trying to do rice partitioning on gpu

This commit is contained in:
chudov
2009-10-02 14:54:09 +00:00
parent 007648cc9e
commit 609f160457
3 changed files with 582 additions and 210 deletions

View File

@@ -1055,6 +1055,7 @@ namespace CUETools.Codecs.FlaCuda
frame.subframes[ch].best.shift = task.BestResidualTasks[index].shift; frame.subframes[ch].best.shift = task.BestResidualTasks[index].shift;
frame.subframes[ch].obits -= (uint)task.BestResidualTasks[index].wbits; frame.subframes[ch].obits -= (uint)task.BestResidualTasks[index].wbits;
frame.subframes[ch].wbits = (uint)task.BestResidualTasks[index].wbits; frame.subframes[ch].wbits = (uint)task.BestResidualTasks[index].wbits;
frame.subframes[ch].best.rc.porder = task.BestResidualTasks[index].porder;
if (frame.subframes[ch].wbits != 0) if (frame.subframes[ch].wbits != 0)
for (int i = 0; i < frame.blocksize; i++) for (int i = 0; i < frame.blocksize; i++)
frame.subframes[ch].samples[i] >>= (int)frame.subframes[ch].wbits; frame.subframes[ch].samples[i] >>= (int)frame.subframes[ch].wbits;
@@ -1062,32 +1063,10 @@ namespace CUETools.Codecs.FlaCuda
frame.subframes[ch].best.coefs[i] = task.BestResidualTasks[index].coefs[task.BestResidualTasks[index].residualOrder - 1 - i]; frame.subframes[ch].best.coefs[i] = task.BestResidualTasks[index].coefs[task.BestResidualTasks[index].residualOrder - 1 - i];
if (!encode_on_cpu && (frame.subframes[ch].best.type == SubframeType.Fixed || frame.subframes[ch].best.type == SubframeType.LPC)) if (!encode_on_cpu && (frame.subframes[ch].best.type == SubframeType.Fixed || frame.subframes[ch].best.type == SubframeType.LPC))
{ {
frame.subframes[ch].best.size = (uint)frame.subframes[ch].best.order * frame.subframes[ch].obits + 6;
if (frame.subframes[ch].best.type == SubframeType.LPC)
frame.subframes[ch].best.size += 4 + 5 + (uint)frame.subframes[ch].best.order * (uint)frame.subframes[ch].best.cbits;
AudioSamples.MemCpy(frame.subframes[ch].best.residual, (int*)task.residualBufferPtr + task.BestResidualTasks[index].residualOffs, frame.blocksize); AudioSamples.MemCpy(frame.subframes[ch].best.residual, (int*)task.residualBufferPtr + task.BestResidualTasks[index].residualOffs, frame.blocksize);
int* riceParams = ((int*)task.riceParamsPtr) + (4 << task.max_porder) * index; int* riceParams = ((int*)task.bestRiceParamsPtr) + (index << task.max_porder);
int* partLengths = ((int*)task.riceParamsPtr) + (4 << task.max_porder) * index + (2 << task.max_porder); for (int i = 0; i < (1 << frame.subframes[ch].best.rc.porder); i++)
int opt_porder = task.max_porder; frame.subframes[ch].best.rc.rparams[i] = riceParams[i];
int opt_pos = 0;
int opt_bits = 0xfffffff;
for (int porder = task.max_porder; porder >= 0; porder--)
{
int in_pos = (2 << task.max_porder) - (2 << porder);
int sum = (1 << porder) * 4;
for (int p = 0; p < (1 << porder); p++)
sum += partLengths[in_pos + p];// +(riceParams[in_pos + p] + 1) * ((frame.blocksize >> porder) - (p != 0 ? 0 : frame.subframes[ch].best.order));
if (sum < opt_bits)
{
opt_bits = sum;
opt_porder = porder;
opt_pos = in_pos;
}
}
frame.subframes[ch].best.rc.porder = opt_porder;
for (int i = 0; i < (1 << opt_porder); i++)
frame.subframes[ch].best.rc.rparams[i] = riceParams[opt_pos + i];
frame.subframes[ch].best.size += (uint)opt_bits;
} }
} }
} }
@@ -1132,10 +1111,10 @@ namespace CUETools.Codecs.FlaCuda
calcPartitionPartSize <<= 1; calcPartitionPartSize <<= 1;
max_porder--; max_porder--;
} }
int calcPartitionPartCount = (calcPartitionPartSize >= 64) ? 1 : (256 / calcPartitionPartSize); int calcPartitionPartCount = (calcPartitionPartSize >= 128) ? 1 : (256 / calcPartitionPartSize);
CUfunction cudaChannelDecorr = channels == 2 ? (channelsCount == 4 ? task.cudaStereoDecorr : task.cudaChannelDecorr2) : task.cudaChannelDecorr; CUfunction cudaChannelDecorr = channels == 2 ? (channelsCount == 4 ? task.cudaStereoDecorr : task.cudaChannelDecorr2) : task.cudaChannelDecorr;
CUfunction cudaCalcPartition = calcPartitionPartSize >= 64 ? task.cudaCalcLargePartition : task.cudaCalcPartition; CUfunction cudaCalcPartition = calcPartitionPartSize >= 128 ? task.cudaCalcLargePartition : task.cudaCalcPartition;
cuda.SetParameter(cudaChannelDecorr, 0 * sizeof(uint), (uint)task.cudaSamples.Pointer); cuda.SetParameter(cudaChannelDecorr, 0 * sizeof(uint), (uint)task.cudaSamples.Pointer);
cuda.SetParameter(cudaChannelDecorr, 1 * sizeof(uint), (uint)task.cudaSamplesBytes.Pointer); cuda.SetParameter(cudaChannelDecorr, 1 * sizeof(uint), (uint)task.cudaSamplesBytes.Pointer);
@@ -1229,7 +1208,14 @@ namespace CUETools.Codecs.FlaCuda
cuda.SetParameter(task.cudaFindRiceParameter, 1 * sizeof(uint), (uint)task.cudaPartitions.Pointer); cuda.SetParameter(task.cudaFindRiceParameter, 1 * sizeof(uint), (uint)task.cudaPartitions.Pointer);
cuda.SetParameter(task.cudaFindRiceParameter, 2 * sizeof(uint), (uint)max_porder); cuda.SetParameter(task.cudaFindRiceParameter, 2 * sizeof(uint), (uint)max_porder);
cuda.SetParameterSize(task.cudaFindRiceParameter, 3U * sizeof(uint)); cuda.SetParameterSize(task.cudaFindRiceParameter, 3U * sizeof(uint));
cuda.SetFunctionBlockShape(task.cudaFindRiceParameter, 16, 16, 1); cuda.SetFunctionBlockShape(task.cudaFindRiceParameter, 8, 32, 1);
cuda.SetParameter(task.cudaFindPartitionOrder, 0, (uint)task.cudaBestRiceParams.Pointer);
cuda.SetParameter(task.cudaFindPartitionOrder, 1 * sizeof(uint), (uint)task.cudaBestResidualTasks.Pointer);
cuda.SetParameter(task.cudaFindPartitionOrder, 2 * sizeof(uint), (uint)task.cudaRiceParams.Pointer);
cuda.SetParameter(task.cudaFindPartitionOrder, 3 * sizeof(uint), (uint)max_porder);
cuda.SetParameterSize(task.cudaFindPartitionOrder, 4U * sizeof(uint));
cuda.SetFunctionBlockShape(task.cudaFindPartitionOrder, 256, 1, 1);
// issue work to the GPU // issue work to the GPU
cuda.LaunchAsync(cudaChannelDecorr, (task.frameCount * task.frameSize + 255) / 256, channels == 2 ? 1 : channels, task.stream); cuda.LaunchAsync(cudaChannelDecorr, (task.frameCount * task.frameSize + 255) / 256, channels == 2 ? 1 : channels, task.stream);
@@ -1255,9 +1241,11 @@ namespace CUETools.Codecs.FlaCuda
cuda.LaunchAsync(cudaCalcPartition, (task.frameSize + bsz - 1) / bsz, channels * task.frameCount, task.stream); cuda.LaunchAsync(cudaCalcPartition, (task.frameSize + bsz - 1) / bsz, channels * task.frameCount, task.stream);
if (max_porder > 0) if (max_porder > 0)
cuda.LaunchAsync(task.cudaSumPartition, Flake.MAX_RICE_PARAM + 1, channels * task.frameCount, task.stream); cuda.LaunchAsync(task.cudaSumPartition, Flake.MAX_RICE_PARAM + 1, channels * task.frameCount, task.stream);
cuda.LaunchAsync(task.cudaFindRiceParameter, ((2 << max_porder) + 15) / 16, channels * task.frameCount, task.stream); cuda.LaunchAsync(task.cudaFindRiceParameter, ((2 << max_porder) + 31) / 32, channels * task.frameCount, task.stream);
//if (max_porder > 0) // need to run even if max_porder==0 just to calculate the final frame size
cuda.LaunchAsync(task.cudaFindPartitionOrder, 1, channels * task.frameCount, task.stream);
cuda.CopyDeviceToHostAsync(task.cudaResidual, task.residualBufferPtr, (uint)(sizeof(int) * MAX_BLOCKSIZE * channels), task.stream); cuda.CopyDeviceToHostAsync(task.cudaResidual, task.residualBufferPtr, (uint)(sizeof(int) * MAX_BLOCKSIZE * channels), task.stream);
cuda.CopyDeviceToHostAsync(task.cudaRiceParams, task.riceParamsPtr, (uint)(sizeof(int) * (4 << max_porder) * channels * task.frameCount), task.stream); cuda.CopyDeviceToHostAsync(task.cudaBestRiceParams, task.bestRiceParamsPtr, (uint)(sizeof(int) * (1 << max_porder) * channels * task.frameCount), task.stream);
task.max_porder = max_porder; task.max_porder = max_porder;
} }
