optimizations

This commit is contained in:
chudov
2009-09-10 00:00:46 +00:00
parent 435a6acdf8
commit 5fd6108c9d
2 changed files with 248 additions and 166 deletions

View File

@@ -95,20 +95,23 @@ namespace CUETools.Codecs.FlaCuda
CUDA cuda;
CUfunction cudaComputeAutocor;
CUfunction cudaComputeLPC;
CUfunction cudaEstimateResidual;
CUfunction cudaSumResidual;
CUfunction cudaEncodeResidual;
CUdeviceptr cudaSamples;
CUdeviceptr cudaWindow;
CUdeviceptr cudaAutocorTasks;
CUdeviceptr cudaAutocorOutput;
CUdeviceptr cudaCompLPCOutput;
CUdeviceptr cudaResidualTasks;
CUdeviceptr cudaResidualOutput;
IntPtr samplesBufferPtr = IntPtr.Zero;
IntPtr autocorTasksPtr = IntPtr.Zero;
IntPtr compLPCOutputPtr = IntPtr.Zero;
IntPtr residualTasksPtr = IntPtr.Zero;
IntPtr residualOutputPtr = IntPtr.Zero;
CUstream cudaStream;
CUstream cudaStream1;
int nResidualTasks = 0;
int nAutocorTasks = 0;
const int MAX_BLOCKSIZE = 8192;
const int maxResidualParts = MAX_BLOCKSIZE / (256 - 32);
@@ -213,15 +216,13 @@ namespace CUETools.Codecs.FlaCuda
cuda.Free(cudaSamples);
cuda.Free(cudaAutocorTasks);
cuda.Free(cudaAutocorOutput);
cuda.Free(cudaCompLPCOutput);
cuda.Free(cudaResidualTasks);
cuda.Free(cudaResidualOutput);
CUDADriver.cuMemFreeHost(compLPCOutputPtr);
CUDADriver.cuMemFreeHost(residualOutputPtr);
CUDADriver.cuMemFreeHost(samplesBufferPtr);
CUDADriver.cuMemFreeHost(residualTasksPtr);
CUDADriver.cuMemFreeHost(autocorTasksPtr);
cuda.DestroyStream(cudaStream);
cuda.DestroyStream(cudaStream1);
cuda.Dispose();
inited = false;
}
@@ -247,15 +248,13 @@ namespace CUETools.Codecs.FlaCuda
cuda.Free(cudaSamples);
cuda.Free(cudaAutocorTasks);
cuda.Free(cudaAutocorOutput);
cuda.Free(cudaCompLPCOutput);
cuda.Free(cudaResidualTasks);
cuda.Free(cudaResidualOutput);
CUDADriver.cuMemFreeHost(compLPCOutputPtr);
CUDADriver.cuMemFreeHost(residualOutputPtr);
CUDADriver.cuMemFreeHost(samplesBufferPtr);
CUDADriver.cuMemFreeHost(residualTasksPtr);
CUDADriver.cuMemFreeHost(autocorTasksPtr);
cuda.DestroyStream(cudaStream);
cuda.DestroyStream(cudaStream1);
cuda.Dispose();
inited = false;
}
@@ -898,6 +897,65 @@ namespace CUETools.Codecs.FlaCuda
_windowcount++;
}
unsafe void initialize_autocorTasks(int channelsCount, int max_order)
{
computeAutocorTaskStruct* autocorTasks = (computeAutocorTaskStruct*)autocorTasksPtr;
encodeResidualTaskStruct* residualTasks = (encodeResidualTaskStruct*)residualTasksPtr;
nAutocorTasks = 0;
nResidualTasks = 0;
for (int ch = 0; ch < channelsCount; ch++)
for (int iWindow = 0; iWindow < _windowcount; iWindow++)
{
// Autocorelation task
autocorTasks[nAutocorTasks].samplesOffs = ch * FlaCudaWriter.MAX_BLOCKSIZE;
autocorTasks[nAutocorTasks].windowOffs = iWindow * 2 * FlaCudaWriter.MAX_BLOCKSIZE;
nAutocorTasks++;
// LPC tasks
for (int order = 1; order <= max_order; order++)
{
residualTasks[nResidualTasks].residualOrder = order - 1;
residualTasks[nResidualTasks].samplesOffs = ch * FlaCudaWriter.MAX_BLOCKSIZE;
nResidualTasks++;
}
}
// Fixed prediction
for (int ch = 0; ch < channelsCount; ch++)
{
for (int order = 1; order <= 4; order++)
{
residualTasks[nResidualTasks].residualOrder = order - 1;
