optimizations

This commit is contained in:
chudov
2009-09-09 14:40:34 +00:00
parent a8e23ecccb
commit 435a6acdf8
2 changed files with 130 additions and 29 deletions

View File

@@ -94,16 +94,18 @@ namespace CUETools.Codecs.FlaCuda
CUDA cuda;
CUfunction cudaComputeAutocor;
CUfunction cudaComputeLPC;
CUfunction cudaEncodeResidual;
CUdeviceptr cudaSamples;
CUdeviceptr cudaWindow;
CUdeviceptr cudaAutocorTasks;
CUdeviceptr cudaAutocorOutput;
CUdeviceptr cudaCompLPCOutput;
CUdeviceptr cudaResidualTasks;
CUdeviceptr cudaResidualOutput;
IntPtr samplesBufferPtr = IntPtr.Zero;
IntPtr autocorTasksPtr = IntPtr.Zero;
IntPtr autocorOutputPtr = IntPtr.Zero;
IntPtr compLPCOutputPtr = IntPtr.Zero;
IntPtr residualTasksPtr = IntPtr.Zero;
IntPtr residualOutputPtr = IntPtr.Zero;
CUstream cudaStream;
@@ -211,9 +213,10 @@ namespace CUETools.Codecs.FlaCuda
cuda.Free(cudaSamples);
cuda.Free(cudaAutocorTasks);
cuda.Free(cudaAutocorOutput);
cuda.Free(cudaCompLPCOutput);
cuda.Free(cudaResidualTasks);
cuda.Free(cudaResidualOutput);
CUDADriver.cuMemFreeHost(autocorOutputPtr);
CUDADriver.cuMemFreeHost(compLPCOutputPtr);
CUDADriver.cuMemFreeHost(residualOutputPtr);
CUDADriver.cuMemFreeHost(samplesBufferPtr);
CUDADriver.cuMemFreeHost(residualTasksPtr);
@@ -244,9 +247,10 @@ namespace CUETools.Codecs.FlaCuda
cuda.Free(cudaSamples);
cuda.Free(cudaAutocorTasks);
cuda.Free(cudaAutocorOutput);
cuda.Free(cudaCompLPCOutput);
cuda.Free(cudaResidualTasks);
cuda.Free(cudaResidualOutput);
CUDADriver.cuMemFreeHost(autocorOutputPtr);
CUDADriver.cuMemFreeHost(compLPCOutputPtr);
CUDADriver.cuMemFreeHost(residualOutputPtr);
CUDADriver.cuMemFreeHost(samplesBufferPtr);
CUDADriver.cuMemFreeHost(residualTasksPtr);
@@ -1031,22 +1035,22 @@ namespace CUETools.Codecs.FlaCuda
for (int ch = 0; ch < channelsCount; ch++)
for (int iWindow = 0; iWindow < _windowcount; iWindow++)
{
double* ac = stackalloc double[lpc.MAX_LPC_ORDER + 1];
for (int order = 0; order <= max_order; order++)
{
ac[order] = 0;
for (int i_block = 0; i_block < autocorPartCount; i_block++)
ac[order] += ((float*)autocorOutputPtr)[order + (max_order + 1) * (i_block + autocorPartCount * (iWindow + _windowcount * ch))];
}
frame.subframes[ch].lpc_ctx[iWindow].ComputeReflection(max_order, ac);
float* lpcs = stackalloc float[lpc.MAX_LPC_ORDER * lpc.MAX_LPC_ORDER];
frame.subframes[ch].lpc_ctx[iWindow].ComputeLPC(lpcs);
//int* lpcs = ((int*)compLPCOutputPtr) + (max_order + 1) * max_order * (iWindow + _windowcount * ch);
//for (int order = 1; order <= max_order; order++)
//{
// residualTasks[nResidualTasks].residualOrder = order - 1;
// residualTasks[nResidualTasks].samplesOffs = ch * FlaCudaWriter.MAX_BLOCKSIZE;
// residualTasks[nResidualTasks].shift = lpcs[order + (order - 1) * (max_order + 1)];
// AudioSamples.MemCpy(residualTasks[nResidualTasks].coefs, lpcs + (order - 1) * (max_order + 1), order);
// nResidualTasks++;
//}
float* lpcs = ((float*)compLPCOutputPtr) + max_order * max_order * (iWindow + _windowcount * ch);
for (int order = 1; order <= max_order; order++)
{
residualTasks[nResidualTasks].residualOrder = order - 1;
residualTasks[nResidualTasks].samplesOffs = ch * FlaCudaWriter.MAX_BLOCKSIZE;
lpc.quantize_lpc_coefs(lpcs + (order - 1) * lpc.MAX_LPC_ORDER,
lpc.quantize_lpc_coefs(lpcs + (order - 1) * max_order,
order, cbits, residualTasks[nResidualTasks].coefs,
out residualTasks[nResidualTasks].shift, 15, 0);
@@ -1119,10 +1123,10 @@ namespace CUETools.Codecs.FlaCuda