cuda.CopyDeviceToHostAsync(task.cudaBestResidualTasks, task.bestResidualTasksPtr, (uint)(sizeof(encodeResidualTaskStruct) * channels * task.frameCount), task.stream); cuda.CopyDeviceToHostAsync(task.cudaBestResidualTasks, task.bestResidualTasksPtr, (uint)(sizeof(encodeResidualTaskStruct) * channels * task.frameCount), task.stream);
@@ -1925,7 +1913,8 @@ namespace CUETools.Codecs.FlaCuda
public int residualOffs; public int residualOffs;
public int wbits; public int wbits;
public int abits; public int abits;
public fixed int reserved[3]; public int porder;
public fixed int reserved[2];
public fixed int coefs[32]; public fixed int coefs[32];
}; };
@@ -1948,11 +1937,13 @@ namespace CUETools.Codecs.FlaCuda
public CUfunction cudaCalcLargePartition; public CUfunction cudaCalcLargePartition;
public CUfunction cudaSumPartition; public CUfunction cudaSumPartition;
public CUfunction cudaFindRiceParameter; public CUfunction cudaFindRiceParameter;
public CUfunction cudaFindPartitionOrder;
public CUdeviceptr cudaSamplesBytes; public CUdeviceptr cudaSamplesBytes;
public CUdeviceptr cudaSamples; public CUdeviceptr cudaSamples;
public CUdeviceptr cudaResidual; public CUdeviceptr cudaResidual;
public CUdeviceptr cudaPartitions; public CUdeviceptr cudaPartitions;
public CUdeviceptr cudaRiceParams; public CUdeviceptr cudaRiceParams;
public CUdeviceptr cudaBestRiceParams;
public CUdeviceptr cudaAutocorTasks; public CUdeviceptr cudaAutocorTasks;
public CUdeviceptr cudaAutocorOutput; public CUdeviceptr cudaAutocorOutput;
public CUdeviceptr cudaResidualTasks; public CUdeviceptr cudaResidualTasks;
@@ -1961,7 +1952,7 @@ namespace CUETools.Codecs.FlaCuda
public IntPtr samplesBytesPtr = IntPtr.Zero; public IntPtr samplesBytesPtr = IntPtr.Zero;
public IntPtr samplesBufferPtr = IntPtr.Zero; public IntPtr samplesBufferPtr = IntPtr.Zero;
public IntPtr residualBufferPtr = IntPtr.Zero; public IntPtr residualBufferPtr = IntPtr.Zero;
public IntPtr riceParamsPtr = IntPtr.Zero; public IntPtr bestRiceParamsPtr = IntPtr.Zero;
public IntPtr autocorTasksPtr = IntPtr.Zero; public IntPtr autocorTasksPtr = IntPtr.Zero;
public IntPtr residualTasksPtr = IntPtr.Zero; public IntPtr residualTasksPtr = IntPtr.Zero;
public IntPtr bestResidualTasksPtr = IntPtr.Zero; public IntPtr bestResidualTasksPtr = IntPtr.Zero;
@@ -1996,6 +1987,7 @@ namespace CUETools.Codecs.FlaCuda
cudaResidual = cuda.Allocate((uint)samplesBufferLen); cudaResidual = cuda.Allocate((uint)samplesBufferLen);
cudaPartitions = cuda.Allocate((uint)partitionsLen); cudaPartitions = cuda.Allocate((uint)partitionsLen);
cudaRiceParams = cuda.Allocate((uint)riceParamsLen); cudaRiceParams = cuda.Allocate((uint)riceParamsLen);
cudaBestRiceParams = cuda.Allocate((uint)riceParamsLen / 4);
cudaAutocorTasks = cuda.Allocate((uint)autocorTasksLen); cudaAutocorTasks = cuda.Allocate((uint)autocorTasksLen);
cudaAutocorOutput = cuda.Allocate((uint)(sizeof(float) * channelCount * lpc.MAX_LPC_WINDOWS * (lpc.MAX_LPC_ORDER + 1) * (FlaCudaWriter.maxAutocorParts + FlaCudaWriter.maxFrames))); cudaAutocorOutput = cuda.Allocate((uint)(sizeof(float) * channelCount * lpc.MAX_LPC_WINDOWS * (lpc.MAX_LPC_ORDER + 1) * (FlaCudaWriter.maxAutocorParts + FlaCudaWriter.maxFrames)));
cudaResidualTasks = cuda.Allocate((uint)residualTasksLen); cudaResidualTasks = cuda.Allocate((uint)residualTasksLen);
@@ -2009,7 +2001,7 @@ namespace CUETools.Codecs.FlaCuda
if (cuErr == CUResult.Success) if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref residualBufferPtr, (uint)samplesBufferLen); cuErr = CUDADriver.cuMemAllocHost(ref residualBufferPtr, (uint)samplesBufferLen);
if (cuErr == CUResult.Success) if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref riceParamsPtr, (uint)riceParamsLen); cuErr = CUDADriver.cuMemAllocHost(ref bestRiceParamsPtr, (uint)riceParamsLen / 4);
if (cuErr == CUResult.Success) if (cuErr == CUResult.Success)
cuErr = CUDADriver.cuMemAllocHost(ref autocorTasksPtr, (uint)autocorTasksLen); cuErr = CUDADriver.cuMemAllocHost(ref autocorTasksPtr, (uint)autocorTasksLen);
if (cuErr == CUResult.Success) if (cuErr == CUResult.Success)
@@ -2021,7 +2013,7 @@ namespace CUETools.Codecs.FlaCuda
if (samplesBytesPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(samplesBytesPtr); samplesBytesPtr = IntPtr.Zero; if (samplesBytesPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(samplesBytesPtr); samplesBytesPtr = IntPtr.Zero;
if (samplesBufferPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(samplesBufferPtr); samplesBufferPtr = IntPtr.Zero; if (samplesBufferPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(samplesBufferPtr); samplesBufferPtr = IntPtr.Zero;
if (residualBufferPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(residualBufferPtr); residualBufferPtr = IntPtr.Zero; if (residualBufferPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(residualBufferPtr); residualBufferPtr = IntPtr.Zero;
if (riceParamsPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(riceParamsPtr); riceParamsPtr = IntPtr.Zero; if (bestRiceParamsPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(bestRiceParamsPtr); bestRiceParamsPtr = IntPtr.Zero;
if (autocorTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(autocorTasksPtr); autocorTasksPtr = IntPtr.Zero; if (autocorTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(autocorTasksPtr); autocorTasksPtr = IntPtr.Zero;
if (residualTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(residualTasksPtr); residualTasksPtr = IntPtr.Zero; if (residualTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(residualTasksPtr); residualTasksPtr = IntPtr.Zero;
if (bestResidualTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(bestResidualTasksPtr); bestResidualTasksPtr = IntPtr.Zero; if (bestResidualTasksPtr != IntPtr.Zero) CUDADriver.cuMemFreeHost(bestResidualTasksPtr); bestResidualTasksPtr = IntPtr.Zero;
@@ -2044,6 +2036,7 @@ namespace CUETools.Codecs.FlaCuda
cudaCalcLargePartition = cuda.GetModuleFunction("cudaCalcLargePartition"); cudaCalcLargePartition = cuda.GetModuleFunction("cudaCalcLargePartition");
cudaSumPartition = cuda.GetModuleFunction("cudaSumPartition"); cudaSumPartition = cuda.GetModuleFunction("cudaSumPartition");
cudaFindRiceParameter = cuda.GetModuleFunction("cudaFindRiceParameter"); cudaFindRiceParameter = cuda.GetModuleFunction("cudaFindRiceParameter");
cudaFindPartitionOrder = cuda.GetModuleFunction("cudaFindPartitionOrder");
stream = cuda.CreateStream(); stream = cuda.CreateStream();
verifyBuffer = new int[FlaCudaWriter.MAX_BLOCKSIZE * channelCount]; // should be channels, not channelCount. And should null if not doing verify! verifyBuffer = new int[FlaCudaWriter.MAX_BLOCKSIZE * channelCount]; // should be channels, not channelCount. And should null if not doing verify!
@@ -2064,7 +2057,7 @@ namespace CUETools.Codecs.FlaCuda
CUDADriver.cuMemFreeHost(samplesBytesPtr); CUDADriver.cuMemFreeHost(samplesBytesPtr);
CUDADriver.cuMemFreeHost(samplesBufferPtr); CUDADriver.cuMemFreeHost(samplesBufferPtr);
CUDADriver.cuMemFreeHost(residualBufferPtr); CUDADriver.cuMemFreeHost(residualBufferPtr);
CUDADriver.cuMemFreeHost(riceParamsPtr); CUDADriver.cuMemFreeHost(bestRiceParamsPtr);
CUDADriver.cuMemFreeHost(residualTasksPtr); CUDADriver.cuMemFreeHost(residualTasksPtr);
CUDADriver.cuMemFreeHost(bestResidualTasksPtr); CUDADriver.cuMemFreeHost(bestResidualTasksPtr);
CUDADriver.cuMemFreeHost(autocorTasksPtr); CUDADriver.cuMemFreeHost(autocorTasksPtr);

View File

@@ -52,8 +52,9 @@ typedef struct
int residualOffs; int residualOffs;
int wbits; int wbits;
int abits; int abits;
int reserved[3]; int porder;
int coefs[32]; int reserved[2];
int coefs[32]; // fixme: should be short?