residualTasks[nResidualTasks].samplesOffs = ch * FlaCudaWriter.MAX_BLOCKSIZE;
residualTasks[nResidualTasks].shift = 0;
switch (order)
{
case 1:
residualTasks[nResidualTasks].coefs[0] = 1;
break;
case 2:
residualTasks[nResidualTasks].coefs[0] = 2;
residualTasks[nResidualTasks].coefs[1] = -1;
break;
case 3:
residualTasks[nResidualTasks].coefs[0] = 3;
residualTasks[nResidualTasks].coefs[1] = -3;
residualTasks[nResidualTasks].coefs[2] = 1;
break;
case 4:
residualTasks[nResidualTasks].coefs[0] = 4;
residualTasks[nResidualTasks].coefs[1] = -6;
residualTasks[nResidualTasks].coefs[2] = 4;
residualTasks[nResidualTasks].coefs[3] = -1;
break;
}
nResidualTasks++;
}
}
cuda.CopyHostToDeviceAsync(cudaAutocorTasks, autocorTasksPtr, (uint)(sizeof(computeAutocorTaskStruct) * nAutocorTasks), cudaStream);
cuda.CopyHostToDeviceAsync(cudaResidualTasks, residualTasksPtr, (uint)(sizeof(encodeResidualTaskStruct) * nResidualTasks), cudaStream);
cuda.SynchronizeStream(cudaStream);
}
unsafe void encode_residual(FlacFrame frame)
{
for (int ch = 0; ch < channels; ch++)
@@ -968,19 +1026,8 @@ namespace CUETools.Codecs.FlaCuda
for (int order = 1; order <= max_order && order < frame.blocksize; order++)
{
int index = (order - 1) + max_order * (iWindow + _windowcount * ch);
int nbits = 0;
for (int p = 0; p < partCount; p++)
nbits += ((int*)residualOutputPtr)[p + partCount * index];
int cbits = 1;
for (int i = order; i > 0; i--)
{
int c = residualTasks[index].coefs[i - 1];
while (cbits < 16 && c != (c << (32 - cbits)) >> (32 - cbits))
cbits++;
}
nbits += order * (int)frame.subframes[ch].obits + 4 + 5 + order * cbits + 6;
int cbits = residualTasks[index].cbits;
int nbits = order * (int)frame.subframes[ch].obits + 4 + 5 + order * cbits + 6 + residualTasks[index].size;
if (frame.subframes[ch].best.size > nbits)
{
frame.subframes[ch].best.type = SubframeType.LPC;
@@ -989,8 +1036,8 @@ namespace CUETools.Codecs.FlaCuda
frame.subframes[ch].best.window = iWindow;
frame.subframes[ch].best.cbits = cbits;
frame.subframes[ch].best.shift = residualTasks[index].shift;
fixed (int* fcoefs = frame.subframes[ch].best.coefs)
AudioSamples.MemCpy(fcoefs, residualTasks[index].coefs, order);
for (int i = 0; i < order; i++)
frame.subframes[ch].best.coefs[i] = residualTasks[index].coefs[i];//order - 1 - i];
}
}
}
@@ -1002,10 +1049,7 @@ namespace CUETools.Codecs.FlaCuda
for (int order = 1; order <= 4 && order < frame.blocksize; order++)
{
int index = (order - 1) + 4 * ch;
int nbits = 0;
for (int p = 0; p < partCount; p++)
nbits += ((int*)residualOutputPtr)[p + partCount * (index + max_order * _windowcount * channelsCount)];
nbits += order * (int)frame.subframes[ch].obits + 6;
int nbits = order * (int)frame.subframes[ch].obits + 6 + residualTasks[index + max_order * _windowcount * channelsCount].size;
if (frame.subframes[ch].best.size > nbits)
{
frame.subframes[ch].best.type = SubframeType.Fixed;
@@ -1018,11 +1062,10 @@ namespace CUETools.Codecs.FlaCuda
unsafe void estimate_residual(FlacFrame frame, int channelsCount, int max_order, int autocorPartCount, out int partCount)
