optimizations

This commit is contained in:
chudov
2010-11-05 16:28:24 +00:00
parent 5297071086
commit 6d4e361462
2 changed files with 786 additions and 164 deletions

View File

@@ -20,12 +20,14 @@
#ifndef _FLACCL_KERNEL_H_
#define _FLACCL_KERNEL_H_
#if defined(__Cedar__) || defined(__Redwood__) || defined(__Juniper__) || defined(__Cypress__)
#if defined(__Cedar__) || defined(__Redwood__) || defined(__Juniper__) || defined(__Cypress__) || defined(__CPU__)
#define AMD
#ifdef DEBUG
#pragma OPENCL EXTENSION cl_amd_printf : enable
#endif
//#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#ifdef __CPU__
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#endif
#define iclamp(a,b,c) clamp(a,b,c)
#else
#define iclamp(a,b,c) max(b,min(a,c))
@@ -58,7 +60,8 @@ typedef struct
int wbits;
int abits;
int porder;
int reserved[2];
int ignore;
int reserved;
} FLACCLSubframeData;
typedef struct
@@ -67,36 +70,54 @@ typedef struct
int coefs[32]; // fixme: should be short?
} FLACCLSubframeTask;
__kernel void clWindowRectangle(__global float* window, int windowOffset)
{
window[get_global_id(0)] = 1.0f;
}
__kernel void clWindowFlattop(__global float* window, int windowOffset)
{
float p = M_PI_F * get_global_id(0) / (get_global_size(0) - 1);
window[get_global_id(0)] = 1.0f
- 1.93f * cos(2 * p)
+ 1.29f * cos(4 * p)
- 0.388f * cos(6 * p)
+ 0.0322f * cos(8 * p);
}
__kernel void clWindowTukey(__global float* window, int windowOffset, float p)
{
int Np = (int)(p / 2.0f * get_global_size(0)) - 1;
int n = select(max(Np, get_global_id(0) - (get_global_size(0) - Np - 1) + Np), get_global_id(0), get_global_id(0) <= Np);
window[get_global_id(0)] = 0.5f - 0.5f * cos(M_PI_F * n / Np);
}
__kernel void clStereoDecorr(
__global int *samples,
__global short2 *src,
__global int4 *samples,
__global int4 *src,
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
samples[2 * offset + pos] = (s.x + s.y) >> 1;
samples[3 * offset + pos] = s.x - s.y;
}
int4 s = src[pos];
int4 x = (s << 16) >> 16;
int4 y = s >> 16;
samples[pos] = x;
samples[1 * offset + pos] = y;
samples[2 * offset + pos] = (x + y) >> 1;
samples[3 * offset + pos] = x - y;
}
__kernel void clChannelDecorr2(
__global int *samples,
__global short2 *src,
__global int4 *samples,
__global int4 *src,
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
}
int4 s = src[pos];
samples[pos] = (s << 16) >> 16;
samples[offset + pos] = s >> 16;
}
//__kernel void clChannelDecorr(
@@ -113,6 +134,32 @@ __kernel void clChannelDecorr2(
#define __ffs(a) (32 - clz(a & (-a)))
//#define __ffs(a) (33 - clz(~a & (a - 1)))
#ifdef __CPU__
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clFindWastedBits(
__global FLACCLSubframeTask *tasks,
__global int *samples,
int tasksPerChannel
)
{
__global FLACCLSubframeTask* ptask = &tasks[get_group_id(0) * tasksPerChannel];
int w = 0, a = 0;
for (int pos = 0; pos < ptask->data.blocksize; pos ++)
{
int smp = samples[ptask->data.samplesOffs + pos];
w |= smp;
a |= smp ^ (smp >> 31);
}
w = max(0,__ffs(w) - 1);
a = 32 - clz(a) - w;
for (int i = 0; i < tasksPerChannel; i++)
{
ptask[i].data.wbits = w;
ptask[i].data.abits = a;
//ptask[i].data.size = ptask[i].data.obits * ptask[i].data.blocksize;
}
}
#else
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void clFindWastedBits(
__global FLACCLSubframeTask *tasks,
@@ -154,11 +201,88 @@ void clFindWastedBits(