} encodeResidualTaskStruct; } encodeResidualTaskStruct;
#define SUM16(buf,tid,op) buf[tid] op buf[tid + 8]; buf[tid] op buf[tid + 4]; buf[tid] op buf[tid + 2]; buf[tid] op buf[tid + 1]; #define SUM16(buf,tid,op) buf[tid] op buf[tid + 8]; buf[tid] op buf[tid + 4]; buf[tid] op buf[tid + 2]; buf[tid] op buf[tid + 1];
@@ -668,7 +669,7 @@ extern "C" __global__ void cudaChooseBestMethod(
int obits = shared.task[threadIdx.y].obits - shared.task[threadIdx.y].wbits; int obits = shared.task[threadIdx.y].obits - shared.task[threadIdx.y].wbits;
shared.length[task + threadIdx.y] = shared.length[task + threadIdx.y] =
min(obits * shared.task[threadIdx.y].blocksize, min(obits * shared.task[threadIdx.y].blocksize,
shared.task[threadIdx.y].type == Fixed ? shared.task[threadIdx.y].residualOrder * obits + 6 + shared.partLen[threadIdx.y * 32] : shared.task[threadIdx.y].type == Fixed ? shared.task[threadIdx.y].residualOrder * obits + 6 + (4 * partCount/2) + shared.partLen[threadIdx.y * 32] :
shared.task[threadIdx.y].type == LPC ? shared.task[threadIdx.y].residualOrder * obits + 4 + 5 + shared.task[threadIdx.y].residualOrder * shared.task[threadIdx.y].cbits + 6 + (4 * partCount/2)/* << porder */ + shared.partLen[threadIdx.y * 32] : shared.task[threadIdx.y].type == LPC ? shared.task[threadIdx.y].residualOrder * obits + 4 + 5 + shared.task[threadIdx.y].residualOrder * shared.task[threadIdx.y].cbits + 6 + (4 * partCount/2)/* << porder */ + shared.partLen[threadIdx.y * 32] :
shared.task[threadIdx.y].type == Constant ? obits * (1 + shared.task[threadIdx.y].blocksize * (shared.partLen[threadIdx.y * 32] != 0)) : shared.task[threadIdx.y].type == Constant ? obits * (1 + shared.task[threadIdx.y].blocksize * (shared.partLen[threadIdx.y * 32] != 0)) :
obits * shared.task[threadIdx.y].blocksize); obits * shared.task[threadIdx.y].blocksize);
@@ -846,13 +847,16 @@ extern "C" __global__ void cudaCalcPartition(
int s = (offs >= shared.task.residualOrder && tid < parts * psize) ? residual[shared.task.residualOffs + offs] : 0; int s = (offs >= shared.task.residualOrder && tid < parts * psize) ? residual[shared.task.residualOffs + offs] : 0;
// convert to unsigned // convert to unsigned
shared.data[tid] = min(0xfffff, (s << 1) ^ (s >> 31)); shared.data[tid] = min(0xfffff, (s << 1) ^ (s >> 31));
shared.length[tid] = (psize - shared.task.residualOrder * (threadIdx.y + blockIdx.x == 0)) * (threadIdx.x + 1);
__syncthreads(); __syncthreads();
int sum = 0;
int dpos = threadIdx.y * psize;
// calc number of unary bits for each residual part with each rice paramater // calc number of unary bits for each residual part with each rice paramater
#pragma unroll 0
for (int i = 0; i < psize; i++) for (int i = 0; i < psize; i++)
// for part (threadIdx.y) with this rice paramater (threadIdx.x) // for part (threadIdx.y) with this rice paramater (threadIdx.x)
shared.length[tid] += shared.data[threadIdx.y * psize + i] >> threadIdx.x; sum += shared.data[dpos + i] >> threadIdx.x;
shared.length[tid] = sum + (psize - shared.task.residualOrder * (threadIdx.y + blockIdx.x == 0)) * (threadIdx.x + 1);
__syncthreads(); __syncthreads();
// output length (transposed: k is now threadIdx.y) // output length (transposed: k is now threadIdx.y)
@@ -861,6 +865,54 @@ extern "C" __global__ void cudaCalcPartition(
partition_lengths[pos + blockIdx.x * parts_per_block + threadIdx.x] = shared.length[threadIdx.y + (threadIdx.x << 4)]; partition_lengths[pos + blockIdx.x * parts_per_block + threadIdx.x] = shared.length[threadIdx.y + (threadIdx.x << 4)];
} }
extern "C" __global__ void cudaCalcPartition1(
int* partition_lengths,
int* residual,
encodeResidualTaskStruct *tasks,
int max_porder, // <= 8
int psize, // == (shared.task.blocksize >> max_porder), < 256
int parts_per_block // == 256 / psize, > 0, <= 16
)
{
__shared__ struct {
int data[256];
int length[256];
int plen[256];
encodeResidualTaskStruct task;
} shared;
const int tid = threadIdx.x + (threadIdx.y << 4);
if (tid < sizeof(shared.task) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(&tasks[blockIdx.y]))[tid];
__syncthreads();
const int parts = min(parts_per_block, (1 << max_porder) - blockIdx.x * parts_per_block);
// fetch residual
int offs = blockIdx.x * psize * parts_per_block + tid;
int s = (offs >= shared.task.residualOrder && tid < parts * psize) ? residual[shared.task.residualOffs + offs] : 0;
// convert to unsigned
shared.data[tid] = min(0xfffff, (s << 1) ^ (s >> 31));
__syncthreads();
for (int k = 0; k < 15; k++)
{
shared.length[tid] = 0;
// calc number of unary bits for each residual part with each rice paramater
// for part (threadIdx.y) with rice paramater k
for (int i = 0; i < psize; i += 16)
shared.length[tid] += shared.data[threadIdx.y * psize + i + threadIdx.x] >> k; // * (i + threadIdx.x < psize)
SUM16(shared.length,tid,+=);
if (threadIdx.x == 0 && threadIdx.y < parts)
shared.plen[(k << 4) + threadIdx.y] = shared.length[tid];
}
__syncthreads();
// output length
const int pos = blockIdx.x * parts_per_block + threadIdx.x;
const int len1 = (psize - shared.task.residualOrder * (pos == 0)) * (threadIdx.y + 1);
if (threadIdx.y <= 14 && threadIdx.x < parts)
partition_lengths[((threadIdx.y + 15 * blockIdx.y) << (max_porder + 1)) + pos] = shared.plen[tid] + len1;
}
extern "C" __global__ void cudaCalcLargePartition( extern "C" __global__ void cudaCalcLargePartition(
int* partition_lengths, int* partition_lengths,
int* residual, int* residual,
@@ -880,7 +932,7 @@ extern "C" __global__ void cudaCalcLargePartition(
((int*)&shared.task)[tid] = ((int*)(&tasks[blockIdx.y]))[tid]; ((int*)&shared.task)[tid] = ((int*)(&tasks[blockIdx.y]))[tid];
__syncthreads(); __syncthreads();
shared.length[tid] = 0; int sum = 0;
for (int pos = 0; pos < psize; pos += 256) for (int pos = 0; pos < psize; pos += 256)
{ {
// fetch residual // fetch residual
@@ -892,12 +944,12 @@ extern "C" __global__ void cudaCalcLargePartition(
// calc number of unary bits for each residual sample with each rice paramater // calc number of unary bits for each residual sample with each rice paramater
#pragma unroll 0 #pragma unroll 0
for (int i = 0; i < min(psize,256); i += 16) for (int i = threadIdx.x; i < min(psize,256); i += 16)
// for sample (i + threadIdx.x) with this rice paramater (threadIdx.y) // for sample (i + threadIdx.x) with this rice paramater (threadIdx.y)
shared.length[tid] += shared.data[i + threadIdx.x] >> threadIdx.y; sum += shared.data[i] >> threadIdx.y;
shared.length[tid] = min(0xfffff, shared.length[tid]);
__syncthreads(); __syncthreads();
} }
shared.length[tid] = min(0xfffff,sum);
SUM16(shared.length,tid,+=); SUM16(shared.length,tid,+=);
// output length // output length
@@ -919,7 +971,7 @@ extern "C" __global__ void cudaSumPartition(
const int pos = (15 << (max_porder + 1)) * blockIdx.y + (blockIdx.x << (max_porder + 1)); const int pos = (15 << (max_porder + 1)) * blockIdx.y + (blockIdx.x << (max_porder + 1));
// fetch residual // fetch partition lengths
shared.data[threadIdx.x] = threadIdx.x < (1 << max_porder) ? partition_lengths[pos + threadIdx.x] : 0; shared.data[threadIdx.x] = threadIdx.x < (1 << max_porder) ? partition_lengths[pos + threadIdx.x] : 0;
__syncthreads(); __syncthreads();
for (int porder = max_porder - 1; porder >= 0; porder--) for (int porder = max_porder - 1; porder >= 0; porder--)
@@ -936,7 +988,7 @@ extern "C" __global__ void cudaSumPartition(
// Finds optimal rice parameter for up to 16 partitions at a time. // Finds optimal rice parameter for up to 16 partitions at a time.
