mirror of
https://github.com/claunia/cuetools.net.git
synced 2025-12-16 18:14:25 +00:00
optimizations
This commit is contained in:
@@ -444,6 +444,20 @@ namespace CUETools.Codecs.FLACCL
|
||||
}
|
||||
}
|
||||
|
||||
public int OrdersPerChannel
|
||||
{
|
||||
get
|
||||
{
|
||||
return eparams.orders_per_channel;
|
||||
}
|
||||
set
|
||||
{
|
||||
if (value < 0 || value > 32)
|
||||
throw new Exception("invalid OrdersPerWindow " + value.ToString());
|
||||
eparams.orders_per_channel = value;
|
||||
}
|
||||
}
|
||||
|
||||
public int MinLPCOrder
|
||||
{
|
||||
get
|
||||
@@ -998,6 +1012,10 @@ namespace CUETools.Codecs.FLACCL
|
||||
task.nResidualTasksPerChannel = task.nWindowFunctions * task.nTasksPerWindow + (eparams.do_constant ? 1 : 0) + Math.Max(0, 1 + eparams.max_fixed_order - eparams.min_fixed_order);
|
||||
if (task.nResidualTasksPerChannel > 32)
|
||||
throw new Exception("too many tasks");
|
||||
if (channels == 2 && channelsCount == 4)
|
||||
task.nEstimateTasksPerChannel = Math.Min(eparams.orders_per_channel, task.nResidualTasksPerChannel);
|
||||
else
|
||||
task.nEstimateTasksPerChannel = task.nResidualTasksPerChannel;
|
||||
|
||||
//if (task.nResidualTasksPerChannel >= 4)
|
||||
// task.nResidualTasksPerChannel = (task.nResidualTasksPerChannel + 7) & ~7;
|
||||
@@ -1005,6 +1023,19 @@ namespace CUETools.Codecs.FLACCL
|
||||
{
|
||||
for (int ch = 0; ch < channelsCount; ch++)
|
||||
{
|
||||
int *selectedTasks = (int*)task.clSelectedTasksPtr;
|
||||
for (int j = 0; j < task.nEstimateTasksPerChannel; j++)
|
||||
{
|
||||
int k = j;
|
||||
if (j < task.nWindowFunctions * task.nTasksPerWindow && task.nWindowFunctions > 1)
|
||||
{
|
||||
k = (j % task.nWindowFunctions) * task.nTasksPerWindow
|
||||
+ (j / task.nWindowFunctions);
|
||||
}
|
||||
selectedTasks[(iFrame * channelsCount + ch) * task.nEstimateTasksPerChannel + j] =
|
||||
(iFrame * channelsCount + ch) * task.nResidualTasksPerChannel + k;
|
||||
}
|
||||
|
||||
for (int iWindow = 0; iWindow < task.nWindowFunctions; iWindow++)
|
||||
{
|
||||
// LPC tasks
|
||||
@@ -1018,6 +1049,9 @@ namespace CUETools.Codecs.FLACCL
|
||||
task.ResidualTasks[task.nResidualTasks].residualOrder = order + 1;
|
||||
task.ResidualTasks[task.nResidualTasks].samplesOffs = ch * FLACCLWriter.MAX_BLOCKSIZE + iFrame * blocksize;
|
||||
task.ResidualTasks[task.nResidualTasks].residualOffs = task.ResidualTasks[task.nResidualTasks].samplesOffs;
|
||||
task.ResidualTasks[task.nResidualTasks].ignore = 0;
|
||||
task.ResidualTasks[task.nResidualTasks].wbits = 0;
|
||||
task.ResidualTasks[task.nResidualTasks].size = task.ResidualTasks[task.nResidualTasks].obits * blocksize;
|
||||
task.nResidualTasks++;