unsafe void compute_autocorellation(FlacFrame frame, int channelsCount, int max_order, out int partCount)
{
int autocorThreads = 256;
int partSize = autocorThreads - max_order;
int partSize = 2 * autocorThreads - max_order;
int nAutocorTasks = _windowcount * channelsCount;
partCount = (frame.blocksize + partSize - 1) / partSize;
partCount = (frame.blocksize + partSize - 1) / partSize;
if (partCount > maxAutocorParts)
throw new Exception("internal error");
@@ -1139,10 +1143,19 @@ namespace CUETools.Codecs.FlaCuda
cuda.SetParameterSize(cudaComputeAutocor, (uint)(IntPtr.Size * 4) + sizeof(uint) * 3);
cuda.SetFunctionBlockShape(cudaComputeAutocor, autocorThreads, 1, 1);
cuda.SetParameter(cudaComputeLPC, 0, (uint)cudaCompLPCOutput.Pointer);
cuda.SetParameter(cudaComputeLPC, IntPtr.Size, (uint)cudaAutocorOutput.Pointer);
cuda.SetParameter(cudaComputeLPC, IntPtr.Size * 2, (uint)cudaAutocorTasks.Pointer);
cuda.SetParameter(cudaComputeLPC, IntPtr.Size * 3, (uint)max_order);
cuda.SetParameter(cudaComputeLPC, IntPtr.Size * 3 + sizeof(uint), (uint)partCount);
cuda.SetParameterSize(cudaComputeLPC, (uint)(IntPtr.Size * 3) + sizeof(uint) * 2);
cuda.SetFunctionBlockShape(cudaComputeLPC, 32, 1, 1);
// issue work to the GPU
cuda.CopyHostToDeviceAsync(cudaSamples, samplesBufferPtr, (uint)(sizeof(int) * FlaCudaWriter.MAX_BLOCKSIZE * channelsCount), cudaStream);
cuda.LaunchAsync(cudaComputeAutocor, partCount, nAutocorTasks, cudaStream);
cuda.CopyDeviceToHostAsync(cudaAutocorOutput, autocorOutputPtr, (uint)(sizeof(float) * partCount * (max_order + 1) * nAutocorTasks), cudaStream);
cuda.LaunchAsync(cudaComputeLPC, 1, nAutocorTasks, cudaStream);
cuda.CopyDeviceToHostAsync(cudaCompLPCOutput, compLPCOutputPtr, (uint)(sizeof(float) * (max_order + 1) * max_order * nAutocorTasks), cudaStream);
cuda.SynchronizeStream(cudaStream);
}
@@ -1282,18 +1295,20 @@ namespace CUETools.Codecs.FlaCuda
cuda.CreateContext(0, CUCtxFlags.SchedSpin);
cuda.LoadModule(System.IO.Path.Combine(Environment.CurrentDirectory, "flacuda.cubin"));
cudaComputeAutocor = cuda.GetModuleFunction("cudaComputeAutocor");
cudaComputeLPC = cuda.GetModuleFunction("cudaComputeLPC");
cudaEncodeResidual = cuda.GetModuleFunction("cudaEncodeResidual");
cudaSamples = cuda.Allocate((uint)(sizeof(int) * FlaCudaWriter.MAX_BLOCKSIZE * (channels == 2 ? 4 : channels)));
cudaWindow = cuda.Allocate((uint)sizeof(float) * FlaCudaWriter.MAX_BLOCKSIZE * 2 * lpc.MAX_LPC_WINDOWS);
cudaAutocorTasks = cuda.Allocate((uint)(sizeof(computeAutocorTaskStruct) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS));
cudaAutocorOutput = cuda.Allocate((uint)(sizeof(float) * (lpc.MAX_LPC_ORDER + 1) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS) * maxAutocorParts);
cudaCompLPCOutput = cuda.Allocate((uint)(sizeof(float) * lpc.MAX_LPC_ORDER * lpc.MAX_LPC_ORDER * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS) * maxAutocorParts);
cudaResidualTasks = cuda.Allocate((uint)(sizeof(encodeResidualTaskStruct) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_ORDER * lpc.MAX_LPC_WINDOWS));
cudaResidualOutput = cuda.Allocate((uint)(sizeof(int) * (channels == 2 ? 4 : channels) * (lpc.MAX_LPC_ORDER + 1) * lpc.MAX_LPC_WINDOWS * maxResidualParts));
CUResult cuErr = CUDADriver.cuMemAllocHost(ref samplesBufferPtr, (uint)(sizeof(int) * (channels == 2 ? 4 : channels) * FlaCudaWriter.MAX_BLOCKSIZE));