{
encodeResidualTaskStruct* residualTasks = (encodeResidualTaskStruct*)residualTasksPtr;
uint cbits = get_precision(frame.blocksize) + 1;
int nResidualTasks = 0;
int residualThreads = 256;
int partSize = residualThreads - max_order;
partSize &= 0xffffff0;
partCount = (frame.blocksize + partSize - 1) / partSize;
if (partCount > maxResidualParts)
@@ -1031,92 +1074,24 @@ namespace CUETools.Codecs.FlaCuda
if (frame.blocksize <= 4)
return;
// LPC
for (int ch = 0; ch < channelsCount; ch++)
for (int iWindow = 0; iWindow < _windowcount; iWindow++)
{
//int* lpcs = ((int*)compLPCOutputPtr) + (max_order + 1) * max_order * (iWindow + _windowcount * ch);
//for (int order = 1; order <= max_order; order++)
//{
// residualTasks[nResidualTasks].residualOrder = order - 1;
// residualTasks[nResidualTasks].samplesOffs = ch * FlaCudaWriter.MAX_BLOCKSIZE;
// residualTasks[nResidualTasks].shift = lpcs[order + (order - 1) * (max_order + 1)];
// AudioSamples.MemCpy(residualTasks[nResidualTasks].coefs, lpcs + (order - 1) * (max_order + 1), order);
// nResidualTasks++;
//}
float* lpcs = ((float*)compLPCOutputPtr) + max_order * max_order * (iWindow + _windowcount * ch);
for (int order = 1; order <= max_order; order++)
{
residualTasks[nResidualTasks].residualOrder = order - 1;
residualTasks[nResidualTasks].samplesOffs = ch * FlaCudaWriter.MAX_BLOCKSIZE;
cuda.SetParameter(cudaEstimateResidual, 0, (uint)cudaResidualOutput.Pointer);
cuda.SetParameter(cudaEstimateResidual, IntPtr.Size, (uint)cudaSamples.Pointer);
cuda.SetParameter(cudaEstimateResidual, IntPtr.Size * 2, (uint)cudaResidualTasks.Pointer);
cuda.SetParameter(cudaEstimateResidual, IntPtr.Size * 3, (uint)frame.blocksize);
cuda.SetParameter(cudaEstimateResidual, IntPtr.Size * 3 + sizeof(uint), (uint)partSize);
cuda.SetParameterSize(cudaEstimateResidual, (uint)(IntPtr.Size * 3) + sizeof(uint) * 2U);
cuda.SetFunctionBlockShape(cudaEstimateResidual, residualThreads, 1, 1);
lpc.quantize_lpc_coefs(lpcs + (order - 1) * max_order,
order, cbits, residualTasks[nResidualTasks].coefs,
out residualTasks[nResidualTasks].shift, 15, 0);
nResidualTasks++;
}
}
// FIXED
for (int ch = 0; ch < channelsCount; ch++)
{
for (int order = 1; order <= 4; order++)
{
residualTasks[nResidualTasks].residualOrder = order - 1;
residualTasks[nResidualTasks].samplesOffs = ch * FlaCudaWriter.MAX_BLOCKSIZE;
residualTasks[nResidualTasks].shift = 0;
switch (order)
{
case 1:
residualTasks[nResidualTasks].coefs[0] = 1;
break;
case 2:
residualTasks[nResidualTasks].coefs[0] = 2;
residualTasks[nResidualTasks].coefs[1] = -1;
break;
case 3:
residualTasks[nResidualTasks].coefs[0] = 3;
residualTasks[nResidualTasks].coefs[1] = -3;
residualTasks[nResidualTasks].coefs[2] = 1;
break;
case 4:
residualTasks[nResidualTasks].coefs[0] = 4;
residualTasks[nResidualTasks].coefs[1] = -6;
residualTasks[nResidualTasks].coefs[2] = 4;
residualTasks[nResidualTasks].coefs[3] = -1;
break;
}
nResidualTasks++;
}
}
cuda.SetParameter(cudaEncodeResidual, 0, (uint)cudaResidualOutput.Pointer);
cuda.SetParameter(cudaEncodeResidual, IntPtr.Size, (uint)cudaSamples.Pointer);