// Requires 16x16 threads // Requires 16x16 threads
extern "C" __global__ void cudaFindRiceParameter( extern "C" __global__ void cudaFindRiceParameter(
int* output, int* rice_parameters,
int* partition_lengths, int* partition_lengths,
int max_porder int max_porder
) )
@@ -944,22 +996,22 @@ extern "C" __global__ void cudaFindRiceParameter(
__shared__ struct { __shared__ struct {
volatile int length[256]; volatile int length[256];
volatile int index[256]; volatile int index[256];
volatile int outlen[32];
volatile int outidx[32];
} shared; } shared;
const int tid = threadIdx.x + (threadIdx.y << 4); const int tid = threadIdx.x + (threadIdx.y << 3);
const int parts = min(16, 2 << max_porder); const int parts = min(32, 2 << max_porder);
const int pos = (15 << (max_porder + 1)) * blockIdx.y + (threadIdx.y << (max_porder + 1)); const int pos = (15 << (max_porder + 1)) * blockIdx.y + ((tid >> 5) << (max_porder + 1));
// read length for 16 partitions // read length for 32 partitions
shared.length[tid] = (threadIdx.y <= 14 && threadIdx.x < parts) ? partition_lengths[pos + blockIdx.x * 16 + threadIdx.x] : 0xffffff; shared.index[tid] = ((tid & 31) < parts) ? partition_lengths[pos + blockIdx.x * 32 + (tid & 31)] : 0xffffff;
shared.length[tid] = ((tid >> 5) + 8 <= 14 && (tid & 31) < parts) ? partition_lengths[pos + (8 << (max_porder + 1)) + blockIdx.x * 32 + (tid & 31)] : 0xffffff;
__syncthreads(); __syncthreads();
// transpose // transpose
//shared.length[tid] = shared.index[threadIdx.y + (threadIdx.x << 4)]; int l1 = shared.index[threadIdx.y + (threadIdx.x << 5)];
int l1 = shared.length[threadIdx.y + (threadIdx.x << 4)]; int l2 = shared.length[threadIdx.y + (threadIdx.x << 5)];
__syncthreads();
shared.length[tid] = l1;
__syncthreads(); __syncthreads();
// find best rice parameter // find best rice parameter
int l2 = shared.length[tid + 8];
shared.index[tid] = threadIdx.x + ((l2 < l1) << 3); shared.index[tid] = threadIdx.x + ((l2 < l1) << 3);
shared.length[tid] = l1 = min(l1, l2); shared.length[tid] = l1 = min(l1, l2);
#pragma unroll 2 #pragma unroll 2
@@ -970,12 +1022,81 @@ extern "C" __global__ void cudaFindRiceParameter(
shared.length[tid] = l1 = min(l1, l2); shared.length[tid] = l1 = min(l1, l2);
} }
l2 = shared.length[tid + 1]; l2 = shared.length[tid + 1];
if (threadIdx.x == 0 && threadIdx.y < parts)
shared.outidx[threadIdx.y] = shared.index[tid + (l2 < l1)];
if (threadIdx.x == 0 && threadIdx.y < parts)
shared.outlen[threadIdx.y] = min(l1, l2);
__syncthreads();
// output rice parameter // output rice parameter
if (threadIdx.x == 0 && threadIdx.y < parts) if (tid < parts)
output[(blockIdx.y << (max_porder + 2)) + blockIdx.x * parts + threadIdx.y] = shared.index[tid + (l2 < l1)]; rice_parameters[(blockIdx.y << (max_porder + 2)) + blockIdx.x * parts + tid] = shared.outidx[tid];
// output length // output length
if (threadIdx.x == 0 && threadIdx.y < parts) if (tid < parts)
output[(blockIdx.y << (max_porder + 2)) + (1 << (max_porder + 1)) + blockIdx.x * parts + threadIdx.y] = min(l1, l2); rice_parameters[(blockIdx.y << (max_porder + 2)) + (1 << (max_porder + 1)) + blockIdx.x * parts + tid] = shared.outlen[tid];
}
extern "C" __global__ void cudaFindPartitionOrder(
int* best_rice_parameters,
encodeResidualTaskStruct *tasks,
int* rice_parameters,
int max_porder
)
{
__shared__ struct {
int data[512];
volatile int tmp[256];
int length[32];
int index[32];
encodeResidualTaskStruct task;
} shared;
const int pos = (blockIdx.y << (max_porder + 2)) + (2 << max_porder);
if (threadIdx.x < sizeof(shared.task) / sizeof(int))
((int*)&shared.task)[threadIdx.x] = ((int*)(&tasks[blockIdx.y]))[threadIdx.x];
// fetch partition lengths
shared.data[threadIdx.x] = threadIdx.x < (2 << max_porder) ? rice_parameters[pos + threadIdx.x] : 0;
shared.data[threadIdx.x + 256] = threadIdx.x + 256 < (2 << max_porder) ? rice_parameters[pos + 256 + threadIdx.x] : 0;
__syncthreads();
for (int porder = max_porder; porder >= 0; porder--)
{
shared.tmp[threadIdx.x] = (threadIdx.x < (1 << porder)) * shared.data[(2 << max_porder) - (2 << porder) + threadIdx.x];
__syncthreads();
SUM256(shared.tmp, threadIdx.x, +=);
if (threadIdx.x == 0)
shared.length[porder] = shared.tmp[0] + (4 << porder);
__syncthreads();
}
if (threadIdx.x < 32)
{
shared.index[threadIdx.x] = threadIdx.x;
if (threadIdx.x > max_porder)
shared.length[threadIdx.x] = 0xfffffff;
int l1 = shared.length[threadIdx.x];
#pragma unroll 4
for (int sh = 3; sh >= 0; sh --)
{
int l2 = shared.length[threadIdx.x + (1 << sh)];
shared.index[threadIdx.x] = shared.index[threadIdx.x + ((l2 < l1) << sh)];
shared.length[threadIdx.x] = l1 = min(l1, l2);
}
if (threadIdx.x == 0)
tasks[blockIdx.y].porder = shared.index[0];
if (threadIdx.x == 0)
{
int obits = shared.task.obits - shared.task.wbits;
tasks[blockIdx.y].size =
shared.task.type == Fixed ? shared.task.residualOrder * obits + 6 + l1 :
shared.task.type == LPC ? shared.task.residualOrder * obits + 6 + l1 + 4 + 5 + shared.task.residualOrder * shared.task.cbits :
shared.task.type == Constant ? obits : obits * shared.task.blocksize;
}
}
__syncthreads();
int porder = shared.index[0];
//shared.data[threadIdx.x] = threadIdx.x < (1 << porder) ? rice_parameters[pos - (2 << porder) + threadIdx.x] : 0;
if (threadIdx.x < (1 << porder))
best_rice_parameters[(blockIdx.y << max_porder) + threadIdx.x] = rice_parameters[pos - (2 << porder) + threadIdx.x];
// FIXME: should be bytes?
} }
#endif #endif

View File

@@ -431,6 +431,155 @@ code {
0xd00e0201 0xa0c00781 0xd00e0201 0xa0c00781
} }
} }
code {
name = cudaFindPartitionOrder
lmem = 0
smem = 3552
reg = 8
bar = 1
const {
segname = const
segnum = 1
offset = 0
bytes = 36
mem {
0x0000002f 0x0000001f 0x0000007f 0x0000003f
0xffffffff 0x00000008 0x00000020 0x00000002
0x0fffffff
}
}
bincode {
0xa000000d 0x04000780 0x308007fd 0x644107c8
0xa000d003 0x00000000 0x30020609 0xc4100780
0x1000d003 0x00000280 0xa0004e01 0x04200780
0x30070005 0xc4100780 0x30060001 0xc4100780
0x20008200 0x2100ea00 0x20000401 0x04000780
0xd00e0001 0x80c00780 0x00000405 0xc0000780
0x04069001 0xe4200780 0x1000ce01 0x0423c782
0x10028005 0x00000003 0x30000211 0xc4000780
0x300309fd 0x6400c7c8 0xa001c003 0x00000000
0x1001b003 0x00000280 0xa0004e01 0x04200780
0x2102ee05 0x00000003 0x30010001 0xc4000780
0x20008800 0x20008600 0x30020001 0xc4100780
0x2000cc01 0x04200780 0xd00e0001 0x80c00780
0x1001c003 0x00000780 0x1000f801 0x0403c780
0x00000405 0xc0000782 0x20008605 0x00000013
0x300109fd 0x6400c7c8 0x04001001 0xe4200780
0xa002c003 0x00000000 0x1002b003 0x00000280
0xa0004e01 0x04200780 0x2102ee05 0x00000003
0x30010001 0xc4000780 0x20008800 0x20008600
0x30020001 0xc4100780 0x2000cc01 0x04200780
0x20008001 0x00000043 0xd00e0001 0x80c00780
0x1002c003 0x00000780 0x1000f801 0x0403c780
0x00000405 0xc0000782 0x04021001 0xe4200780
0x861ffe03 0x00000000 0x307ccffd 0x6c2047c8
0x1000ce01 0x0423c780 0x10076003 0x00000280
0x308207fd 0x6440c7e8 0x308307fd 0x6440c7f8
0x308107fd 0x6440c7c8 0x307c07fd 0x640087d8
0x00000015 0x20001780 0x300007fd 0xe40007d8
0x10000e05 0x2440d500 0x30000205 0xc4001500
0x20400805 0x04005500 0x20000605 0x04005500