w = max(0,__ffs(wbits[0]) - 1);
a = 32 - clz(abits[0]) - w;
if (tid < tasksPerChannel)
tasks[get_group_id(0) * tasksPerChannel + tid].data.wbits = w;
if (tid < tasksPerChannel)
tasks[get_group_id(0) * tasksPerChannel + tid].data.abits = a;
{
int i = get_group_id(0) * tasksPerChannel + tid;
tasks[i].data.wbits = w;
tasks[i].data.abits = a;
//tasks[i].data.size = tasks[i].data.obits * tasks[i].data.blocksize;
}
}
#endif
#ifdef __CPU__
#define TEMPBLOCK 128
#define STORE_AC(ro, val) if (ro <= MAX_ORDER) pout[ro] = val;
#define STORE_AC4(ro, val) STORE_AC(ro*4+0, val##ro.x) STORE_AC(ro*4+1, val##ro.y) STORE_AC(ro*4+2, val##ro.z) STORE_AC(ro*4+3, val##ro.w)
// get_num_groups(0) == number of tasks
// get_num_groups(1) == number of windows
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clComputeAutocor(
__global float *output,
__global const int *samples,
__global const float *window,
__global FLACCLSubframeTask *tasks,
const int taskCount // tasks per block
)
{
FLACCLSubframeData task = tasks[get_group_id(0) * taskCount].data;
int len = task.blocksize;
int windowOffs = get_group_id(1) * len;
float data[TEMPBLOCK + MAX_ORDER + 3];
double4 ac0 = 0.0, ac1 = 0.0, ac2 = 0.0, ac3 = 0.0, ac4 = 0.0, ac5 = 0.0, ac6 = 0.0, ac7 = 0.0, ac8 = 0.0;
for (int pos = 0; pos < len; pos += TEMPBLOCK)
{
for (int tid = 0; tid < TEMPBLOCK + MAX_ORDER + 3; tid++)
data[tid] = tid < len - pos ? samples[task.samplesOffs + pos + tid] * window[windowOffs + pos + tid] : 0.0f;
for (int j = 0; j < TEMPBLOCK;)
{
float4 temp0 = 0.0f, temp1 = 0.0f, temp2 = 0.0f, temp3 = 0.0f, temp4 = 0.0f, temp5 = 0.0f, temp6 = 0.0f, temp7 = 0.0f, temp8 = 0.0f;
for (int k = 0; k < 32; k++)
{
float d0 = data[j];
temp0 += d0 * vload4(0, &data[j]);
temp1 += d0 * vload4(1, &data[j]);
#if MAX_ORDER >= 8
temp2 += d0 * vload4(2, &data[j]);
#if MAX_ORDER >= 12
temp3 += d0 * vload4(3, &data[j]);
#if MAX_ORDER >= 16
temp4 += d0 * vload4(4, &data[j]);
temp5 += d0 * vload4(5, &data[j]);
temp6 += d0 * vload4(6, &data[j]);
temp7 += d0 * vload4(7, &data[j]);
temp8 += d0 * vload4(8, &data[j]);
#endif
#endif
#endif
j++;
}
ac0 += convert_double4(temp0);
ac1 += convert_double4(temp1);
#if MAX_ORDER >= 8
ac2 += convert_double4(temp2);
#if MAX_ORDER >= 12
ac3 += convert_double4(temp3);
#if MAX_ORDER >= 16
ac4 += convert_double4(temp4);
ac5 += convert_double4(temp5);
ac6 += convert_double4(temp6);
ac7 += convert_double4(temp7);
ac8 += convert_double4(temp8);
#endif
#endif
#endif
}
}
__global float * pout = &output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1)];
STORE_AC4(0, ac) STORE_AC4(1, ac) STORE_AC4(2, ac) STORE_AC4(3, ac)
STORE_AC4(4, ac) STORE_AC4(5, ac) STORE_AC4(6, ac) STORE_AC4(7, ac)
STORE_AC4(8, ac)
}
#else
// get_num_groups(0) == number of tasks
// get_num_groups(1) == number of windows
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
@@ -181,7 +305,16 @@ void clComputeAutocor(
int bs = task.blocksize;
int windowOffs = get_group_id(1) * bs;
data[tid] = tid < bs ? samples[task.samplesOffs + tid] * window[windowOffs + tid] : 0.0f;
// if (tid < GROUP_SIZE / 4)
// {
//float4 dd = 0.0f;
//if (tid * 4 < bs)
// dd = vload4(tid, window + windowOffs) * convert_float4(vload4(tid, samples + task.samplesOffs));
//vstore4(dd, tid, &data[0]);
// }
data[tid] = 0.0f;
// This simpler code doesn't work somehow!!!