|
||||
}
|
||||
}
|
||||
@@ -1031,6 +1065,9 @@ namespace CUETools.Codecs.FLACCL
|
||||
task.ResidualTasks[task.nResidualTasks].blocksize = blocksize;
|
||||
task.ResidualTasks[task.nResidualTasks].samplesOffs = ch * FLACCLWriter.MAX_BLOCKSIZE + iFrame * blocksize;
|
||||
task.ResidualTasks[task.nResidualTasks].residualOffs = task.ResidualTasks[task.nResidualTasks].samplesOffs;
|
||||
task.ResidualTasks[task.nResidualTasks].ignore = 0;
|
||||
task.ResidualTasks[task.nResidualTasks].wbits = 0;
|
||||
task.ResidualTasks[task.nResidualTasks].size = task.ResidualTasks[task.nResidualTasks].obits * blocksize;
|
||||
task.ResidualTasks[task.nResidualTasks].residualOrder = 1;
|
||||
task.ResidualTasks[task.nResidualTasks].shift = 0;
|
||||
task.ResidualTasks[task.nResidualTasks].coefs[0] = 1;
|
||||
@@ -1047,6 +1084,9 @@ namespace CUETools.Codecs.FLACCL
|
||||
task.ResidualTasks[task.nResidualTasks].residualOrder = order;
|
||||
task.ResidualTasks[task.nResidualTasks].samplesOffs = ch * FLACCLWriter.MAX_BLOCKSIZE + iFrame * blocksize;
|
||||
task.ResidualTasks[task.nResidualTasks].residualOffs = task.ResidualTasks[task.nResidualTasks].samplesOffs;
|
||||
task.ResidualTasks[task.nResidualTasks].ignore = 0;
|
||||
task.ResidualTasks[task.nResidualTasks].wbits = 0;
|
||||
task.ResidualTasks[task.nResidualTasks].size = task.ResidualTasks[task.nResidualTasks].obits * blocksize;
|
||||
task.ResidualTasks[task.nResidualTasks].shift = 0;
|
||||
switch (order)
|
||||
{
|
||||
@@ -1094,6 +1134,8 @@ namespace CUETools.Codecs.FLACCL
|
||||
|
||||
if (!_settings.MappedMemory)
|
||||
task.openCLCQ.EnqueueWriteBuffer(task.clResidualTasks, true, 0, sizeof(FLACCLSubframeTask) * task.nResidualTasks, task.clResidualTasksPtr);
|
||||
if (!_settings.MappedMemory)
|
||||
task.openCLCQ.EnqueueWriteBuffer(task.clSelectedTasks, true, 0, sizeof(int) * (nFrames * channelsCount * task.nEstimateTasksPerChannel), task.clSelectedTasksPtr);
|
||||
}
|
||||
|
||||
unsafe void encode_residual(FLACCLTask task)
|
||||
@@ -1536,7 +1578,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
openCLContext = OCLMan.Context;
|
||||
try
|
||||
{
|
||||
openCLProgram = OCLMan.CompileFile(_settings.DeviceType == OpenCLDeviceType.CPU ? "flaccpu.cl" : "flac.cl");
|
||||
openCLProgram = OCLMan.CompileFile("flac.cl");
|
||||
}
|
||||
catch (OpenCLBuildException ex)
|
||||
{
|
||||
@@ -2012,6 +2054,8 @@ namespace CUETools.Codecs.FLACCL
|
||||
|
||||
public int orders_per_window;
|
||||
|
||||
public int orders_per_channel;
|
||||
|
||||
// minimum fixed prediction order
|
||||
// set by user prior to calling flake_encode_init
|
||||
// if set to less than 0, it is chosen based on compression.
