FLACCL: hi-res audio encoding optimisation

This commit is contained in:
Grigory Chudov
2013-06-01 22:54:32 -04:00
parent 351705f551
commit 5f8a7d9652
2 changed files with 141 additions and 8 deletions

View File

@@ -354,6 +354,19 @@ namespace CUETools.Codecs.FLACCL
if (inited)
{
_IO.Close();
if (task2.frameCount > 0)
{
if (cpu_tasks != null)
{
for (int i = 0; i < cpu_tasks.Length; i++)
{
wait_for_cpu_task();
oldest_cpu_task = (oldest_cpu_task + 1) % cpu_tasks.Length;
}
}
task2.openCLCQ.Finish(); // cuda.SynchronizeStream(task2.stream);
task2.frameCount = 0;
}
task1.Dispose();
task2.Dispose();
if (cpu_tasks != null)
@@ -685,6 +698,38 @@ namespace CUETools.Codecs.FLACCL
}
}
/// <summary>
/// Special case when (n >> pmax) == 32
/// </summary>
/// <param name="pmin"></param>
/// <param name="pmax"></param>
/// <param name="data"></param>
/// <param name="n"></param>
/// <param name="pred_order"></param>
/// <param name="sums"></param>
static unsafe void calc_sums32(int pmin, int pmax, uint* data, uint n, uint pred_order, ulong* sums)
{
int parts = (1 << pmax);
uint* res = data + pred_order;
uint cnt = 32 - pred_order;
ulong sum = 0UL;
for (uint j = cnt; j > 0; j--)
sum += *(res++);
sums[0] = sum;
for (int i = 1; i < parts; i++)
{
sums[i] = 0UL +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++);
}
}
/// <summary>
/// Special case when (n >> pmax) == 18
/// </summary>
@@ -728,7 +773,9 @@ namespace CUETools.Codecs.FLACCL
udata[i] = (uint)((data[i] << 1) ^ (data[i] >> 31));
// sums for highest level
if ((n >> pmax) == 18)
if ((n >> pmax) == 32)
calc_sums32(pmin, pmax, udata, n, pred_order, sums + pmax * Flake.MAX_PARTITIONS);
else if ((n >> pmax) == 18)
calc_sums18(pmin, pmax, udata, n, pred_order, sums + pmax * Flake.MAX_PARTITIONS);
else if ((n >> pmax) == 16)
calc_sums16(pmin, pmax, udata, n, pred_order, sums + pmax * Flake.MAX_PARTITIONS);
@@ -1726,6 +1773,7 @@ namespace CUETools.Codecs.FLACCL
OCLMan.Defines =
"#define MAX_ORDER " + eparams.max_prediction_order.ToString() + "\n" +
"#define GROUP_SIZE " + groupSize.ToString() + "\n" +
"#define GROUP_SIZE_LOG " + BitReader.log2i(groupSize).ToString() + "\n" +
"#define FLACCL_VERSION \"" + Vendor + "\"\n" +
(UseGPUOnly ? "#define DO_PARTITIONS\n" : "") +
(UseGPURice ? "#define DO_RICE\n" : "") +
@@ -2437,6 +2485,7 @@ namespace CUETools.Codecs.FLACCL
public Kernel clEncodeResidual;
public Kernel clCalcPartition;
public Kernel clCalcPartition16;
public Kernel clCalcPartition32;
public Kernel clSumPartition;
public Kernel clFindRiceParameter;
public Kernel clFindPartitionOrder;
@@ -2530,7 +2579,8 @@ namespace CUETools.Codecs.FLACCL
int MAX_CHANNELSIZE = MAX_FRAMES * ((writer.m_blockSize + 3) & ~3);
residualTasksLen = sizeof(FLACCLSubframeTask) * 32 * channelsCount * MAX_FRAMES;
bestResidualTasksLen = sizeof(FLACCLSubframeTask) * channels * MAX_FRAMES;
int samplesBufferLen = writer.Settings.PCM.BlockAlign * MAX_CHANNELSIZE * channelsCount;
int samplesBytesLen = writer.Settings.PCM.BlockAlign * MAX_CHANNELSIZE;
int samplesBufferLen = sizeof(int) * MAX_CHANNELSIZE * channelsCount;
int residualBufferLen = sizeof(int) * MAX_CHANNELSIZE * channels; // need to adjust residualOffset?
int partitionsLen = sizeof(int) * ((writer.Settings.PCM.BitsPerSample > 16 ? 31 : 15) * 2 << 8) * channels * MAX_FRAMES;
int riceParamsLen = sizeof(int) * (4 << 8) * channels * MAX_FRAMES;
@@ -2543,7 +2593,7 @@ namespace CUETools.Codecs.FLACCL
if (!this.UseMappedMemory)
{
clSamplesBytes = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, samplesBufferLen / 2);
clSamplesBytes = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, samplesBytesLen);
clResidual = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, residualBufferLen);
clBestRiceParams = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, riceParamsLen / 4);
clResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, residualTasksLen);
@@ -2552,7 +2602,7 @@ namespace CUETools.Codecs.FLACCL
clSelectedTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, selectedLen);