//data[tid] = tid < bs ? samples[task.samplesOffs + tid] * window[windowOffs + tid] : 0.0f;
const int THREADS_FOR_ORDERS = MAX_ORDER < 8 ? 8 : MAX_ORDER < 16 ? 16 : MAX_ORDER < 32 ? 32 : 64;
float corr = 0.0f;
@@ -189,24 +322,24 @@ void clComputeAutocor(
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
{
// fetch samples
float nextData = pos + tid + GROUP_SIZE < bs ? samples[task.samplesOffs + pos + tid + GROUP_SIZE] * window[windowOffs + pos + tid + GROUP_SIZE] : 0.0f;
float nextData = pos + tid < bs ? samples[task.samplesOffs + pos + tid] * window[windowOffs + pos + tid] : 0.0f;
data[tid + GROUP_SIZE] = nextData;
barrier(CLK_LOCAL_MEM_FENCE);
#ifdef XXXAMD
__local float * dptr = &data[tid & ~(THREADS_FOR_ORDERS - 1)];
int lag = tid & (THREADS_FOR_ORDERS - 1);
int tid1 = tid + GROUP_SIZE - lag;
#ifdef AMD
float4 res = 0.0f;
for (int i = 0; i < THREADS_FOR_ORDERS / 4; i++)
res += vload4(i, dptr) * vload4(i, &data[tid]);
res += vload4(i, &data[tid1 - lag]) * vload4(i, &data[tid1]);
corr += res.x + res.y + res.w + res.z;
#else
int tid1 = tid & ~(THREADS_FOR_ORDERS - 1);
float res = 0.0f;
for (int i = 0; i < THREADS_FOR_ORDERS; i++)
res += data[tid1 + i] * data[tid + i];
res += data[tid1 - lag + i] * data[tid1 + i];
corr += res;
#endif
if (THREADS_FOR_ORDERS > 8 && (pos & (GROUP_SIZE * 7)) == 0)
if ((pos & (GROUP_SIZE * 15)) == 0)
{
corr1 += corr;
corr = 0.0f;
@@ -228,7 +361,68 @@ void clComputeAutocor(
if (tid <= MAX_ORDER)
output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1) + tid] = data[tid];
}
#endif
#ifdef __CPU__
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clComputeLPC(
__global float *pautoc,
__global float *lpcs,
int windowCount
)
{
int lpcOffs = (get_group_id(0) + get_group_id(1) * windowCount) * (MAX_ORDER + 1) * 32;
int autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1);
volatile double ldr[32];
volatile double gen0[32];
volatile double gen1[32];
volatile double err[32];
__global float* autoc = pautoc + autocOffs;
for (int i = 0; i < MAX_ORDER; i++)
{
gen0[i] = gen1[i] = autoc[i + 1];
ldr[i] = 0.0;
}
// Compute LPC using Schur and Levinson-Durbin recursion
double error = autoc[0];
for (int order = 0; order < MAX_ORDER; order++)
{
// Schur recursion
double reff = -gen1[0] / error;
//error += gen1[0] * reff; // Equivalent to error *= (1 - reff * reff);
error *= (1 - reff * reff);
for (int j = 0; j < MAX_ORDER - 1 - order; j++)
{
gen1[j] = gen1[j + 1] + reff * gen0[j];
gen0[j] = gen1[j + 1] * reff + gen0[j];
}
err[order] = error;
// Levinson-Durbin recursion
ldr[order] = reff;
for (int j = 0; j < order / 2; j++)
{
double tmp = ldr[j];
ldr[j] += reff * ldr[order - 1 - j];
ldr[order - 1 - j] += reff * tmp;
}
if (0 != (order & 1))
ldr[order / 2] += ldr[order / 2] * reff;
// Output coeffs
for (int j = 0; j <= order; j++)
lpcs[lpcOffs + order * 32 + j] = -ldr[order - j];
}
// Output prediction error estimates
for (int j = 0; j < MAX_ORDER; j++)
lpcs[lpcOffs + MAX_ORDER * 32 + j] = err[j];
}
#else
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void clComputeLPC(
__global float *autoc,
@@ -311,7 +505,85 @@ void clComputeLPC(
if (get_local_id(0) < MAX_ORDER)
lpcs[lpcOffs + MAX_ORDER * 32 + get_local_id(0)] = shared.error[get_local_id(0)];
}
#endif
#ifdef __CPU__
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clQuantizeLPC(
__global FLACCLSubframeTask *tasks,
__global float*lpcs,
int taskCount, // tasks per block
int taskCountLPC, // tasks per set of coeffs (<= 32)
int minprecision,
int precisions
)
{
int bs = tasks[get_group_id(1) * taskCount].data.blocksize;