|
||||
@@ -2080,6 +2124,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
variable_block_size = 0;
|
||||
lpc_min_precision_search = 0;
|
||||
lpc_max_precision_search = 0;
|
||||
orders_per_channel = 32;
|
||||
do_seektable = true;
|
||||
do_wasted = true;
|
||||
do_constant = true;
|
||||
@@ -2120,48 +2165,52 @@ namespace CUETools.Codecs.FLACCL
|
||||
max_partition_order = 4;
|
||||
break;
|
||||
case 3:
|
||||
window_function = WindowFunction.Bartlett;
|
||||
do_constant = false;
|
||||
min_fixed_order = 2;
|
||||
max_fixed_order = 2;
|
||||
orders_per_window = 1;
|
||||
orders_per_channel = 1;
|
||||
max_prediction_order = 8;
|
||||
max_partition_order = 4;
|
||||
break;
|
||||
case 4:
|
||||
do_constant = false;
|
||||
min_fixed_order = 2;
|
||||
max_fixed_order = 2;
|
||||
orders_per_window = 1;
|
||||
orders_per_window = 2;
|
||||
orders_per_channel = 2;
|
||||
max_prediction_order = 8;
|
||||
max_partition_order = 4;
|
||||
break;
|
||||
case 5:
|
||||
do_constant = false;
|
||||
min_fixed_order = 2;
|
||||
max_fixed_order = 2;
|
||||
orders_per_window = 2;
|
||||
orders_per_window = 4;
|
||||
orders_per_channel = 4;
|
||||
max_prediction_order = 8;
|
||||
break;
|
||||
case 6:
|
||||
do_constant = false;
|
||||
min_fixed_order = 2;
|
||||
max_fixed_order = 2;
|
||||
orders_per_window = 1;
|
||||
orders_per_window = 2;
|
||||
orders_per_channel = 2;
|
||||
break;
|
||||
case 7:
|
||||
do_constant = false;
|
||||
min_fixed_order = 2;
|
||||
max_fixed_order = 2;
|
||||
orders_per_window = 3;
|
||||
orders_per_window = 4;
|
||||
orders_per_channel = 4;
|
||||
break;
|
||||
case 8:
|
||||
orders_per_window = 12;
|
||||
orders_per_window = 8;
|
||||
orders_per_channel = 8;
|
||||
break;
|
||||
case 9:
|
||||
min_fixed_order = 2;
|
||||
max_fixed_order = 2;
|
||||
orders_per_window = 3;
|
||||
orders_per_window = 4;
|
||||
orders_per_channel = 4;
|
||||
max_prediction_order = 32;
|
||||
break;
|
||||
case 10:
|
||||
@@ -2201,7 +2250,8 @@ namespace CUETools.Codecs.FLACCL
|
||||
public int wbits;
|
||||
public int abits;
|
||||
public int porder;
|
||||
public fixed int reserved[2];
|
||||
public int ignore;
|
||||
public int reserved;
|
||||
public fixed int coefs[32];
|
||||
};
|
||||
|
||||
@@ -2220,8 +2270,6 @@ namespace CUETools.Codecs.FLACCL
|
||||
public Kernel clSelectStereoTasks;
|
||||
public Kernel clEstimateResidual;
|
||||
public Kernel clChooseBestMethod;
|
||||
public Kernel clCopyBestMethod;
|
||||
public Kernel clCopyBestMethodStereo;
|
||||
public Kernel clEncodeResidual;
|
||||
public Kernel clCalcPartition;
|
||||
public Kernel clCalcPartition16;
|
||||
@@ -2236,6 +2284,9 @@ namespace CUETools.Codecs.FLACCL
|
||||
public Mem clRiceParams;
|
||||
public Mem clBestRiceParams;
|
||||
public Mem clAutocorOutput;
|
||||
public Mem clSelectedTasks;
|
||||
public Mem clSelectedTasksSecondEstimate;
|
||||
public Mem clSelectedTasksBestMethod;
|
||||
public Mem clResidualTasks;
|
||||
public Mem clBestResidualTasks;
|
||||
public Mem clWindowFunctions;
|
||||
@@ -2246,6 +2297,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
public Mem clResidualTasksPinned;