0x00020205 0xc0001500 0x1400d005 0x0423d500
0x1000f805 0x0403d280 0x00000405 0xc0000780
0x04041001 0xe4204780 0x861ffe03 0x00000000
0x00000405 0xc0002680 0xd414400d 0x20002680
0xd4104009 0x20002680 0x1c00c005 0x0423e680
0x2800c005 0x04206680 0x04041001 0xe4206680
0x861ffe03 0x00000000 0x00000405 0xc0003680
0xd412400d 0x20003680 0xd4104009 0x20003680
0x1c00c005 0x0423f680 0x2800c005 0x04207680
0x04041001 0xe4207680 0x861ffe03 0x00000000
0x00000405 0xc0000680 0xd411400d 0x20000680
0xd4104009 0x20000680 0x1c00c005 0x0423c680
0x2800c005 0x04204680 0x04041001 0xe4204680
0x861ffe03 0x00000000 0xa0066003 0x00000000
0x10066003 0x00000100 0x00000405 0xc0000780
0xd4104009 0x20000780 0x1800e005 0x0423c780
0x2800c005 0x04204780 0x04041001 0xe4204780
0x1900f004 0x2901e004 0x04041001 0xe4204780
0x1900e804 0x2901e004 0x04041001 0xe4204780
0x1900e404 0x2901e004 0x04041001 0xe4204780
0x1900e204 0x2901e004 0x04041001 0xe4204780
0xf0000001 0xe0000002 0xa0070003 0x00000000
0x00000a01 0xa00007d0 0x10070003 0x00001100
0x10048005 0x00000003 0xd0104005 0x20000780
0x30000205 0xc4000780 0x00020009 0xc0000780
0x2400c005 0x04204780 0x08061001 0xe4204780
0xf0000001 0xe0000002 0x861ffe03 0x00000000
0x203f8001 0x0fffffff 0x308401fd 0x6c4147d8
0x10037003 0x00001280 0x10077003 0x00000780
0x308107fd 0x6440c7c8 0xa00eb003 0x00000000
0x100eb003 0x00000100 0x00000405 0xc0000780
0x3003cffd 0x642187c8 0x04065001 0xe420c780
0x00000405 0xc0000500 0x10001001 0x2440c500
0x04061001 0xe4200500 0x10001001 0x2440c500
0x00000405 0xc0000280 0xd4184005 0x20000280
0x1400c001 0x0423c280 0x00000405 0xc0000780
0x20108605 0x00000033 0x00020209 0xc0000780
0x20088605 0x00000003 0x3800c1fd 0x6c2047c8
0x10000605 0x0403c500 0x0002020d 0xc0000780
0xdc19400d 0x20000780 0x3800c005 0xac200780
0x1c00c001 0x0423c780 0x200c8609 0x00000033
0x04065001 0xe4200780 0x00020409 0xc0000780
0x04061001 0xe4204780 0x20048601 0x00000003
0x3801c1fd 0x6c2047c8 0x10000601 0x0403c500
0x0002000d 0xc0000780 0xdc19400d 0x20000780
0x3801c005 0xac200780 0x1c00c001 0x0423c780
0x200a8609 0x00000033 0x04065001 0xe4200780
0x00020409 0xc0000780 0x04061001 0xe4204780
0x20028601 0x00000003 0x3801c1fd 0x6c2047c8
0x10000601 0x0403c500 0x0002000d 0xc0000780
0xdc19400d 0x20000780 0x3801c005 0xac200780
0x1c00c001 0x0423c780 0x20098609 0x00000033
0x04065001 0xe4200780 0x00020409 0xc0000780
0x04061001 0xe4204780 0x20018601 0x00000003
0x3801c1fd 0x6c2047c8 0x10000601 0x0403c500
0x0002000d 0xc0000780 0xdc19400d 0x20000780
0x3801c015 0xac200780 0x1c00c001 0x0423c780
0x307c0605 0x640087d0 0x04065001 0xe4200780
0xa00003fd 0x0c0147c8 0xa00bc003 0x00000000
0x04061001 0xe4214780 0x100bc003 0x00001100
0xa0004e01 0x04200780 0x30070005 0xc4100780
0x30060001 0xc4100780 0x20000201 0x04000780
0xd0194005 0x20000780 0x2100ea04 0x1500e000
0x20348205 0x00000003 0xd00e0201 0xa0c00780
0xf0000001 0xe0000002 0x100eb003 0x00000100
0xd01a6805 0x20000780 0x1400cc01 0x0423c780
0x3485c1fd 0x6c6147c8 0x2440c201 0x04200780
0x100cc003 0x00000280 0xd01a4005 0x20000780
0x1400c005 0x0423c780 0x40030009 0x00000780
0x60020209 0x00008780 0x30100409 0xc4100780
0x60020001 0x00008780 0x20000001 0x04014780
0x20068001 0x00000003 0x100e5003 0x00000780
0xd01a6805 0x20000780 0x3486c1fd 0x6c6147c8
0x100dc003 0x00000280 0xd01a4005 0x20000780
0x1400c009 0x0423c780 0x1400c605 0x0423c780
0x4005001c 0x40040618 0x6004021d 0x0001c780
0x60050419 0x00018780 0x30100e1d 0xc4100780
0x30100c19 0xc4100780 0x6004001d 0x0001c780
0x60040401 0x00018780 0x20058e04 0x20018000
0x200f8009 0x00000003 0x100e4003 0x00000780
0xd01a6805 0x20000780 0x1400c405 0x0423c780
0x40030009 0x00000780 0x60020215 0x00008780
0x10000009 0x0403c780 0x347cc1fd 0x6c2147c8
0x30100a15 0xc4100780 0x60020009 0x00014280
0x10000401 0x0403c780 0xa0004e05 0x04200780
0x30070209 0xc4100780 0x30060205 0xc4100780
0x20018404 0x2101ea04 0x20108205 0x00000003
0xd00e0201 0xa0c00780 0xf0000001 0xe0000002
0x861ffe03 0x00000000 0xd0194005 0x20000780
0x1400c001 0x0423c780 0x300007fd 0xe40007c8
0x30000003 0x00000280 0xa0004e05 0x04200780
0x2102ee01 0x00000003 0xd0194005 0x20000780
0x10028015 0x00000003 0x30000209 0xc4000780
0x1500e000 0x20028808 0x30000a11 0xc4000780
0x1100ee00 0x20448408 0x30000201 0xc4000780
0x20028604 0x20008600 0x30020205 0xc4100780
0x30020009 0xc4100780 0x2000cc01 0x04204780
0xd00e0001 0x80c00780 0x2000c805 0x04208780
0xd00e0201 0xa0c00781
}
}
code { code {
name = cudaEstimateResidual name = cudaEstimateResidual
lmem = 0 lmem = 0
@@ -559,6 +708,93 @@ code {
0x1500e000 0x2101e804 0xd00e0201 0xa0c00781 0x1500e000 0x2101e804 0xd00e0201 0xa0c00781
} }
} }
code {
name = cudaCalcPartition1
lmem = 0
smem = 3304
reg = 11
bar = 1
const {
segname = const
segnum = 1
offset = 0
bytes = 24
mem {
0x000003ff 0x0000002f 0x000fffff 0x00000001
0x0000000f 0x0000000e
}
}
bincode {
0x10000005 0x0403c780 0xd0800601 0x00400780
0xa0000001 0x04000780 0xa0000415 0x04000780
0x30040005 0xc4100780 0x20000a21 0x04004780
0x308111fd 0x644107c8 0xa0012003 0x00000000
0x30021019 0xc4100780 0x10012003 0x00000280
0xa0004e05 0x04200780 0x30070209 0xc4100780
0x30060205 0xc4100780 0x20018404 0x2101ec04
0x20000c05 0x04004780 0xd00e0205 0x80c00780
0x00000c05 0xc0000780 0x04061401 0xe4204780
0xf0000001 0xe0000002 0x861ffe03 0x00000000
0xa0004c0d 0x04200780 0x1100f204 0x1100f008
0x4006061c 0x40050c24 0x10018029 0x00000003
0x1000ce11 0x0423c780 0x30100e1d 0xc4100780
0x30101225 0xc4100780 0x30041411 0xc4000780
0x6006041d 0x0001c780 0x60040c0d 0x00024780
0x30048e10 0x1100f008 0x40060625 0x00000780
0x3004d211 0xa4200780 0x60070425 0x00024780
0x40051029 0x00000780 0x30101225 0xc4100780
0x60041229 0x00028780 0x60060405 0x00024780
0xd0185005 0x20000780 0x3010140d 0xc4100780
0x20000205 0x04020780 0x60041009 0x0000c780
0x3401c1fd 0x6c20c7c8 0x300211fd 0x6c0042c8
0xa0035003 0x00000000 0x10034003 0x00000100
0xd018a005 0x20000780 0x2400c005 0x04204780
0x30020205 0xc4100780 0x2000ca05 0x04204780
0xd00e0205 0x80c00780 0x10035003 0x00000780
0x1000f805 0x0403c780 0x301f0209 0xec100782
0x30010205 0xc4100780 0xd0010405 0x04008780
0x00000c05 0xc0000780 0x30820205 0xac400780
0x04001401 0xe4204780 0x861ffe03 0x00000000
0x307c0a05 0x64008780 0x30000809 0x64010780
0xd0830205 0x04400780 0xd0830409 0x04400780
0xd002020d 0x04000780 0x307cd1fd 0x6c2107c8
0x1000f821 0x0403c780 0x00000c05 0xc0000780
0x1000f809 0x0403c780 0x04021401 0xe43f0780
0x1005b003 0x00000100 0x1000d005 0x0423c780
0x40010425 0x00000780 0x60000625 0x00024780
0x30101225 0xc4100780 0x60000429 0x00024780
0x20001405 0x04014780 0x200a8225 0x00000003
0x2000d029 0x04228780 0x00021205 0xc0000780
0xa005a003 0x00000000 0x20000a25 0x04028780
0x3408c029 0xec200780 0x20108205 0x00000003
0x20000409 0x04028780 0x00000c09 0xc0000780
0x300903fd 0x6c0047d8 0xd4008005 0x20000780
0x08021401 0xe4208780 0x10052003 0x00001280
0xf0000001 0xe0000002 0x00000c05 0xc0000780
0xd4085809 0x20000780 0x2800ce05 0x04208780
0x04021401 0xe4204780 0x2800c605 0x04204780
0x04021401 0xe4204780 0x2800c205 0x04204780
0x04021401 0xe4204780 0x2800c005 0x04204780
0x307c07fd 0x6c0087d8 0x04021401 0xe4204780
0x30041009 0xc4101500 0x20000009 0x04009500
0x00020405 0xc0001500 0x04041401 0xe4205500