int abits = tasks[get_group_id(1) * taskCount].data.abits;
int lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32;
float error[MAX_ORDER];
int best_orders[MAX_ORDER];
// Load prediction error estimates based on Akaike's Criteria
for (int tid = 0; tid < MAX_ORDER; tid++)
{
error[tid] = bs * log(lpcs[lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log(bs);
best_orders[tid] = tid;
}
// Select best orders
for (int i = 0; i < MAX_ORDER && i < taskCountLPC; i++)
{
for (int j = i + 1; j < MAX_ORDER; j++)
{
if (error[best_orders[j]] < error[best_orders[i]])
{
int tmp = best_orders[j];
best_orders[j] = best_orders[i];
best_orders[i] = tmp;
}
}
}
// Quantization
for (int i = 0; i < taskCountLPC; i ++)
{
int order = best_orders[i >> precisions];
int tmpi = 0;
for (int tid = 0; tid <= order; tid ++)
{
float lpc = lpcs[lpcOffs + order * 32 + tid];
// get 15 bits of each coeff
int c = convert_int_rte(lpc * (1 << 15));
// remove sign bits
tmpi |= c ^ (c >> 31);
}
// choose precision
//int cbits = max(3, min(10, 5 + (abits >> 1))); // - convert_int_rte(shared.PE[order - 1])
int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (bs <= 2304) - (bs <= 1152) - (bs <= 576), abits), clz(order) + 1 - abits));
// calculate shift based on precision and number of leading zeroes in coeffs
int shift = max(0,min(15, clz(tmpi) - 18 + cbits));
int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i;
tmpi = 0;
for (int tid = 0; tid <= order; tid ++)
{
float lpc = lpcs[lpcOffs + order * 32 + tid];
// quantize coeffs with given shift
int c = convert_int_rte(clamp(lpc * (1 << shift), -1 << (cbits - 1), 1 << (cbits - 1)));
// remove sign bits
tmpi |= c ^ (c >> 31);
tasks[taskNo].coefs[tid] = c;
}
// calculate actual number of bits (+1 for sign)
cbits = 1 + 32 - clz(tmpi);
// output shift, cbits, ro
tasks[taskNo].data.shift = shift;
tasks[taskNo].data.cbits = cbits;
tasks[taskNo].data.residualOrder = order + 1;
}
}
#else
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void clQuantizeLPC(
__global FLACCLSubframeTask *tasks,
@@ -443,10 +715,82 @@ void clQuantizeLPC(
tasks[taskNo].coefs[tid] = coef;
}
}
#endif
#ifdef __CPU__
inline int calc_residual(__global int *ptr, int * coefs, int ro)
{
int sum = 0;
for (int i = 0; i < ro; i++)
sum += ptr[i] * coefs[i];
return sum;
}
#define ENCODE_N(cro,action) for (int pos = cro; pos < bs; pos ++) { \
int t = (data[pos] - (calc_residual(data + pos - cro, task.coefs, cro) >> task.data.shift)) >> task.data.wbits; \
action; \
}
#define SWITCH_N(action) \
switch (ro) \
{ \
case 0: ENCODE_N(0, action) break; \
case 1: ENCODE_N(1, action) break; \
case 2: ENCODE_N(2, action) /*if (task.coefs[0] == -1 && task.coefs[1] == 2) ENCODE_N(2, 2 * ptr[1] - ptr[0], action) else*/ break; \
case 3: ENCODE_N(3, action) break; \
case 4: ENCODE_N(4, action) break; \
case 5: ENCODE_N(5, action) break; \
case 6: ENCODE_N(6, action) break; \
case 7: ENCODE_N(7, action) break; \
case 8: ENCODE_N(8, action) break; \
case 9: ENCODE_N(9, action) break; \
case 10: ENCODE_N(10, action) break; \
case 11: ENCODE_N(11, action) break; \
case 12: ENCODE_N(12, action) break; \
default: ENCODE_N(ro, action) \
}
__kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(1, 1, 1)))
void clEstimateResidual(
__global int*samples,
__global int*selectedTasks,
__global FLACCLSubframeTask *tasks
)
{
int selectedTask = selectedTasks[get_group_id(0)];
FLACCLSubframeTask task = tasks[selectedTask];
int ro = task.data.residualOrder;
int bs = task.data.blocksize;
#define EPO 6
int len[1 << EPO]; // blocksize / 64!!!!