|
||||
public Mem clBestResidualTasksPinned;
|
||||
public Mem clWindowFunctionsPinned;
|
||||
public Mem clSelectedTasksPinned;
|
||||
|
||||
public IntPtr clSamplesBytesPtr;
|
||||
public IntPtr clResidualPtr;
|
||||
@@ -2253,6 +2305,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
public IntPtr clResidualTasksPtr;
|
||||
public IntPtr clBestResidualTasksPtr;
|
||||
public IntPtr clWindowFunctionsPtr;
|
||||
public IntPtr clSelectedTasksPtr;
|
||||
|
||||
public int[] samplesBuffer;
|
||||
public byte[] outputBuffer;
|
||||
@@ -2267,6 +2320,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
public int samplesBufferLen;
|
||||
public int nResidualTasks = 0;
|
||||
public int nResidualTasksPerChannel = 0;
|
||||
public int nEstimateTasksPerChannel = 0;
|
||||
public int nTasksPerWindow = 0;
|
||||
public int nWindowFunctions = 0;
|
||||
public int max_porder = 0;
|
||||
@@ -2306,6 +2360,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
int lpcDataLen = autocorLen * 32;
|
||||
int resOutLen = sizeof(int) * channelsCount * (lpc.MAX_LPC_WINDOWS * lpc.MAX_LPC_ORDER + 8) * FLACCLWriter.maxFrames;
|
||||
int wndLen = sizeof(float) * FLACCLWriter.MAX_BLOCKSIZE /** 2*/ * lpc.MAX_LPC_WINDOWS;
|
||||
int selectedLen = sizeof(int) * 32 * channelsCount * FLACCLWriter.maxFrames;
|
||||
|
||||
if (!writer._settings.MappedMemory)
|
||||
{
|
||||
@@ -2315,6 +2370,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
clResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, residualTasksLen);
|
||||
clBestResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, bestResidualTasksLen);
|
||||
clWindowFunctions = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, wndLen);
|
||||
clSelectedTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, selectedLen);
|
||||
|
||||
clSamplesBytesPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, samplesBufferLen / 2);
|
||||
clResidualPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, samplesBufferLen);
|
||||
@@ -2322,6 +2378,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
clResidualTasksPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualTasksLen);
|
||||
clBestResidualTasksPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, bestResidualTasksLen);
|
||||
clWindowFunctionsPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, wndLen);
|
||||
clSelectedTasksPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, selectedLen);
|
||||
|
||||
clSamplesBytesPtr = openCLCQ.EnqueueMapBuffer(clSamplesBytesPinned, true, MapFlags.WRITE, 0, samplesBufferLen / 2);
|
||||
clResidualPtr = openCLCQ.EnqueueMapBuffer(clResidualPinned, true, MapFlags.WRITE, 0, samplesBufferLen);
|
||||
@@ -2329,7 +2386,8 @@ namespace CUETools.Codecs.FLACCL
|
||||
clResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clResidualTasksPinned, true, MapFlags.WRITE, 0, residualTasksLen);
|
||||
clBestResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clBestResidualTasksPinned, true, MapFlags.WRITE, 0, bestResidualTasksLen);
|
||||
clWindowFunctionsPtr = openCLCQ.EnqueueMapBuffer(clWindowFunctionsPinned, true, MapFlags.WRITE, 0, wndLen);
|
||||
}