cuda.SetParameter(cudaEncodeResidual, IntPtr.Size * 2, (uint)cudaResidualTasks.Pointer);
cuda.SetParameter(cudaEncodeResidual, IntPtr.Size * 3, (uint)frame.blocksize);
cuda.SetParameter(cudaEncodeResidual, IntPtr.Size * 3 + sizeof(uint), (uint)partSize);
cuda.SetParameterSize(cudaEncodeResidual, (uint)(IntPtr.Size * 3) + sizeof(uint) * 2U);
cuda.SetFunctionBlockShape(cudaEncodeResidual, residualThreads, 1, 1);
cuda.SetParameter(cudaSumResidual, 0, (uint)cudaResidualTasks.Pointer);
cuda.SetParameter(cudaSumResidual, IntPtr.Size, (uint)cudaResidualOutput.Pointer);
cuda.SetParameter(cudaSumResidual, IntPtr.Size * 2, (uint)partCount);
cuda.SetParameterSize(cudaSumResidual, (uint)(IntPtr.Size * 2) + sizeof(uint) * 1U);
cuda.SetFunctionBlockShape(cudaSumResidual, 64, 1, 1);
// issue work to the GPU
cuda.CopyHostToDeviceAsync(cudaResidualTasks, residualTasksPtr, (uint)(sizeof(encodeResidualTaskStruct) * nResidualTasks), cudaStream);
cuda.LaunchAsync(cudaEncodeResidual, partCount, nResidualTasks, cudaStream);
cuda.CopyDeviceToHostAsync(cudaResidualOutput, residualOutputPtr, (uint)(sizeof(int) * partCount * nResidualTasks), cudaStream);
cuda.SynchronizeStream(cudaStream);
}
unsafe void initialize_autocorTasks()
{
computeAutocorTaskStruct* autocorTasks = (computeAutocorTaskStruct*)autocorTasksPtr;
int nAutocorTasks = 0;
for (int ch = 0; ch < (channels == 2 ? 4 : channels); ch++)
for (int iWindow = 0; iWindow < _windowcount; iWindow++)
{
autocorTasks[nAutocorTasks].samplesOffs = ch * FlaCudaWriter.MAX_BLOCKSIZE;
autocorTasks[nAutocorTasks].windowOffs = iWindow * 2 * FlaCudaWriter.MAX_BLOCKSIZE;
nAutocorTasks++;
}
cuda.CopyHostToDeviceAsync(cudaAutocorTasks, autocorTasksPtr, (uint)(sizeof(computeAutocorTaskStruct) * nAutocorTasks), cudaStream);
cuda.LaunchAsync(cudaEstimateResidual, partCount, nResidualTasks, cudaStream);
cuda.LaunchAsync(cudaSumResidual, 1, nResidualTasks, cudaStream);
cuda.CopyDeviceToHostAsync(cudaResidualTasks, residualTasksPtr, (uint)(sizeof(encodeResidualTaskStruct) * nResidualTasks), cudaStream);
cuda.SynchronizeStream(cudaStream);
}
@@ -1124,7 +1099,7 @@ namespace CUETools.Codecs.FlaCuda
{
int autocorThreads = 256;
int partSize = 2 * autocorThreads - max_order;
int nAutocorTasks = _windowcount * channelsCount;
partSize &= 0xffffff0;
partCount = (frame.blocksize + partSize - 1) / partSize;
if (partCount > maxAutocorParts)
@@ -1143,20 +1118,20 @@ namespace CUETools.Codecs.FlaCuda
cuda.SetParameterSize(cudaComputeAutocor, (uint)(IntPtr.Size * 4) + sizeof(uint) * 3);
cuda.SetFunctionBlockShape(cudaComputeAutocor, autocorThreads, 1, 1);
cuda.SetParameter(cudaComputeLPC, 0, (uint)cudaCompLPCOutput.Pointer);
cuda.SetParameter(cudaComputeLPC, 0, (uint)cudaResidualTasks.Pointer);
cuda.SetParameter(cudaComputeLPC, IntPtr.Size, (uint)cudaAutocorOutput.Pointer);
cuda.SetParameter(cudaComputeLPC, IntPtr.Size * 2, (uint)cudaAutocorTasks.Pointer);
cuda.SetParameter(cudaComputeLPC, IntPtr.Size * 3, (uint)max_order);
cuda.SetParameter(cudaComputeLPC, IntPtr.Size * 3 + sizeof(uint), (uint)partCount);
cuda.SetParameterSize(cudaComputeLPC, (uint)(IntPtr.Size * 3) + sizeof(uint) * 2);