__global int *data = &samples[task.data.samplesOffs];
// for (int i = ro; i < 32; i++)
//task.coefs[i] = 0;
for (int i = 0; i < 1 << EPO; i++)
len[i] = 0;
SWITCH_N((t = clamp(t, -0x7fffff, 0x7fffff), len[pos >> (12 - EPO)] += (t << 1) ^ (t >> 31)))
int total = 0;
for (int i = 0; i < 1 << EPO; i++)
{
int res = min(0x7fffff,len[i]);
int k = clamp(clz(1 << (12 - EPO)) - clz(res), 0, 14); // 27 - clz(res) == clz(16) - clz(res) == log2(res / 16)
total += (k << (12 - EPO)) + (res >> k);
}
int partLen = min(0x7ffffff, total) + (bs - ro);
int obits = task.data.obits - task.data.wbits;
tasks[selectedTask].data.size = min(obits * bs,
task.data.type == Fixed ? ro * obits + 6 + (4 * 1/2) + partLen :
task.data.type == LPC ? ro * obits + 4 + 5 + ro * task.data.cbits + 6 + (4 * 1/2)/* << porder */ + partLen :
task.data.type == Constant ? obits * select(1, bs, partLen != bs - ro) :
obits * bs);
}
#else
__kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void clEstimateResidual(
__global int*samples,
__global int*selectedTasks,
__global FLACCLSubframeTask *tasks
)
{
@@ -454,11 +798,16 @@ void clEstimateResidual(
__local FLACCLSubframeTask task;
__local int psum[64];
__local float fcoef[32];
__local int selectedTask;
if (get_local_id(0) == 0)
selectedTask = selectedTasks[get_group_id(0)];
barrier(CLK_LOCAL_MEM_FENCE);
const int tid = get_local_id(0);
if (tid < sizeof(task)/sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid];
barrier(CLK_GLOBAL_MEM_FENCE);
((__local int*)&task)[tid] = ((__global int*)(&tasks[selectedTask]))[tid];
barrier(CLK_LOCAL_MEM_FENCE);
int ro = task.data.residualOrder;
int bs = task.data.blocksize;
@@ -571,106 +920,101 @@ void clEstimateResidual(
task.data.type == LPC ? task.data.residualOrder * obits + 4 + 5 + task.data.residualOrder * task.data.cbits + 6 + (4 * 1/2)/* << porder */ + pl :
task.data.type == Constant ? obits * select(1, task.data.blocksize, pl != task.data.blocksize - task.data.residualOrder) :
obits * task.data.blocksize);
tasks[get_group_id(0)].data.size = len;
tasks[selectedTask].data.size = len;
}
}
#endif
__kernel
void clSelectStereoTasks(
__global FLACCLSubframeTask *tasks,
__global int*selectedTasks,
__global int*selectedTasksSecondEstimate,
__global int*selectedTasksBestMethod,
int taskCount,
int selectedCount
)
{
int best_size[4];
for (int ch = 0; ch < 4; ch++)
{
int first_no = selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount];
int best_len = tasks[first_no].data.size;
for (int i = 1; i < selectedCount; i++)
{
int task_no = selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount + i];
int task_len = tasks[task_no].data.size;
best_len = min(task_len, best_len);
}
best_size[ch] = best_len;
}
int bitsBest = best_size[2] + best_size[3]; // MidSide
int chMask = 2 | (3 << 2);
int bits = best_size[3] + best_size[1];
chMask = select(chMask, 3 | (1 << 2), bits < bitsBest); // RightSide
bitsBest = min(bits, bitsBest);
bits = best_size[0] + best_size[3];
chMask = select(chMask, 0 | (3 << 2), bits < bitsBest); // LeftSide
bitsBest = min(bits, bitsBest);
bits = best_size[0] + best_size[1];
chMask = select(chMask, 0 | (1 << 2), bits < bitsBest); // LeftRight
bitsBest = min(bits, bitsBest);
for (int ich = 0; ich < 2; ich++)
{
int ch = select(chMask & 3, chMask >> 2, ich > 0);
int roffs = tasks[(get_global_id(0) * 4 + ich) * taskCount].data.samplesOffs;
int nonSelectedNo = 0;
for (int i = 0; i < taskCount; i++)
{
int no = (get_global_id(0) * 4 + ch) * taskCount + i;
selectedTasksBestMethod[(get_global_id(0) * 2 + ich) * taskCount + i] = no;
tasks[no].data.residualOffs = roffs;
int selectedFound = 0;