|
||||
clSelectedTasksPtr = openCLCQ.EnqueueMapBuffer(clSelectedTasksPinned, true, MapFlags.WRITE, 0, selectedLen);
|
||||
}
|
||||
else
|
||||
{
|
||||
clSamplesBytes = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, (uint)samplesBufferLen / 2);
|
||||
@@ -2338,6 +2396,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
clResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualTasksLen);
|
||||
clBestResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, bestResidualTasksLen);
|
||||
clWindowFunctions = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, wndLen);
|
||||
clSelectedTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, selectedLen);
|
||||
|
||||
clSamplesBytesPtr = openCLCQ.EnqueueMapBuffer(clSamplesBytes, true, MapFlags.WRITE, 0, samplesBufferLen / 2);
|
||||
clResidualPtr = openCLCQ.EnqueueMapBuffer(clResidual, true, MapFlags.WRITE, 0, samplesBufferLen);
|
||||
@@ -2345,6 +2404,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
clResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clResidualTasks, true, MapFlags.WRITE, 0, residualTasksLen);
|
||||
clBestResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clBestResidualTasks, true, MapFlags.WRITE, 0, bestResidualTasksLen);
|
||||
clWindowFunctionsPtr = openCLCQ.EnqueueMapBuffer(clWindowFunctions, true, MapFlags.WRITE, 0, wndLen);
|
||||
clSelectedTasksPtr = openCLCQ.EnqueueMapBuffer(clSelectedTasks, true, MapFlags.WRITE, 0, selectedLen);
|
||||
|
||||
//clSamplesBytesPtr = clSamplesBytes.HostPtr;
|
||||
//clResidualPtr = clResidual.HostPtr;
|
||||
@@ -2357,7 +2417,9 @@ namespace CUETools.Codecs.FLACCL
|
||||
clSamples = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, samplesBufferLen);
|
||||
clLPCData = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, lpcDataLen);
|
||||
clAutocorOutput = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, autocorLen);
|
||||
if (writer._settings.GPUOnly)
|
||||
clSelectedTasksSecondEstimate = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, selectedLen);
|
||||
clSelectedTasksBestMethod = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, selectedLen);
|
||||
if (writer._settings.GPUOnly)
|
||||
{
|
||||
clPartitions = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, partitionsLen);
|
||||
clRiceParams = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, riceParamsLen);
|
||||
@@ -2376,8 +2438,6 @@ namespace CUETools.Codecs.FLACCL
|
||||
clSelectStereoTasks = openCLProgram.CreateKernel("clSelectStereoTasks");
|
||||
clEstimateResidual = openCLProgram.CreateKernel("clEstimateResidual");
|
||||
clChooseBestMethod = openCLProgram.CreateKernel("clChooseBestMethod");
|
||||
clCopyBestMethod = openCLProgram.CreateKernel("clCopyBestMethod");
|
||||
clCopyBestMethodStereo = openCLProgram.CreateKernel("clCopyBestMethodStereo");
|
||||
if (writer._settings.GPUOnly)
|
||||
{
|
||||
clEncodeResidual = openCLProgram.CreateKernel("clEncodeResidual");
|
||||
@@ -2426,8 +2486,6 @@ namespace CUETools.Codecs.FLACCL
|
||||
clSelectStereoTasks.Dispose();
|
||||
clEstimateResidual.Dispose();
|
||||
clChooseBestMethod.Dispose();
|
||||