0x20019021 0x00000003 0x308411fd 0x6c4147d8
0x10043003 0x00001280 0x861ffe03 0x00000000
0x300509fd 0x640107c8 0x308501fd 0x6440c2c8
0x30000003 0x00000100 0xd0185005 0x20000780
0x1000d00d 0x0423c780 0x20018009 0x00000003
0x1000d005 0x0423c780 0x3503e00c 0x40030810
0x610f2e01 0x00000003 0x60020a29 0x00010780
0x40070825 0x00000780 0x2101ee21 0x00000003
0x20000e11 0x040147c0 0x30101429 0xc4100780
0x60060a1d 0x00024780 0x30080015 0xc4000780
0x60020801 0x00028780 0x30100e1d 0xc4100780
0x20000805 0x04014780 0x00000c05 0xc0000780
0x60060801 0x0001c100 0x30020205 0xc4100780
0xd4105005 0x20000780 0x2101e804 0x2500e000
0xd00e0201 0xa0c00781
}
}
code { code {
name = cudaChooseBestMethod name = cudaChooseBestMethod
lmem = 0 lmem = 0
@@ -571,7 +807,7 @@ code {
offset = 0 offset = 0
bytes = 28 bytes = 28
mem { mem {
0x000003ff 0x00000008 0x00000020 0x00000001 0x000003ff 0x00000008 0x00000001 0x00000020
0x0000007f 0x0000003f 0x0000001f 0x0000007f 0x0000003f 0x0000001f
} }
} }
@@ -581,10 +817,10 @@ code {
0x20000211 0x04000780 0x103f8001 0x07ffffff 0x20000211 0x04000780 0x103f8001 0x07ffffff
0x00020805 0xc0000780 0x307ccffd 0x6c20c7c8 0x00020805 0xc0000780 0x307ccffd 0x6c20c7c8
0x04011001 0xe4200780 0x00070609 0xc0000780 0x04011001 0xe4200780 0x00070609 0xc0000780
0x10090003 0x00000280 0xa0004415 0x04200780 0x10096003 0x00000280 0xa0004415 0x04200780
0x1000f819 0x0403c780 0x20000c1d 0x0400c780 0x1000f819 0x0403c780 0x20000c1d 0x0400c780
0x3007cffd 0x6420c7c8 0xa008d003 0x00000000 0x3007cffd 0x6420c7c8 0xa0093003 0x00000000
0x1008d003 0x00000280 0x1000ce01 0x0423c780 0x10093003 0x00000280 0x1000ce01 0x0423c780
0x40014e09 0x00200780 0x30100409 0xc4100780 0x40014e09 0x00200780 0x30100409 0xc4100780
0x60004e21 0x00208780 0x30070601 0xc4100780 0x60004e21 0x00208780 0x30070601 0xc4100780
0x30070c2d 0xc4100780 0x30060c31 0xc4100780 0x30070c2d 0xc4100780 0x30060c31 0xc4100780
@@ -613,34 +849,37 @@ code {
0x1000c401 0x0423c784 0x2000c001 0x04200784 0x1000c401 0x0423c784 0x2000c001 0x04200784
0x0c031001 0xe4200780 0x1000c201 0x0423c784 0x0c031001 0xe4200780 0x1000c201 0x0423c784
0x2000c001 0x04200784 0x307c03fd 0x640147c8 0x2000c001 0x04200784 0x307c03fd 0x640147c8
0x0c031001 0xe4200780 0x1008d003 0x00000280 0x0c031001 0xe4200780 0x10093003 0x00000280
0xd414680d 0x20000780 0x1d00ec08 0x1d00e400 0xd414680d 0x20000780 0x1d00ec08 0x1d00e400
0x2c40c209 0x04208780 0x40050021 0x00000780 0x2c40c209 0x04208780 0x40050021 0x00000780
0x60040221 0x00020780 0x30101021 0xc4100780 0x60040221 0x00020780 0x30101021 0xc4100780
0x3c81c1fd 0x6c6147c8 0x60040021 0x00020780 0x3c81c1fd 0x6c6147c8 0x60040021 0x00020780
0xa008a003 0x00000000 0x10060003 0x00000280 0xa0090003 0x00000000 0x10066003 0x00000280
0xd4144005 0x20000780 0x1400c001 0x0423c780 0xd4144005 0x20000780 0x1400c001 0x0423c780
0x40050025 0x00000780 0x60040225 0x00024780 0x3002cc25 0xc4300780 0x4005002d 0x00000780
0x30101225 0xc4100780 0x60040001 0x00024780 0x301f1229 0xec100780 0x6004022d 0x0002c780
0xd0821429 0x04400780 0x3010162d 0xc4100780
0x20001425 0x04024780 0x60040009 0x0002c780
0x30011201 0xec100780 0x20000401 0x04000780
0xd80c4005 0x20000780 0x2400c001 0x04200780 0xd80c4005 0x20000780 0x2400c001 0x04200780
0x20068001 0x00000003 0x1008a003 0x00000780 0x20068001 0x00000003 0x10090003 0x00000780
0xd414680d 0x20000780 0x3c82c1fd 0x6c6147c8 0xd414680d 0x20000780 0x3c83c1fd 0x6c6147c8
0xa0089003 0x00000000 0x10074003 0x00000280 0xa008f003 0x00000000 0x1007a003 0x00000280
0xd4144005 0x20000780 0x2502e608 0x1500e000 0xd4144005 0x20000780 0x2502e608 0x1500e000
0x3002cc25 0xc4300780 0x40050029 0x00000780 0x3002cc25 0xc4300780 0x40050029 0x00000780
0x301f122d 0xec100780 0x60040229 0x00028780 0x301f122d 0xec100780 0x60040229 0x00028780
0xd083162d 0x04400780 0x30101429 0xc4100780 0xd082162d 0x04400780 0x30101429 0xc4100780
0x20001625 0x04024780 0x60040001 0x00028780 0x20001625 0x04024780 0x60040001 0x00028780
0x30011209 0xec100780 0x20000001 0x04008780 0x30011209 0xec100780 0x20000001 0x04008780
0xd80c4005 0x20000780 0x2400c001 0x04200780 0xd80c4005 0x20000780 0x2400c001 0x04200780
0x200f8001 0x00000003 0x10089003 0x00000780 0x200f8001 0x00000003 0x1008f003 0x00000780
0xd414680d 0x20000780 0x3c7cc1fd 0x6c2147c8 0xd414680d 0x20000780 0x3c7cc1fd 0x6c2147c8
0xa0088003 0x00000000 0x10082003 0x00000280 0xa008e003 0x00000000 0x10088003 0x00000280
0xd80c400d 0x20000780 0xd4147805 0x20000780 0xd80c400d 0x20000780 0xd4147805 0x20000780
0x3c7cc1fd 0x6c2087c8 0x2501e001 0x00000003 0x3c7cc1fd 0x6c2087c8 0x2501e001 0x00000003
0x10000601 0x2440c280 0x40050025 0x00000780 0x10000401 0x2440c280 0x40050025 0x00000780
0x60040225 0x00024780 0x30101225 0xc4100780 0x60040225 0x00024780 0x30101225 0xc4100780
0x60040001 0x00024780 0x10088003 0x00000780 0x60040001 0x00024780 0x1008e003 0x00000780
0xd4147805 0x20000780 0x1400c001 0x0423c780 0xd4147805 0x20000780 0x1400c001 0x0423c780
0x40050025 0x00000780 0x60040225 0x00024780 0x40050025 0x00000780 0x60040225 0x00024780
0x30101225 0xc4100780 0x60040001 0x00024780 0x30101225 0xc4100780 0x60040001 0x00024780
@@ -649,7 +888,7 @@ code {
0x04011001 0xe4200780 0x20000c19 0x04014782 0x04011001 0xe4200780 0x20000c19 0x04014782
0x3006cffd 0x6c2107c8 0x1000d003 0x00000280 0x3006cffd 0x6c2107c8 0x1000d003 0x00000280
0x861ffe03 0x00000000 0x3004cffd 0x6c20c7c8 0x861ffe03 0x00000000 0x3004cffd 0x6c20c7c8
0xa00a1003 0x00000000 0x100a1003 0x00000280 0xa00a7003 0x00000000 0x100a7003 0x00000280
0x1000ce01 0x0423c780 0x40014e05 0x00200780 0x1000ce01 0x0423c780 0x40014e05 0x00200780
0x30100205 0xc4100780 0x60004e01 0x00204780 0x30100205 0xc4100780 0x60004e01 0x00204780
0x20000001 0x04010780 0x30070005 0xc4100780 0x20000001 0x04010780 0x30070005 0xc4100780
@@ -659,16 +898,16 @@ code {
0xd00e0201 0xa0c00780 0xf0000001 0xe0000002 0xd00e0201 0xa0c00780 0xf0000001 0xe0000002
0x861ffe03 0x00000000 0x00020805 0xc0000780 0x861ffe03 0x00000000 0x00020805 0xc0000780
0xd4044005 0x20000780 0x308409fd 0x6c4107c8 0xd4044005 0x20000780 0x308409fd 0x6c4107c8
0xa00b4003 0x00000000 0x1400c001 0x0423c780 0xa00ba003 0x00000000 0x1400c001 0x0423c780
0x100b4003 0x00000280 0x00020805 0xc0000780 0x100ba003 0x00000280 0x00020805 0xc0000780
0xd408400d 0x20000780 0xd4044009 0x20000780 0xd408400d 0x20000780 0xd4044009 0x20000780
0x1c00c001 0x0423c780 0x3800c1fd 0x6c2107c8 0x1c00c001 0x0423c780 0x3800c1fd 0x6c2107c8
0x1c00c001 0x0423c780 0x20008805 0x0000000b 0x1c00c001 0x0423c780 0x20008805 0x0000000b
0x3800c001 0xac200780 0x10000805 0x0403c500 0x3800c001 0xac200780 0x10000805 0x0403c500
0x04001001 0xe4204780 0x04011001 0xe4200780 0x04001001 0xe4204780 0x04011001 0xe4200780
0xf0000001 0xe0000002 0x861ffe03 0x00000000 0xf0000001 0xe0000002 0x861ffe03 0x00000000
0x308509fd 0x6c4107c8 0xa00c3003 0x00000000 0x308509fd 0x6c4107c8 0xa00c9003 0x00000000
0x100c3003 0x00000280 0x00020805 0xc0000780 0x100c9003 0x00000280 0x00020805 0xc0000780
0xd4064009 0x20000780 0x20008805 0x00000007 0xd4064009 0x20000780 0x20008805 0x00000007
0x3800c1fd 0x6c2047c8 0x10000805 0x0403c500 0x3800c1fd 0x6c2047c8 0x10000805 0x0403c500
0x0002020d 0xc0000780 0x3800c001 0xac200780 0x0002020d 0xc0000780 0x3800c001 0xac200780