for(int selectedNo = 0; selectedNo < selectedCount; selectedNo++)
selectedFound |= (selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount + selectedNo] == no);
if (!selectedFound)
selectedTasksSecondEstimate[(get_global_id(0) * 2 + ich) * (taskCount - selectedCount) + nonSelectedNo++] = no;
}
}
}
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
__kernel
void clChooseBestMethod(
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
__global int*selectedTasks,
int taskCount
)
{
int best_length = 0x7fffffff;
int best_index = 0;
const int tid = get_local_id(0);
for (int taskNo = 0; taskNo < taskCount; taskNo++)
int best_no = selectedTasks[get_global_id(0) * taskCount];
int best_len = tasks[best_no].data.size;
for (int i = 1; i < taskCount; i++)
{
if (tid == 0)
{
int len = tasks[taskNo + taskCount * get_group_id(0)].data.size;
if (len < best_length)
{
best_length = len;
best_index = taskNo;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
int task_no = selectedTasks[get_global_id(0) * taskCount + i];
int task_len = tasks[task_no].data.size;
best_no = select(best_no, task_no, task_len < best_len);
best_len = min(best_len, task_len);
}
if (tid == 0)
tasks[taskCount * get_group_id(0)].data.best_index = taskCount * get_group_id(0) + best_index;
tasks_out[get_global_id(0)] = tasks[best_no];
}
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
void clCopyBestMethod(
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
#ifdef __CPU__
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clEncodeResidual(
__global int *residual,
__global int *samples,
__global FLACCLSubframeTask *tasks
)
{
__local int best_index;
if (get_local_id(0) == 0)
best_index = tasks[count * get_group_id(0)].data.best_index;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
((__global int*)(tasks_out + get_group_id(0)))[get_local_id(0)] = ((__global int*)(tasks + best_index))[get_local_id(0)];
FLACCLSubframeTask task = tasks[get_group_id(0)];
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
__global int *data = &samples[task.data.samplesOffs];
SWITCH_N(residual[task.data.residualOffs + pos] = t);
}
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
void clCopyBestMethodStereo(
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
)
{
__local struct {
int best_index[4];
int best_size[4];
int lr_index[2];
} shared;
if (get_local_id(0) < 4)
shared.best_index[get_local_id(0)] = tasks[count * (get_group_id(0) * 4 + get_local_id(0))].data.best_index;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < 4)
shared.best_size[get_local_id(0)] = tasks[shared.best_index[get_local_id(0)]].data.size;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) == 0)
{
int bitsBest = shared.best_size[2] + shared.best_size[3]; // MidSide
shared.lr_index[0] = shared.best_index[2];
shared.lr_index[1] = shared.best_index[3];
if (bitsBest > shared.best_size[3] + shared.best_size[1]) // RightSide
{
bitsBest = shared.best_size[3] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[3];
shared.lr_index[1] = shared.best_index[1];
}
if (bitsBest > shared.best_size[0] + shared.best_size[3]) // LeftSide
{
bitsBest = shared.best_size[0] + shared.best_size[3];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[3];
}
if (bitsBest > shared.best_size[0] + shared.best_size[1]) // LeftRight
{
bitsBest = shared.best_size[0] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[1];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
((__global int*)(tasks_out + 2 * get_group_id(0)))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[0]))[get_local_id(0)];
if (get_local_id(0) == 0)