clCopyBestMethod.Dispose();
|
||||
clCopyBestMethodStereo.Dispose();
|
||||
if (writer._settings.GPUOnly)
|
||||
{
|
||||
clEncodeResidual.Dispose();
|
||||
@@ -2461,6 +2519,9 @@ namespace CUETools.Codecs.FLACCL
|
||||
if (clWindowFunctionsPtr != IntPtr.Zero)
|
||||
openCLCQ.EnqueueUnmapMemObject(clWindowFunctionsPinned, clWindowFunctionsPtr);
|
||||
clWindowFunctionsPtr = IntPtr.Zero;
|
||||
if (clSelectedTasksPtr != IntPtr.Zero)
|
||||
openCLCQ.EnqueueUnmapMemObject(clSelectedTasksPinned, clSelectedTasksPtr);
|
||||
clSelectedTasksPtr = IntPtr.Zero;
|
||||
|
||||
clSamplesBytesPinned.Dispose();
|
||||
clResidualPinned.Dispose();
|
||||
@@ -2468,6 +2529,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
clResidualTasksPinned.Dispose();
|
||||
clBestResidualTasksPinned.Dispose();
|
||||
clWindowFunctionsPinned.Dispose();
|
||||
clSelectedTasksPinned.Dispose();
|
||||
}
|
||||
else
|
||||
{
|
||||
@@ -2477,6 +2539,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
openCLCQ.EnqueueUnmapMemObject(clResidualTasks, clResidualTasksPtr);
|
||||
openCLCQ.EnqueueUnmapMemObject(clBestResidualTasks, clBestResidualTasksPtr);
|
||||
openCLCQ.EnqueueUnmapMemObject(clWindowFunctions, clWindowFunctionsPtr);
|
||||
openCLCQ.EnqueueUnmapMemObject(clSelectedTasks, clSelectedTasksPtr);
|
||||
}
|
||||
|
||||
clSamples.Dispose();
|
||||
@@ -2484,9 +2547,12 @@ namespace CUETools.Codecs.FLACCL
|
||||
clLPCData.Dispose();
|
||||
clResidual.Dispose();
|
||||
clAutocorOutput.Dispose();
|
||||
clSelectedTasksSecondEstimate.Dispose();
|
||||
clSelectedTasksBestMethod.Dispose();
|
||||
clResidualTasks.Dispose();
|
||||
clBestResidualTasks.Dispose();
|
||||
clWindowFunctions.Dispose();
|
||||
clSelectedTasks.Dispose();
|
||||
|
||||
openCLCQ.Dispose();
|
||||
|
||||
@@ -2527,9 +2593,10 @@ namespace CUETools.Codecs.FLACCL
|
||||
clChannelDecorr.SetArgs(
|
||||
clSamples,
|
||||
clSamplesBytes,
|
||||
FLACCLWriter.MAX_BLOCKSIZE/4);
|
||||
FLACCLWriter.MAX_BLOCKSIZE / 4);
|
||||
|
||||
openCLCQ.EnqueueNDRangeKernel(clChannelDecorr, 0, frameSize * frameCount / 4);
|
||||
openCLCQ.EnqueueNDRangeKernel(clChannelDecorr, 0, FLACCLWriter.MAX_BLOCKSIZE / 4);
|
||||
//openCLCQ.EnqueueNDRangeKernel(clChannelDecorr, 0, (frameSize * frameCount + 3) / 4);
|
||||
|
||||
if (eparams.do_wasted)
|
||||
{
|
||||
@@ -2587,44 +2654,74 @@ namespace CUETools.Codecs.FLACCL
|
||||
nWindowFunctions,
|
||||
channelsCount * frameCount);
|
||||
|
||||
clEstimateResidual.SetArgs(
|
||||
clSamples,
|
||||
clResidualTasks);
|
||||
|
||||
openCLCQ.EnqueueNDRangeKernel(
|
||||
clEstimateResidual,
|
||||
groupSize,
|
||||
nResidualTasksPerChannel * channelsCount * frameCount);
|
||||
|
||||
clChooseBestMethod.SetArgs(
|
||||
clResidualTasks,
|
||||
nResidualTasksPerChannel);
|
||||
|
||||
openCLCQ.EnqueueNDRangeKernel(
|
||||
clChooseBestMethod,
|
||||
Math.Min(groupSize, 32), channelsCount * frameCount);
|
||||
|
||||
if (channels == 2 && channelsCount == 4)
|
||||
if (channels == 2 && channelsCount == 4)
|
||||
{
|
||||
clCopyBestMethodStereo.SetArgs(
|
||||
clEstimateResidual.SetArgs(
|
||||
clSamples,
|
||||
clSelectedTasks,
|
||||