if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref autocorTasksPtr, (uint)(sizeof(computeAutocorTaskStruct) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS));
if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref autocorOutputPtr, (uint)(sizeof(float) * (lpc.MAX_LPC_ORDER + 1) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS * maxAutocorParts));
cuErr = CUDADriver.cuMemAllocHost(ref compLPCOutputPtr, (uint)(sizeof(float) * (lpc.MAX_LPC_ORDER + 1) * lpc.MAX_LPC_ORDER * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS));
if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref residualTasksPtr, (uint)(sizeof(encodeResidualTaskStruct) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS * lpc.MAX_LPC_ORDER));
if (cuErr == CUResult.Success)
@@ -1302,7 +1317,7 @@ namespace CUETools.Codecs.FlaCuda
{
if (samplesBufferPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(samplesBufferPtr); samplesBufferPtr = IntPtr.Zero;
if (autocorTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(autocorTasksPtr); autocorTasksPtr = IntPtr.Zero;
if (autocorOutputPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(autocorOutputPtr); autocorOutputPtr = IntPtr.Zero;
if (compLPCOutputPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(compLPCOutputPtr); compLPCOutputPtr = IntPtr.Zero;
if (residualTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(residualTasksPtr); residualTasksPtr = IntPtr.Zero;
if (residualOutputPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(residualOutputPtr); residualOutputPtr = IntPtr.Zero;
throw new CUDAException(cuErr);

View File

@@ -33,17 +33,17 @@ extern "C" __global__ void cudaComputeAutocor(
computeAutocorTaskStruct *tasks,
int max_order, // should be <= 32
int frameSize,
int partSize // should be <= blockDim - max_order
int partSize // should be <= 2*blockDim - max_order
)
{
__shared__ struct {
float data[256];
float data[512];
float product[256];
float product2[256];
float sum[33];
computeAutocorTaskStruct task;
} shared;
const int tid = threadIdx.x;
const int tid2 = threadIdx.x + 256;
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
@@ -55,11 +55,13 @@ extern "C" __global__ void cudaComputeAutocor(
// fetch samples
shared.data[tid] = tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] * window[shared.task.windowOffs + pos + tid]: 0.0f;
shared.data[tid2] = tid2 < dataLen ? samples[shared.task.samplesOffs + pos + tid2] * window[shared.task.windowOffs + pos + tid2]: 0.0f;
__syncthreads();
for (int lag = 0; lag <= max_order; lag++)
{
shared.product[tid] = tid < productLen ? shared.data[tid] * shared.data[tid + lag] : 0.0f;
shared.product[tid] = (tid < productLen) * shared.data[tid] * shared.data[tid + lag] +
+ (tid2 < productLen) * shared.data[tid2] * shared.data[tid2 + lag];
__syncthreads();
// product sum: reduction in shared mem
@@ -72,6 +74,7 @@ extern "C" __global__ void cudaComputeAutocor(
shared.product[tid] += shared.product[tid + 4];
shared.product[tid] += shared.product[tid + 2];
if (tid == 0) shared.sum[lag] = shared.product[0] + shared.product[1];
__syncthreads();
}
// return results
@@ -79,6 +82,86 @@ extern "C" __global__ void cudaComputeAutocor(
output[(blockIdx.x + blockIdx.y * gridDim.x) * (max_order + 1) + tid] = shared.sum[tid];
}
extern "C" __global__ void cudaComputeLPC(
float*output,
float*autoc,
computeAutocorTaskStruct *tasks,
int max_order, // should be <= 32
int partCount // should be <= blockDim