cuda.SetFunctionBlockShape(cudaComputeLPC, 32, 1, 1);
cuda.SetFunctionBlockShape(cudaComputeLPC, 64, 1, 1);
// issue work to the GPU
cuda.CopyHostToDeviceAsync(cudaSamples, samplesBufferPtr, (uint)(sizeof(int) * FlaCudaWriter.MAX_BLOCKSIZE * channelsCount), cudaStream);
cuda.LaunchAsync(cudaComputeAutocor, partCount, nAutocorTasks, cudaStream);
cuda.LaunchAsync(cudaComputeLPC, 1, nAutocorTasks, cudaStream);
cuda.CopyDeviceToHostAsync(cudaCompLPCOutput, compLPCOutputPtr, (uint)(sizeof(float) * (max_order + 1) * max_order * nAutocorTasks), cudaStream);
cuda.SynchronizeStream(cudaStream);
//cuda.CopyDeviceToHostAsync(cudaResidualTasks, residualTasksPtr, (uint)(sizeof(encodeResidualTaskStruct) * nResidualTasks), cudaStream1);
}
unsafe int encode_frame(out int size)
@@ -1167,6 +1142,9 @@ namespace CUETools.Codecs.FlaCuda
{
frame.InitSize(eparams.block_size, eparams.variable_block_size != 0);
bool doMidside = channels == 2 && eparams.do_midside;
int channelCount = doMidside ? 2 * channels : channels;
if (frame.blocksize != _windowsize && frame.blocksize > 4)
{
_windowsize = frame.blocksize;
@@ -1179,11 +1157,9 @@ namespace CUETools.Codecs.FlaCuda
if (_windowcount == 0)
throw new Exception("invalid windowfunction");
cuda.CopyHostToDevice<float>(cudaWindow, windowBuffer);
initialize_autocorTasks();
initialize_autocorTasks(channelCount, eparams.max_prediction_order);
}
bool doMidside = channels == 2 && eparams.do_midside;
int channelCount = doMidside ? 2 * channels : channels;
if (doMidside)
channel_decorrelation(s, s + FlaCudaWriter.MAX_BLOCKSIZE, s + 2 * FlaCudaWriter.MAX_BLOCKSIZE, s + 3 * FlaCudaWriter.MAX_BLOCKSIZE, frame.blocksize);
@@ -1296,33 +1272,29 @@ namespace CUETools.Codecs.FlaCuda
cuda.LoadModule(System.IO.Path.Combine(Environment.CurrentDirectory, "flacuda.cubin"));
cudaComputeAutocor = cuda.GetModuleFunction("cudaComputeAutocor");
cudaComputeLPC = cuda.GetModuleFunction("cudaComputeLPC");
cudaEstimateResidual = cuda.GetModuleFunction("cudaEstimateResidual");
cudaSumResidual = cuda.GetModuleFunction("cudaSumResidual");
cudaEncodeResidual = cuda.GetModuleFunction("cudaEncodeResidual");
cudaSamples = cuda.Allocate((uint)(sizeof(int) * FlaCudaWriter.MAX_BLOCKSIZE * (channels == 2 ? 4 : channels)));
cudaWindow = cuda.Allocate((uint)sizeof(float) * FlaCudaWriter.MAX_BLOCKSIZE * 2 * lpc.MAX_LPC_WINDOWS);
cudaAutocorTasks = cuda.Allocate((uint)(sizeof(computeAutocorTaskStruct) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS));
cudaAutocorOutput = cuda.Allocate((uint)(sizeof(float) * (lpc.MAX_LPC_ORDER + 1) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS) * maxAutocorParts);
cudaCompLPCOutput = cuda.Allocate((uint)(sizeof(float) * lpc.MAX_LPC_ORDER * lpc.MAX_LPC_ORDER * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS) * maxAutocorParts);
cudaResidualTasks = cuda.Allocate((uint)(sizeof(encodeResidualTaskStruct) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_ORDER * lpc.MAX_LPC_WINDOWS));
cudaResidualTasks = cuda.Allocate((uint)(sizeof(encodeResidualTaskStruct) * (channels == 2 ? 4 : channels) * (lpc.MAX_LPC_ORDER * lpc.MAX_LPC_WINDOWS + 4)));