clRiceOutput = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, riceLen);
clSamplesBytesPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, samplesBufferLen / 2);
clSamplesBytesPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, samplesBytesLen);
clResidualPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualBufferLen);
clBestRiceParamsPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, riceParamsLen / 4);
clResidualTasksPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualTasksLen);
@@ -2561,7 +2611,7 @@ namespace CUETools.Codecs.FLACCL
clSelectedTasksPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, selectedLen);
clRiceOutputPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, riceLen);
clSamplesBytesPtr = openCLCQ.EnqueueMapBuffer(clSamplesBytesPinned, true, MapFlags.READ_WRITE, 0, samplesBufferLen / 2);
clSamplesBytesPtr = openCLCQ.EnqueueMapBuffer(clSamplesBytesPinned, true, MapFlags.READ_WRITE, 0, samplesBytesLen);
clResidualPtr = openCLCQ.EnqueueMapBuffer(clResidualPinned, true, MapFlags.READ_WRITE, 0, residualBufferLen);
clBestRiceParamsPtr = openCLCQ.EnqueueMapBuffer(clBestRiceParamsPinned, true, MapFlags.READ_WRITE, 0, riceParamsLen / 4);
clResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clResidualTasksPinned, true, MapFlags.READ_WRITE, 0, residualTasksLen);
@@ -2572,7 +2622,7 @@ namespace CUETools.Codecs.FLACCL
}
else
{
clSamplesBytes = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, (uint)samplesBufferLen / 2);
clSamplesBytes = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, (uint)samplesBytesLen);
clResidual = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualBufferLen);
clBestRiceParams = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, riceParamsLen / 4);
clResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualTasksLen);
@@ -2581,7 +2631,7 @@ namespace CUETools.Codecs.FLACCL
clSelectedTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, selectedLen);
clRiceOutput = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, riceLen);
clSamplesBytesPtr = openCLCQ.EnqueueMapBuffer(clSamplesBytes, true, MapFlags.READ_WRITE, 0, samplesBufferLen / 2);
clSamplesBytesPtr = openCLCQ.EnqueueMapBuffer(clSamplesBytes, true, MapFlags.READ_WRITE, 0, samplesBytesLen);
clResidualPtr = openCLCQ.EnqueueMapBuffer(clResidual, true, MapFlags.READ_WRITE, 0, residualBufferLen);
clBestRiceParamsPtr = openCLCQ.EnqueueMapBuffer(clBestRiceParams, true, MapFlags.READ_WRITE, 0, riceParamsLen / 4);
clResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clResidualTasks, true, MapFlags.READ_WRITE, 0, residualTasksLen);
@@ -2630,6 +2680,7 @@ namespace CUETools.Codecs.FLACCL
{
clCalcPartition = openCLProgram.CreateKernel("clCalcPartition");
clCalcPartition16 = openCLProgram.CreateKernel("clCalcPartition16");
clCalcPartition32 = openCLProgram.CreateKernel("clCalcPartition32");
}
clSumPartition = openCLProgram.CreateKernel("clSumPartition");
clFindRiceParameter = openCLProgram.CreateKernel("clFindRiceParameter");
@@ -2684,6 +2735,7 @@ namespace CUETools.Codecs.FLACCL
{
clCalcPartition.Dispose();
clCalcPartition16.Dispose();
clCalcPartition32.Dispose();
}
clSumPartition.Dispose();
clFindRiceParameter.Dispose();
@@ -2759,7 +2811,9 @@ namespace CUETools.Codecs.FLACCL
clSelectedTasks.Dispose();
clRiceOutput.Dispose();
openCLCQ.Finish();
openCLCQ.Dispose();
openCLCQ = null;
GC.SuppressFinalize(this);
}
@@ -2808,6 +2862,9 @@ namespace CUETools.Codecs.FLACCL
}
else
{
// channelSize == blockSize * nFrames;
// clSamplesBytes length = blockSize * nFrames * blockalign
// clSamples length = 4 * blockSize * nFrames * channels
clChannelDecorrX.SetArgs(
clSamples,
clSamplesBytes,
@@ -2982,6 +3039,18 @@ namespace CUETools.Codecs.FLACCL
clCalcPartition16,
groupSize, channels * frameCount);
}
else if (frameSize >> max_porder == 32)
{
clCalcPartition32.SetArgs(
clPartitions,
clResidual,
clBestResidualTasks,
max_porder);
openCLCQ.EnqueueNDRangeKernel(
clCalcPartition32,
groupSize, channels * frameCount);
}
else
{
clCalcPartition.SetArgs(