@@ -707,7 +946,7 @@ code {
0x1400c205 0x0423c780 0x60004e09 0x00208780 0x1400c205 0x0423c780 0x60004e09 0x00208780
0x3401c1fd 0x6c2107c8 0x10048011 0x00000003 0x3401c1fd 0x6c2107c8 0x10048011 0x00000003
0x10208001 0x00000003 0x30070405 0xc4100780 0x10208001 0x00000003 0x30070405 0xc4100780
0x3006040d 0xc4100780 0x21000801 0x04408280 0x3006040d 0xc4100780 0x21000801 0x0440c280
0x20000205 0x0400c780 0x00000005 0xc0000780 0x20000205 0x0400c780 0x00000005 0xc0000780
0x2101e800 0x2502e004 0x20208001 0x00000003 0x2101e800 0x2502e004 0x20208001 0x00000003
0xd00e0005 0xa0c00781 0xd00e0005 0xa0c00781
@@ -820,74 +1059,93 @@ code {
code { code {
name = cudaFindRiceParameter name = cudaFindRiceParameter
lmem = 0 lmem = 0
smem = 2076 smem = 2332
reg = 9 reg = 10
bar = 1 bar = 1
const { const {
segname = const segname = const
segnum = 1 segnum = 1
offset = 0 offset = 0
bytes = 16 bytes = 20
mem { mem {
0x00000010 0x000003ff 0x0000000e 0x00000001 0x000003ff 0x00000020 0x0000001f 0x00000001
0x0000000e
} }
} }
bincode { bincode {
0xd0800205 0x00400780 0xa0000211 0x04000780
0x10028009 0x00000003 0x1000cc05 0x0423c780 0x10028009 0x00000003 0x1000cc05 0x0423c780
0x30010409 0xc4000780 0x10000005 0x0403c780 0xa0000015 0x04000780 0x30030801 0xc4100780
0x3080040d 0xac400780 0xa0000401 0x04000780 0x30010405 0xc4000780 0x20000a01 0x04000780
0xd0820609 0x00400780 0x300007fd 0x640107c8 0x30810209 0xac400780 0xd0820005 0x04400780
0xa0000411 0x04000780 0x308209fd 0x6440c2c8 0x3001040d 0x6c0107d0 0xa00007fd 0x0c0147c8
0xa001b003 0x00000000 0x1001a003 0x00000100 0xa001e003 0x00000000 0x30050019 0xec100780
0x2101ec09 0x00000003 0x100f8005 0x00000003 0x1001d003 0x00001100 0x2101ec1d 0x00000003
0x30020205 0xc4000780 0x40034e15 0x00200780 0x100f800d 0x00000003 0x3007060d 0xc4000780
0x30100a15 0xc4100780 0x60024e15 0x00214780 0x40074e21 0x00200780 0x30101021 0xc4100780
0x30020805 0xc4000780 0x20000a09 0x04004780 0x60064e21 0x00220780 0x30070c0d 0xc4000780
0x60804c05 0x00600780 0x20000205 0x04008780 0x2000101d 0x0400c780 0x60824c0d 0x00604780
0x2000060d 0x0401c780 0x3002060d 0xc4100780
0x2000ca0d 0x0420c780 0xd00e060d 0x80c00780
0x1001e003 0x00000780 0x103f800d 0x000fffff
0x1000f81d 0x0403c782 0x20088c21 0x00000003
0x30841021 0x6c40c780 0x1000061d 0x2440c280
0xa0001021 0x2c014780 0x00020005 0xc0000780
0xd0080ffd 0x040007c8 0x04020e01 0xe420c780
0xa0039003 0x00000000 0x10038003 0x00000100
0x2101ec1d 0x00000003 0x100f800d 0x00000003
0x3007060d 0xc4000780 0x40074e21 0x00200780
0x30101021 0xc4100780 0x60064e0d 0x00220780
0x10088021 0x00000003 0x30070c25 0xc4000780
0x30071019 0xc4000780 0x2009860c 0x20038c0c
0x61202c0d 0x00000003 0x20000205 0x0400c780
0x30020205 0xc4100780 0x2000ca05 0x04204780 0x30020205 0xc4100780 0x2000ca05 0x04204780
0xd00e0209 0x80c00780 0x1001b003 0x00000780 0xd00e0205 0x80c00780 0x10039003 0x00000780
0x103f8009 0x000fffff 0x30040805 0xc4100782 0x103f8005 0x000fffff 0x04000e01 0xe4204782
0x20000205 0x04000780 0x00020205 0xc0000780 0x861ffe03 0x00000000 0x30050a05 0xc4100780
0x04000e01 0xe4208780 0x861ffe03 0x00000000 0x20000205 0x04010780 0x00020209 0xc0000780
0x30040009 0xc4100780 0x20000809 0x04008780 0xd808380d 0x20000780 0x1900ee18 0x1d00e004
0x00020405 0xc0000780 0x1400ce09 0x0423c780 0x861ffe03 0x00000000 0x300603fd 0x6c0107c8
0x861ffe03 0x00000000 0x00020205 0xc0000780 0x20088a0d 0x00000003 0x10000a0d 0x0403c500
0x04000e01 0xe4208780 0x861ffe03 0x00000000 0x30060219 0xac000780 0x2004801d 0x00000003
0x00020205 0xc0000780 0x20088015 0x00000003 0x04020e01 0xe420c780 0x00020e09 0xc0000780
0x3402dffd 0x6c2047c8 0x3402de19 0xac200780 0x04000e01 0xe4218780 0x10000005 0x0403c780
0x10000015 0x0403c500 0x2004821d 0x00000003 0x3806cffd 0x6c2047c8 0x10000e05 0x0403c280
0x04020e01 0xe4214780 0x00020e09 0xc0000780 0x0002020d 0xc0000780 0xdc08380d 0x20000780
0x04000e01 0xe4218780 0x10000209 0x0403c780 0x3806ce0d 0xac200780 0x1c00c005 0x0423c780
0x3806cffd 0x6c2047c8 0x10000e09 0x0403c280 0x20028019 0x00000003 0x04020e01 0xe4204780
0x0002040d 0xc0000780 0xdc08380d 0x20000780 0x00020c09 0xc0000780 0x04000e01 0xe420c780
0x3806ce15 0xac200780 0x1c00c009 0x0423c780 0x10000005 0x0403c780 0x3803cffd 0x6c2047c8
0x20028219 0x00000003 0x04020e01 0xe4208780 0x10000c05 0x0403c280 0x0002020d 0xc0000780
0x00020c09 0xc0000780 0x04000e01 0xe4214780 0xdc08380d 0x20000780 0x3803ce19 0xac200780
0x10000209 0x0403c780 0x3805cffd 0x6c2047c8 0x1c00c005 0x0423c780 0x307c0a0d 0x64008780
0x10000c09 0x0403c280 0x0002040d 0xc0000780 0x30040415 0x64010780 0x04020e01 0xe4204780
0xdc08380d 0x20000780 0x3805ce15 0xac200780 0xd0830605 0x04400780 0xd0830a0d 0x04400780
0x1c00c009 0x0423c780 0x307c0001 0x64008780 0x04000e01 0xe4218780 0xd0030215 0x040007c0
0x30040619 0x64010780 0x04020e01 0xe4208780 0xa006c003 0x00000000 0x1400d005 0x0423c780
0xd0830001 0x04400780 0xd0830c09 0x04400780 0x1006c003 0x00000100 0x3406d005 0x6c204780
0x04000e01 0xe4214780 0xd0020009 0x040007c0 0x30000205 0x04000780 0x00020209 0xc0000780
0xa005d003 0x00000000 0x1400d001 0x0423c780 0xd8083809 0x20000780 0x0002080d 0xc0000780
0x1005d003 0x00000100 0x40074c01 0x00200780 0x1500f004 0x1900e00c 0x0c044e01 0xe420c780
0xa0004e19 0x04200780 0x2102ec1d 0x00000003 0x307c0bfd 0x6c0087ca 0x30010c05 0xac000500
0x00020205 0xc0000780 0x30100001 0xc4100780 0x00020809 0xc0000500 0x08040e01 0xe4204500
0x30070c19 0xc4000780 0x3405d01d 0x6c204780 0x861ffe03 0x00000000 0x30000405 0x6c0107d0
0x60064c01 0x00200780 0x20478204 0x20068000 0xa00003fd 0x0c0147c8 0xa0080003 0x00000000
0x00020209 0xc0000780 0x20000801 0x04000780 0x10080003 0x00001100 0x40054c11 0x00200780
0xd8083809 0x20000780 0x30020005 0xc4100780 0xa0004e05 0x04200780 0x2102ec0d 0x00000003
0x1900e000 0x2101e804 0xd00e0201 0xa0c00780 0x30100811 0xc4100780 0x30030205 0xc4000780
0x1400d001 0x0423c780 0x307c05fd 0x6c0087ca 0x60044c0d 0x00210780 0x20018604 0x20018004
0x30000003 0x00000280 0x2101ec09 0x00000003 0xd4113809 0x20000780 0x3002020d 0xc4100780
0x40074c21 0x00200780 0x10018005 0x00000003 0x1900e004 0x2103e80c 0xd00e0605 0xa0c00780
0xa0004e19 0x04200780 0x2102ec1d 0x00000003 0xf0000001 0xe0000002 0x30000003 0x00000100
0x30101021 0xc4100780 0x30020205 0xc4000780 0x2101ec0d 0x00000003 0x40054c19 0x00200780
0x30070c09 0xc4000780 0x60064c0d 0x00220780 0x10018005 0x00000003 0xa0004e11 0x04200780
0x20028204 0x20048608 0x20000405 0x04004780 0x2102ec15 0x00000003 0x30100c19 0xc4100780
0x30020205 0xc4100780 0x30000a01 0xac000780 0x30030205 0xc4000780 0x3005080d 0xc4000780
0x2000c805 0x04204780 0xd00e0201 0xa0c00781 0x60044c09 0x00218780 0x20038204 0x20008400
0x20000001 0x04004780 0xd4103805 0x20000780
0x30020005 0xc4100780 0x1500e000 0x2101e804
0xd00e0201 0xa0c00781
} }
} }
code { code {
@@ -1199,25 +1457,27 @@ code {
0x1000f801 0x0403c100 0x301f0005 0xec100780 0x1000f801 0x0403c100 0x301f0005 0xec100780
0x30010001 0xc4100780 0xd0000201 0x04008780 0x30010001 0xc4100780 0xd0000201 0x04008780
0x00000e05 0xc0000780 0x30820001 0xac400780 0x00000e05 0xc0000780 0x30820001 0xac400780
0x04001401 0xe4200780 0xd0105009 0x20000780 0x04001401 0xe4200780 0x861ffe03 0x00000000