cudaResidualOutput = cuda.Allocate((uint)(sizeof(int) * (channels == 2 ? 4 : channels) * (lpc.MAX_LPC_ORDER + 1) * lpc.MAX_LPC_WINDOWS * maxResidualParts));
CUResult cuErr = CUDADriver.cuMemAllocHost(ref samplesBufferPtr, (uint)(sizeof(int) * (channels == 2 ? 4 : channels) * FlaCudaWriter.MAX_BLOCKSIZE));
if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref autocorTasksPtr, (uint)(sizeof(computeAutocorTaskStruct) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS));
if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref compLPCOutputPtr, (uint)(sizeof(float) * (lpc.MAX_LPC_ORDER + 1) * lpc.MAX_LPC_ORDER * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS));
if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref residualTasksPtr, (uint)(sizeof(encodeResidualTaskStruct) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS * lpc.MAX_LPC_ORDER));
if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref residualOutputPtr, (uint)(sizeof(int) * (channels == 2 ? 4 : channels) * lpc.MAX_LPC_WINDOWS * lpc.MAX_LPC_ORDER * maxResidualParts));
cuErr = CUDADriver.cuMemAllocHost(ref residualTasksPtr, (uint)(sizeof(encodeResidualTaskStruct) * (channels == 2 ? 4 : channels) * (lpc.MAX_LPC_WINDOWS * lpc.MAX_LPC_ORDER + 4)));
if (cuErr != CUResult.Success)
{
if (samplesBufferPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(samplesBufferPtr); samplesBufferPtr = IntPtr.Zero;
if (autocorTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(autocorTasksPtr); autocorTasksPtr = IntPtr.Zero;
if (compLPCOutputPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(compLPCOutputPtr); compLPCOutputPtr = IntPtr.Zero;
if (residualTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(residualTasksPtr); residualTasksPtr = IntPtr.Zero;
if (residualOutputPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(residualOutputPtr); residualOutputPtr = IntPtr.Zero;
throw new CUDAException(cuErr);
}
cudaStream = cuda.CreateStream();
cudaStream1 = cuda.CreateStream();
if (_IO == null)
_IO = new FileStream(_path, FileMode.Create, FileAccess.Write, FileShare.Read);
int header_size = flake_encode_init();
@@ -1769,7 +1741,9 @@ namespace CUETools.Codecs.FlaCuda
public int residualOrder;
public int samplesOffs;
public int shift;
public int reserved;
public int cbits;
public int size;
public fixed int reserved[11];
public fixed int coefs[32];
};
}

View File

@@ -26,6 +26,17 @@ typedef struct
int windowOffs;
} computeAutocorTaskStruct;
typedef struct
{
int residualOrder; // <= 32
int samplesOffs;
int shift;
int cbits;
int size;
int reserved[11];
int coefs[32];
} encodeResidualTaskStruct;
extern "C" __global__ void cudaComputeAutocor(
float *output,
const int *samples,
@@ -83,11 +94,11 @@ extern "C" __global__ void cudaComputeAutocor(
}
extern "C" __global__ void cudaComputeLPC(
float*output,
encodeResidualTaskStruct *output,
float*autoc,
computeAutocorTaskStruct *tasks,
int max_order, // should be <= 32
int partCount // should be <= blockDim
int partCount // should be <= blockDim?
