(1) << (max_porder + 2)) + (1 << (max_porder + 1)) + get_group_id(0) * parts + tid] = shared.length[tid];
|
||||
}
|
||||
}
|
||||
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void cudaFindPartitionOrder(
|
||||
__global int* best_rice_parameters,
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
__global int* rice_parameters,
|
||||
int max_porder
|
||||
)
|
||||
{
|
||||
__local struct {
|
||||
int length[32];
|
||||
int index[32];
|
||||
} shared;
|
||||
__local int partlen[GROUP_SIZE];
|
||||
__local FLACCLSubframeData task;
|
||||
|
||||
const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder);
|
||||
if (get_local_id(0) < sizeof(task) / sizeof(int))
|
||||
((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)];
|
||||
// fetch partition lengths
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for (int porder = max_porder; porder >= 0; porder--)
|
||||
{
|
||||
int len = 0;
|
||||
for (int offs = 0; offs < (1 << porder); offs += GROUP_SIZE)
|
||||
len += offs + get_local_id(0) < (1 << porder) ? rice_parameters[pos + (2 << max_porder) - (2 << porder) + offs + get_local_id(0)] : 0;
|
||||
partlen[get_local_id(0)] = len;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for (int l = min(GROUP_SIZE, 1 << porder) / 2; l > 0; l >>= 1)
|
||||
{
|
||||
if (get_local_id(0) < l)
|
||||
partlen[get_local_id(0)] += partlen[get_local_id(0) + l];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if (get_local_id(0) == 0)
|
||||
shared.length[porder] = partlen[0] + (4 << porder);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
if (get_local_id(0) < 32 && get_local_id(0) > max_porder)
|
||||
shared.length[get_local_id(0)] = 0xfffffff;
|
||||
if (get_local_id(0) < 32)
|
||||
shared.index[get_local_id(0)] = get_local_id(0);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
int l1 = get_local_id(0) <= max_porder ? shared.length[get_local_id(0)] : 0xfffffff;
|
||||
for (int sh = 3; sh >= 0; sh --)
|
||||
{
|
||||
if (get_local_id(0) < (1 << sh))
|
||||
{
|
||||
int l2 = shared.length[get_local_id(0) + (1 << sh)];
|
||||
shared.index[get_local_id(0)] = shared.index[get_local_id(0) + ((l2 < l1) << sh)];
|
||||
shared.length[get_local_id(0)] = l1 = min(l1, l2);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if (get_local_id(0) == 0)
|
||||
tasks[get_group_id(0)].data.porder = shared.index[0];
|
||||
if (get_local_id(0) == 0)
|
||||
{
|
||||
int obits = task.obits - task.wbits;
|
||||
tasks[get_group_id(0)].data.size =
|
||||
task.type == Fixed ? task.residualOrder * obits + 6 + l1 :
|
||||
task.type == LPC ? task.residualOrder * obits + 6 + l1 + 4 + 5 + task.residualOrder * task.cbits :
|
||||
task.type == Constant ? obits : obits * task.blocksize;
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
int porder = shared.index[0];
|
||||
for (int offs = 0; offs < (1 << porder); offs += GROUP_SIZE)
|
||||
if (offs + get_local_id(0) < (1 << porder))
|
||||
best_rice_parameters[(get_group_id(0) << max_porder) + offs + get_local_id(0)] = rice_parameters[pos - (2 << porder) + offs + get_local_id(0)];
|
||||
// FIXME: should be bytes?
|
||||
// if (get_local_id(0) < (1 << porder))
|
||||
//shared.tmp[get_local_id(0)] = rice_parameters[pos - (2 << porder) + get_local_id(0)];
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// if (get_local_id(0) < max(1, (1 << porder) >> 2))
|
||||
// {
|
||||
//char4 ch;
|
||||
//ch.x = shared.tmp[(get_local_id(0) << 2)];
|
||||
//ch.y = shared.tmp[(get_local_id(0) << 2) + 1];
|
||||
//ch.z = shared.tmp[(get_local_id(0) << 2) + 2];
|
||||
//ch.w = shared.tmp[(get_local_id(0) << 2) + 3];
|
||||
//shared.ch[get_local_id(0)] = ch
|
||||
// }
|
||||
// barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// if (get_local_id(0) < max(1, (1 << porder) >> 2))
|
||||
//best_rice_parameters[(get_group_id(1) << max_porder) + get_local_id(0)] = shared.ch[get_local_id(0)];
|
||||
}
|
||||
|
||||
//#endif
|
||||
//
|
||||
//#if 0
|
||||
|
||||
Reference in New Issue
Block a user