tasks_out[2 * get_group_id(0)].data.residualOffs = tasks[shared.best_index[0]].data.residualOffs;
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
((__global int*)(tasks_out + 2 * get_group_id(0) + 1))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[1]))[get_local_id(0)];
if (get_local_id(0) == 0)
tasks_out[2 * get_group_id(0) + 1].data.residualOffs = tasks[shared.best_index[1]].data.residualOffs;
}
#else
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void clEncodeResidual(
@@ -737,7 +1081,38 @@ void clEncodeResidual(
data[tid] = nextData;
}
}
#endif
#ifdef __CPU__
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clCalcPartition(
__global int *partition_lengths,
__global int *residual,
__global FLACCLSubframeTask *tasks,
int max_porder, // <= 8
int psize // == task.blocksize >> max_porder?
)
{
FLACCLSubframeTask task = tasks[get_group_id(1)];
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
//int psize = bs >> max_porder;
__global int *pl = partition_lengths + (1 << (max_porder + 1)) * get_group_id(1);
for (int p = 0; p < (1 << max_porder); p++)
pl[p] = 0;
for (int pos = ro; pos < bs; pos ++)
{
int t = residual[task.data.residualOffs + pos];
// overflow protection
t = clamp(t, -0x7fffff, 0x7fffff);
// convert to unsigned
t = (t << 1) ^ (t >> 31);
pl[pos / psize] += t;
}
}
#else
// get_group_id(0) == partition index / (GROUP_SIZE / 16)
// get_group_id(1) == task index
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
@@ -794,7 +1169,31 @@ void clCalcPartition(
}
}
}
#endif
#ifdef __CPU__
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clCalcPartition16(
__global int *partition_lengths,
__global int *residual,
__global int *samples,
__global FLACCLSubframeTask *tasks,
int max_porder // <= 8
)
{
FLACCLSubframeTask task = tasks[get_global_id(0)];
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
__global int *data = &samples[task.data.samplesOffs];
__global int *pl = partition_lengths + (1 << (max_porder + 1)) * get_global_id(0);
for (int p = 0; p < (1 << max_porder); p++)
pl[p] = 0;
//__global int *rptr = residual + task.data.residualOffs;
//SWITCH_N((rptr[pos] = t, pl[pos >> 4] += (t << 1) ^ (t >> 31)));
SWITCH_N((residual[task.data.residualOffs + pos] = t, t = clamp(t, -0x7fffff, 0x7fffff), t = (t << 1) ^ (t >> 31), pl[pos >> 4] += t));
}
#else
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void clCalcPartition16(
@@ -881,7 +1280,33 @@ void clCalcPartition16(
partition_lengths[lpos] = min(0x7fffff, s) + (16 - select(0, ro, offs < 16)) * (k + 1);
}
}
#endif
#ifdef __CPU__
// Sums partition lengths for a certain k == get_group_id(0)
// get_group_id(0) == k
// get_group_id(1) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clSumPartition(
__global int* partition_lengths,
int max_porder
)
{
if (get_group_id(0) != 0) // ignore k != 0
return;
__global int * sums = partition_lengths + (1 << (max_porder + 1)) * get_group_id(1);
for (int i = max_porder - 1; i >= 0; i--)
{
for (int j = 0; j < (1 << i); j++)
{
sums[(2 << i) + j] = sums[2 * j] + sums[2 * j + 1];
// if (get_group_id(1) == 0)
//printf("[%d][%d]: %d + %d == %d\n", i, j, sums[2 * j], sums[2 * j + 1], sums[2 * j] + sums[2 * j + 1]);
}
sums += 2 << i;
}
}
#else
// Sums partition lengths for a certain k == get_group_id(0)
// Requires 128 threads
// get_group_id(0) == k
@@ -914,7 +1339,42 @@ void clSumPartition(
if (get_local_size(0) + get_local_id(0) < (1 << max_porder))
partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = data[get_local_size(0) + get_local_id(0)];
}
#endif
#ifdef __CPU__
// Finds optimal rice parameter for each partition.