)
{
__shared__ struct {
computeAutocorTaskStruct task;
float tmp[32];
float buf[32];
int bits[32];
float autoc[33];
} shared;
const int tid = threadIdx.x;
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
// initialize autoc sums
if (tid <= max_order)
shared.autoc[tid] = 0.0f;
__syncthreads();
// add up parts
for (int part = 0; part < partCount; part++)
if (tid <= max_order)
shared.autoc[tid] += autoc[(blockIdx.y * partCount + part) * (max_order + 1) + tid];
__syncthreads();
if (tid <= 32)
shared.tmp[tid] = 0.0f;
float err = shared.autoc[0];
for(int order = 0; order < max_order; order++)
{
if (tid < 32)
{
shared.buf[tid] = tid < order ? shared.tmp[tid] * shared.autoc[order - tid] : 0;
shared.buf[tid] += shared.buf[tid + 16];
shared.buf[tid] += shared.buf[tid + 8];
shared.buf[tid] += shared.buf[tid + 4];
shared.buf[tid] += shared.buf[tid + 2];
shared.buf[tid] += shared.buf[tid + 1];
}
__syncthreads();
float r = (- shared.autoc[order+1] - shared.buf[0]) / err;
err *= 1.0f - (r * r);
if (tid == 0)
shared.tmp[order] = r; // we could also set shared.tmp[-1] to 1.0f
if (tid < order)
shared.tmp[tid] += r * shared.tmp[order - 1 - tid];
if (tid <= order)
output[((blockIdx.x + blockIdx.y * gridDim.x) * max_order + order) * max_order + tid] = -shared.tmp[tid];
//{
// int precision = 13;
// shared.bits[tid] = 32 - __clz(__float2int_rn(fabs(shared.tmp[tid]) * (1 << 15))) - precision;
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 16]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 8]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 4]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 2]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 1]);
// int sh = max(0,min(15, 15 - shared.bits[0]));
// shared.bits[tid] = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(-shared.tmp[tid] * (1 << sh))));
// if (tid == 0)
// output[((blockIdx.x + blockIdx.y * gridDim.x) * max_order + order) * (1 + max_order) + order + 1] = sh;
// output[((blockIdx.x + blockIdx.y * gridDim.x) * max_order + order) * (1 + max_order) + tid] = shared.bits[tid];
//}
__syncthreads();
}
}
typedef struct
{
int residualOrder; // <= 32
@@ -108,19 +191,22 @@ extern "C" __global__ void cudaEncodeResidual(
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
__syncthreads();
const int pos = blockIdx.x * partSize;
const int residualOrder = shared.task.residualOrder;
const int residualLen = min(frameSize - pos - residualOrder - 1, partSize);
const int dataLen = residualLen + residualOrder + 1;
const int residualOrder = shared.task.residualOrder + 1;
const int residualLen = min(frameSize - pos - residualOrder, partSize);
const int dataLen = residualLen + residualOrder;
// fetch samples
shared.data[tid] = (tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] : 0);
// reverse coefs
if (tid < residualOrder) shared.task.coefs[tid] = shared.task.coefs[residualOrder - 1 - tid];
// compute residual
__syncthreads();
long sum = 0;
for (int c = 0; c <= residualOrder; c++)
sum += __mul24(shared.data[tid + c], shared.task.coefs[residualOrder - c]);
int res = shared.data[tid + residualOrder + 1] - (sum >> shared.task.shift);
for (int c = 0; c < residualOrder; c++)
sum += __mul24(shared.data[tid + c], shared.task.coefs[c]);
int res = shared.data[tid + residualOrder] - (sum >> shared.task.shift);
shared.residual[tid] = __mul24(tid < residualLen, (2 * res) ^ (res >> 31));
__syncthreads();