)
{
__shared__ struct {
@@ -96,6 +107,7 @@ extern "C" __global__ void cudaComputeLPC(
float buf[32];
int bits[32];
float autoc[33];
int cbits;
} shared;
const int tid = threadIdx.x;
@@ -116,7 +128,7 @@ extern "C" __global__ void cudaComputeLPC(
__syncthreads();
if (tid <= 32)
if (tid < 32)
shared.tmp[tid] = 0.0f;
float err = shared.autoc[0];
@@ -125,7 +137,7 @@ extern "C" __global__ void cudaComputeLPC(
{
if (tid < 32)
{
shared.buf[tid] = tid < order ? shared.tmp[tid] * shared.autoc[order - tid] : 0;
shared.buf[tid] = (tid < order) * shared.tmp[tid] * shared.autoc[order - tid];
shared.buf[tid] += shared.buf[tid + 16];
shared.buf[tid] += shared.buf[tid + 8];
shared.buf[tid] += shared.buf[tid + 4];
@@ -138,38 +150,135 @@ extern "C" __global__ void cudaComputeLPC(
err *= 1.0f - (r * r);
if (tid == 0)
shared.tmp[order] = r; // we could also set shared.tmp[-1] to 1.0f
if (tid < order)
shared.tmp[tid] += r * shared.tmp[order - 1 - tid];
if (tid <= order)
output[((blockIdx.x + blockIdx.y * gridDim.x) * max_order + order) * max_order + tid] = -shared.tmp[tid];
//{
// int precision = 13;
// shared.bits[tid] = 32 - __clz(__float2int_rn(fabs(shared.tmp[tid]) * (1 << 15))) - precision;
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 16]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 8]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 4]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 2]);
// shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 1]);
// int sh = max(0,min(15, 15 - shared.bits[0]));
// shared.bits[tid] = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(-shared.tmp[tid] * (1 << sh))));
// if (tid == 0)
// output[((blockIdx.x + blockIdx.y * gridDim.x) * max_order + order) * (1 + max_order) + order + 1] = sh;
// output[((blockIdx.x + blockIdx.y * gridDim.x) * max_order + order) * (1 + max_order) + tid] = shared.bits[tid];
//}
shared.tmp[tid] += (tid < order) * r * shared.tmp[order - 1 - tid] + (tid == order) * r;
if (tid < 32)
{
int precision = 13;
shared.bits[tid] = __mul24((33 - __clz(__float2int_rn(fabs(shared.tmp[tid]) * (1 << 15))) - precision), tid <= order);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 16]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 8]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 4]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 2]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 1]);
int sh = max(0,min(15, 15 - shared.bits[0]));
int coef = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(-shared.tmp[tid] * (1 << sh))));
if (tid <= order)
output[(blockIdx.x + blockIdx.y * gridDim.x) * max_order + order].coefs[tid] = coef;
if (tid == 0)
output[(blockIdx.x + blockIdx.y * gridDim.x) * max_order + order].shift = sh;
shared.bits[tid] = 33 - max(__clz(coef),__clz(-1 ^ coef));
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 16]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 8]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 4]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 2]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 1]);
int cbits = shared.bits[0];
if (tid == 0)
output[(blockIdx.x + blockIdx.y * gridDim.x) * max_order + order].cbits = cbits;
}
__syncthreads();
}
}
typedef struct
extern "C" __global__ void cudaEstimateResidual(
int*output,
int*samples,
encodeResidualTaskStruct *tasks,
int frameSize,
int partSize // should be <= blockDim - max_order