View File

@@ -1519,12 +1519,76 @@ void clCalcPartition16(
for (int k0 = 0; k0 <= MAX_RICE_PARAM; k0 += 16)
{
int k1 = k0 + (tid >> 3), x1 = tid & 7;
int k1 = k0 + (tid >> (GROUP_SIZE_LOG - 4)), x1 = tid & ((1 << (GROUP_SIZE_LOG - 4)) - 1);
if (k1 <= MAX_RICE_PARAM && (pos >> 4) + x1 < (1 << max_porder))
partition_lengths[((MAX_RICE_PARAM + 1) << (max_porder + 1)) * get_group_id(0) + (k1 << (max_porder + 1)) + (pos >> 4) + x1] = pl[x1][k1];
}
}
}
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void clCalcPartition32(
__global unsigned int *partition_lengths,
__global int *residual,
__global FLACCLSubframeTask *tasks,
int max_porder // <= 8
)
{
__local FLACCLSubframeData task;
__local unsigned int res[GROUP_SIZE];
__local unsigned int pl[GROUP_SIZE >> 5][32];
const int tid = get_local_id(0);
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid];
barrier(CLK_LOCAL_MEM_FENCE);
int bs = task.blocksize;
int ro = task.residualOrder;
barrier(CLK_LOCAL_MEM_FENCE);
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
{
int offs = pos + tid;
// fetch residual
int s = (offs >= ro && offs < bs) ? residual[task.residualOffs + offs] : 0;
// convert to unsigned
res[tid] = (s << 1) ^ (s >> 31);
barrier(CLK_LOCAL_MEM_FENCE);
// we must ensure that psize * (t >> k) doesn't overflow;
uint4 lim = 0x07ffffffU;
int x = tid >> 5;
__local uint * chunk = &res[x << 5];
// calc number of unary bits for each group of 32 residual samples
// with each rice parameter.
int k = tid & 31;
uint4 rsum
= min(lim, vload4(0,chunk) >> k)
+ min(lim, vload4(1,chunk) >> k)
+ min(lim, vload4(2,chunk) >> k)
+ min(lim, vload4(3,chunk) >> k)
+ min(lim, vload4(4,chunk) >> k)
+ min(lim, vload4(5,chunk) >> k)
+ min(lim, vload4(6,chunk) >> k)
+ min(lim, vload4(7,chunk) >> k)
;
uint rs = rsum.x + rsum.y + rsum.z + rsum.w;
// We can safely limit length here to 0x007fffffU, not causing length
// mismatch, because any such length would cause Verbatim frame anyway.
// And this limit protects us from overflows when calculating larger
// partitions, as we can have a maximum of 2^8 partitions, resulting
// in maximum partition length of 0x7fffffffU + change.
if (k <= MAX_RICE_PARAM) pl[x][k] = min(0x007fffffU, rs) + (uint)(32 - select(0, ro, offs < 32)) * (k + 1);
barrier(CLK_LOCAL_MEM_FENCE);
int k1 = (tid >> (GROUP_SIZE_LOG - 5)), x1 = tid & ((1 << (GROUP_SIZE_LOG - 5)) - 1);
if (k1 <= MAX_RICE_PARAM && (pos >> 5) + x1 < (1 << max_porder))
partition_lengths[((MAX_RICE_PARAM + 1) << (max_porder + 1)) * get_group_id(0) + (k1 << (max_porder + 1)) + (pos >> 5) + x1] = pl[x1][k1];
}
}
#endif
#ifdef FLACCL_CPU