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clFindRiceParameter(
__global FLACCLSubframeTask *tasks,
__global int* rice_parameters,
__global int* partition_lengths,
int max_porder
)
{
__global FLACCLSubframeTask* task = tasks + get_group_id(0);
const int tid = get_local_id(0);
int lim = (2 << max_porder) - 1;
int psize = task->data.blocksize >> max_porder;
int bs = task->data.blocksize;
int ro = task->data.residualOrder;
for (int offs = 0; offs < lim; offs ++)
{
int pl = partition_lengths[(1 << (max_porder + 1)) * get_group_id(0) + offs];
int porder = 31 - clz(lim - offs);
int ps = (bs >> porder) - select(0, ro, offs == lim + 1 - (2 << porder));
//if (ps <= 0)
// printf("max_porder == %d, porder == %d, ro == %d\n", max_porder, porder, ro);
int k = clamp(31 - clz(pl / max(1, ps)), 0, 14);
int plk = ps * (k + 1) + (pl >> k);
// output rice parameter
rice_parameters[(get_group_id(0) << (max_porder + 2)) + offs] = k;
// output length
rice_parameters[(get_group_id(0) << (max_porder + 2)) + (1 << (max_porder + 1)) + offs] = plk;
}
}
#else
// Finds optimal rice parameter for each partition.
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
@@ -943,7 +1403,69 @@ void clFindRiceParameter(
rice_parameters[(get_group_id(0) << (max_porder + 2)) + (1 << (max_porder + 1)) + offs] = best_l;
}
}
#endif
#ifdef __CPU__
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void clFindPartitionOrder(
__global int *residual,
__global int* best_rice_parameters,
__global FLACCLSubframeTask *tasks,
__global int* rice_parameters,
int max_porder
)
{
__global FLACCLSubframeTask* task = tasks + get_group_id(0);
int partlen[9];
for (int p = 0; p < 9; p++)
partlen[p] = 0;
// fetch partition lengths
const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder);
int lim = (2 << max_porder) - 1;
for (int offs = 0; offs < lim; offs ++)
{
int len = rice_parameters[pos + offs];
int porder = 31 - clz(lim - offs);
partlen[porder] += len;
}
int best_length = partlen[0] + 4;
int best_porder = 0;
for (int porder = 1; porder <= max_porder; porder++)
{
int length = (4 << porder) + partlen[porder];
best_porder = select(best_porder, porder, length < best_length);
best_length = min(best_length, length);
}
best_length = (4 << best_porder) + task->data.blocksize - task->data.residualOrder;
int best_psize = task->data.blocksize >> best_porder;
int start = task->data.residualOffs + task->data.residualOrder;
int fin = task->data.residualOffs + best_psize;
for (int p = 0; p < (1 << best_porder); p++)
{
int k = rice_parameters[pos - (2 << best_porder) + p];
best_length += k * (fin - start);
for (int i = start; i < fin; i++)
{
int t = residual[i];
best_length += ((t << 1) ^ (t >> 31)) >> k;
}
start = fin;
fin += best_psize;
}
int obits = task->data.obits - task->data.wbits;
task->data.porder = best_porder;
task->data.size =
task->data.type == Fixed ? task->data.residualOrder * obits + 6 + best_length :
task->data.type == LPC ? task->data.residualOrder * obits + 6 + best_length + 4 + 5 + task->data.residualOrder * task->data.cbits :
task->data.type == Constant ? obits : obits * task->data.blocksize;
for (int offs = 0; offs < (1 << best_porder); offs ++)
best_rice_parameters[(get_group_id(0) << max_porder) + offs] = rice_parameters[pos - (2 << best_porder) + offs];
}
#else
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void clFindPartitionOrder(
@@ -998,3 +1520,4 @@ void clFindPartitionOrder(
// FIXME: should be bytes?
}
#endif
#endif