0x20018c05 0x00000003 0x1000d001 0x0423c780 0x307cd1fd 0x6c20c7c8 0x1000f815 0x0403c780
0x1100f014 0x40010424 0x3800c015 0x04214780 0x1004a003 0x00000280 0x1000d001 0x0423c780
0x60000629 0x00024780 0x400b0425 0x00000780 0x40090005 0x00000780 0x60080205 0x00004780
0x30101429 0xc4100780 0x600a0625 0x00024780 0x30100205 0xc4100780 0x60080001 0x00004780
0x200005fd 0x040107c8 0x60000401 0x00028780 0x200a8005 0x00000003 0x00020205 0xc0000780
0x30101209 0xc4100780 0x600a0401 0x00008100 0xa0049003 0x00000000 0x2000d005 0x04200780
0x20018001 0x00000003 0x3606c225 0xec200780
0x300101fd 0x6c0147c8 0x20000a15 0x04024780
0x10044003 0x00000280 0xf0000001 0xe0000002
0x200005fd 0x040107c8 0xa005d003 0x00000000
0x20018c05 0x00000003 0x10057003 0x00000280
0xd0105005 0x20000780 0x1400c001 0x0423c780
0x2040d001 0x04200780 0x40010409 0x00000780
0x60000609 0x00008780 0x30100409 0xc4100780
0x60000401 0x00008780 0x20000001 0x04014780
0x1005d003 0x00000780 0x1000d001 0x0423c780
0x40010409 0x00000780 0x60000609 0x00008780
0x30100409 0xc4100780 0x60000401 0x00008780
0x20000001 0x04014780 0x00000e05 0xc0000782
0x04021401 0xe4200780 0x861ffe03 0x00000000 0x04021401 0xe4200780 0x861ffe03 0x00000000
0x307cd1fd 0x6c20c7c8 0x1005b003 0x00000280
0x1000d001 0x0423c780 0x40090005 0x00000780
0x60080205 0x00004780 0x30100205 0xc4100780
0x60080005 0x00004780 0x00000e05 0xc0000780
0x200a8201 0x00000003 0xd4085009 0x20000780
0x00020005 0xc0000780 0xa005a003 0x00000000
0x1900e000 0x2101f008 0x3606c215 0xec200780
0x20018205 0x00000003 0x20000001 0x04014780
0x00000e09 0xc0000780 0x300203fd 0x6c0147c8
0x08021401 0xe4200780 0x10053003 0x00000280
0xf0000001 0xe0000002 0x861ffe03 0x00000000
0x300607fd 0x640107c8 0x308309fd 0x6440c2c8 0x300607fd 0x640107c8 0x308309fd 0x6440c2c8
0x30000003 0x00000100 0x2101ee05 0x00000003 0x30000003 0x00000100 0x2101ee05 0x00000003
0x100f8001 0x00000003 0x30010001 0xc4000780 0x100f8001 0x00000003 0x30010001 0xc4000780
@@ -1271,63 +1531,61 @@ code {
bincode { bincode {
0xd0800205 0x00400780 0xa000020d 0x04000780 0xd0800205 0x00400780 0xa000020d 0x04000780
0xa0000001 0x04000780 0x30040605 0xc4100780 0xa0000001 0x04000780 0x30040605 0xc4100780
0x20000005 0x04004780 0x308103fd 0x644107c8 0x20000009 0x04004780 0x308105fd 0x644107c8
0xa0011003 0x00000000 0x30020211 0xc4100780 0xa0011003 0x00000000 0x30020411 0xc4100780
0x10011003 0x00000280 0xa0004e09 0x04200780 0x10011003 0x00000280 0xa0004e05 0x04200780
0x30070415 0xc4100780 0x30060409 0xc4100780 0x30070215 0xc4100780 0x30060205 0xc4100780
0x20028a08 0x2102ec08 0x20000809 0x04008780 0x20018a04 0x2101ec04 0x20000805 0x04004780
0xd00e0409 0x80c00780 0x00000805 0xc0000780 0xd00e0205 0x80c00780 0x00000805 0xc0000780
0x04041401 0xe4208780 0xf0000001 0xe0000002 0x04041401 0xe4204780 0xf0000001 0xe0000002
0x861ffe03 0x00000000 0x00000805 0xc0000780 0x861ffe03 0x00000000 0x307cd1fd 0x6c20c7c8
0x307cd1fd 0x6c20c7c8 0x04021401 0xe43f0780 0x1000f819 0x0403c780 0x10046003 0x00000280
0x1004d003 0x00000280 0xa0004c15 0x04200780 0xa0004c15 0x04200780 0x1000d005 0x0423c780
0x1000d009 0x0423c780 0x400a0a19 0x00000780 0x400a061d 0x00000780 0x30100e1d 0xc4100780
0x30100c19 0xc4100780 0x600a0809 0x00018780 0x600a0405 0x0001c780 0x3082d015 0xac600780
0x3082d015 0xac600780 0x2000d01d 0x04208780 0x2000d021 0x04204780 0xa0045003 0x00000000
0xa004c003 0x00000000 0x307c0bfd 0x6c0107c8 0x30000bfd 0x6c0107c8 0x2001841c 0x20088420
0x20028218 0x2007821c 0xd0105005 0x20000780 0x10000405 0x0403c780 0xd0105005 0x20000780
0x3406c1fd 0x6c20c7d8 0x3001d1fd 0x6c2112d8 0x3407c1fd 0x6c20c7d8 0x3001d1fd 0x6c2112d8
0xa002d003 0x00000000 0x1002c003 0x00001100 0xa002d003 0x00000000 0x1002c003 0x00001100
0xd010a005 0x20000780 0x2400c009 0x04218780 0xd010a005 0x20000780 0x2400c009 0x0421c780
0x30020409 0xc4100780 0x2000ca09 0x04208780 0x30020409 0xc4100780 0x2000ca09 0x04208780
0xd00e0409 0x80c00780 0x1002d003 0x00000780 0xd00e0425 0x80c00780 0x1002d003 0x00000780
0x1000f809 0x0403c780 0x301f0421 0xec100782 0x1000f825 0x0403c780 0x301f1209 0xec100782
0x30010409 0xc4100780 0xd0021009 0x04008780 0x30011225 0xc4100780 0xd0090409 0x04008780
0x00000805 0xc0000780 0x30830409 0xac400780 0x00000805 0xc0000780 0x30830409 0xac400780
0x04001401 0xe4208780 0x861ffe03 0x00000000 0x04001401 0xe4208780 0x861ffe03 0x00000000
0x10043003 0x00000100 0x200a8009 0x00000003 0xa003f003 0x00000000 0x10000009 0x0403c780
0x00020405 0xc0000780 0xa0042003 0x00000000 0x1003f003 0x00000100 0x200a8025 0x00000003
0x10008008 0x20058020 0x00000809 0xc0000780 0x00021205 0xc0000780 0x20108409 0x00000003
0x3403c025 0xec200780 0xd808500d 0x20000780 0x3403c025 0xec200780 0x30020bfd 0x6c0107d8
0x20108409 0x00000003 0x2c00c025 0x04224780 0x20000c19 0x04024780 0xd4008005 0x20000780
0x300805fd 0x6c0047d8 0x08021401 0xe4224780 0x10039003 0x00001280 0xf0000001 0xe0000002
0xd4008005 0x20000780 0x10039003 0x00001280 0x861ffe03 0x00000000 0x20008e1d 0x00000013
0xf0000001 0xe0000002 0x00000805 0xc0000780 0x30080ffd 0x6c0047d8 0x20008205 0x00000013
0xd4085009 0x20000780 0x3883c009 0xac600780 0x10021003 0x00001280 0xf0000001 0xe0000002
0x04021401 0xe4208780 0x861ffe03 0x00000000 0x30830c05 0xac400780 0x00000805 0xc0000780
0x20008c19 0x00000013 0x30070dfd 0x6c0047d8 0x04021401 0xe4204780 0xd4085009 0x20000780
0x20008205 0x00000013 0x10021003 0x00001280 0x1900f004 0x2901e004 0x04021401 0xe4204780
0xf0000001 0xe0000002 0x00000805 0xc0000780 0x1900e804 0x2901e004 0x04021401 0xe4204780
0xd4085009 0x20000780 0x1900f004 0x2901e004 0x1900e404 0x2901e004 0x04021401 0xe4204780
0x04021401 0xe4204780 0x1900e804 0x2901e004 0x1800c205 0x0423c780 0x307c01fd 0x640087c8
0x04021401 0xe4204780 0x1900e404 0x2901e004 0x2800c001 0x04204780 0x308407fd 0x6440c2c8
0x04021401 0xe4204780 0x1800c205 0x0423c780 0x04021401 0xe4200780 0x30000003 0x00000100
0x307c01fd 0x640087c8 0x2800c001 0x04204780 0xd0105005 0x20000780 0x2101ee19 0x00000003
0x308407fd 0x6440c2c8 0x04021401 0xe4200780 0x100f8005 0x00000003 0x20018609 0x00000003
0x30000003 0x00000100 0xd0105005 0x20000780 0x1000d001 0x0423c780 0x30060205 0xc4000780
0x2101ee19 0x00000003 0x100f8005 0x00000003 0x1100f014 0x41032e1c 0x40000a24 0x3505e014
0x20018609 0x00000003 0x1000d001 0x0423c780 0x30100e21 0xc4100780 0x6001081d 0x00024780
0x30060205 0xc4000780 0x1100f014 0x41032e1c 0x3006060d 0xc4000780 0x400b0819 0x00000780
0x40000a24 0x3505e014 0x30100e21 0xc4100780 0x60024e05 0x00220780 0x00000805 0xc0000780
0x6001081d 0x00024780 0x3006060d 0xc4000780 0x30100e1d 0xc4100780 0x600a0a11 0x00018780
0x400b0819 0x00000780 0x60024e05 0x00220780 0x2000020d 0x0400c780 0xa0004c05 0x042007c0
0x00000805 0xc0000780 0x30100e1d 0xc4100780 0x60000801 0x0001c780 0x30100811 0xc4100780
0x600a0a11 0x00018780 0x2000020d 0x0400c780 0xd4085005 0x20000780 0x20000205 0x0400c780
0xa0004c05 0x042007c0 0x60000801 0x0001c780 0x600a0801 0x00010100 0x3483c009 0xac600780
0x30100811 0xc4100780 0xd4085005 0x20000780 0x30020205 0xc4100780 0x20028000 0x2101e804
0x20000205 0x0400c780 0x600a0801 0x00010100 0xd00e0201 0xa0c00781
0x3483c009 0xac600780 0x30020205 0xc4100780
0x20028000 0x2101e804 0xd00e0201 0xa0c00781
} }
} }
code { code {