)
{
int residualOrder; // <= 32
int samplesOffs;
int shift;
int reserved;
int coefs[32];
} encodeResidualTaskStruct;
__shared__ struct {
int data[256];
int residual[256];
int rice[32];
encodeResidualTaskStruct task;
} shared;
const int tid = threadIdx.x;
// fetch task data
if (tid < sizeof(encodeResidualTaskStruct) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
__syncthreads();
const int pos = blockIdx.x * partSize;
const int residualOrder = shared.task.residualOrder + 1;
const int residualLen = min(frameSize - pos - residualOrder, partSize);
const int dataLen = residualLen + residualOrder;
// fetch samples
shared.data[tid] = (tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] : 0);
// reverse coefs
if (tid < residualOrder) shared.task.coefs[tid] = shared.task.coefs[residualOrder - 1 - tid];
// compute residual
__syncthreads();
long sum = 0;
for (int c = 0; c < residualOrder; c++)
sum += __mul24(shared.data[tid + c], shared.task.coefs[c]);
int res = shared.data[tid + residualOrder] - (sum >> shared.task.shift);
shared.residual[tid] = __mul24(tid < residualLen, (2 * res) ^ (res >> 31));
__syncthreads();
// residual sum: reduction in shared mem
if (tid < 128) shared.residual[tid] += shared.residual[tid + 128]; __syncthreads();
if (tid < 64) shared.residual[tid] += shared.residual[tid + 64]; __syncthreads();
if (tid < 32) shared.residual[tid] += shared.residual[tid + 32]; __syncthreads();
shared.residual[tid] += shared.residual[tid + 16];
shared.residual[tid] += shared.residual[tid + 8];
shared.residual[tid] += shared.residual[tid + 4];
shared.residual[tid] += shared.residual[tid + 2];
shared.residual[tid] += shared.residual[tid + 1];
__syncthreads();
if (tid < 32)
{
// rice parameter search
shared.rice[tid] = __mul24(tid >= 15, 0x7fffff) + residualLen * (tid + 1) + ((shared.residual[0] - (residualLen >> 1)) >> tid);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 8]);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 4]);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 2]);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 1]);
}
if (tid == 0)
output[blockIdx.x + blockIdx.y * gridDim.x] = shared.rice[0];
}
extern "C" __global__ void cudaSumResidual(
encodeResidualTaskStruct *tasks,
int *residual,
int partCount // <= blockDim.y (64)
)
{
__shared__ struct {
int partLen[64];
//encodeResidualTaskStruct task;
} shared;
const int tid = threadIdx.x;
// fetch task data
// if (tid < sizeof(encodeResidualTaskStruct) / sizeof(int))
//((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
// __syncthreads();
shared.partLen[tid] = (tid < partCount) ? residual[tid + partCount * blockIdx.y] : 0;
__syncthreads();
// length sum: reduction in shared mem
if (tid < 32) shared.partLen[tid] += shared.partLen[tid + 32]; __syncthreads();
shared.partLen[tid] += shared.partLen[tid + 16];
shared.partLen[tid] += shared.partLen[tid + 8];
shared.partLen[tid] += shared.partLen[tid + 4];
shared.partLen[tid] += shared.partLen[tid + 2];
shared.partLen[tid] += shared.partLen[tid + 1];
__syncthreads();
// FIXME: should process partition order here!!!
// return sum
if (tid == 0)
tasks[blockIdx.y].size = shared.partLen[0];
}
extern "C" __global__ void cudaEncodeResidual(
int*output,
@@ -233,5 +342,4 @@ extern "C" __global__ void cudaEncodeResidual(
if (tid == 0)
output[blockIdx.x + blockIdx.y * gridDim.x] = shared.rice[0];
}
#endif