clResidualTasks);
|
||||
|
||||
openCLCQ.EnqueueNDRangeKernel(
|
||||
clEstimateResidual,
|
||||
groupSize,
|
||||
nEstimateTasksPerChannel * channelsCount * frameCount); // 1 per channel, 4 channels
|
||||
|
||||
clSelectStereoTasks.SetArgs(
|
||||
clResidualTasks,
|
||||
clSelectedTasks,
|
||||
clSelectedTasksSecondEstimate,
|
||||
clSelectedTasksBestMethod,
|
||||
nResidualTasksPerChannel,
|
||||
nEstimateTasksPerChannel);
|
||||
|
||||
openCLCQ.EnqueueNDRangeKernel(
|
||||
clSelectStereoTasks,
|
||||
0, frameCount);
|
||||
|
||||
if (nEstimateTasksPerChannel < nResidualTasksPerChannel)
|
||||
{
|
||||
clEstimateResidual.SetArgs(
|
||||
clSamples,
|
||||
clSelectedTasksSecondEstimate,
|
||||
clResidualTasks);
|
||||
|
||||
openCLCQ.EnqueueNDRangeKernel(
|
||||
clEstimateResidual,
|
||||
groupSize,
|
||||
(nResidualTasksPerChannel - nEstimateTasksPerChannel) * channels * frameCount);
|
||||
}
|
||||
|
||||
clChooseBestMethod.SetArgs(
|
||||
clBestResidualTasks,
|
||||
clResidualTasks,
|
||||
clSelectedTasksBestMethod,
|
||||
nResidualTasksPerChannel);
|
||||
|
||||
openCLCQ.EnqueueNDRangeKernel(
|
||||
clCopyBestMethodStereo,
|
||||
Math.Min(groupSize, 64), frameCount);
|
||||
clChooseBestMethod,
|
||||
0, channels * frameCount);
|
||||
}
|
||||
else
|
||||
{
|
||||
clCopyBestMethod.SetArgs(
|
||||
clEstimateResidual.SetArgs(
|
||||
clSamples,
|
||||
clSelectedTasks,
|
||||
clResidualTasks);
|
||||
|
||||
openCLCQ.EnqueueNDRangeKernel(
|
||||
clEstimateResidual,
|
||||
groupSize,
|
||||
nResidualTasksPerChannel * channelsCount * frameCount);
|
||||
|
||||
clChooseBestMethod.SetArgs(
|
||||
clBestResidualTasks,
|
||||
clResidualTasks,
|
||||
clSelectedTasks,
|
||||
nResidualTasksPerChannel);
|
||||
|
||||
openCLCQ.EnqueueNDRangeKernel(
|
||||
clCopyBestMethod,
|
||||
Math.Min(groupSize, 64), channels * frameCount);
|
||||
clChooseBestMethod,
|
||||
0, channels * frameCount);
|
||||
}
|
||||
|
||||
if (writer._settings.GPUOnly)
|
||||
@@ -2726,6 +2823,7 @@ namespace CUETools.Codecs.FLACCL
|
||||
}
|
||||
}
|
||||
|
||||
#if LKJLKJLJK
|
||||
public static class OpenCLExtensions
|
||||
{
|
||||
public static void SetArgs(this Kernel kernel, params object[] args)
|
||||
@@ -2756,4 +2854,5 @@ namespace CUETools.Codecs.FLACCL
|
||||
queue.EnqueueNDRangeKernel(kernel, 2, null, new long[] { localSizeX * globalSizeX, localSizeY * globalSizeY }, new long[] { localSizeX, localSizeY });
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -20,12 +20,14 @@
|
||||
#ifndef _FLACCL_KERNEL_H_
|
||||
#define _FLACCL_KERNEL_H_
|
||||
|
||||
#if defined(__Cedar__) || defined(__Redwood__) || defined(__Juniper__) || defined(__Cypress__)
|
||||
#if defined(__Cedar__) || defined(__Redwood__) || defined(__Juniper__) || defined(__Cypress__) || defined(__CPU__)
|
||||
#define AMD
|
||||
#ifdef DEBUG
|
||||
#pragma OPENCL EXTENSION cl_amd_printf : enable
|
||||
#endif
|
||||
//#pragma OPENCL EXTENSION cl_amd_fp64 : enable
|
||||
#ifdef __CPU__
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
|
||||
#endif
|
||||
#define iclamp(a,b,c) clamp(a,b,c)
|
||||
#else
|
||||
#define iclamp(a,b,c) max(b,min(a,c))
|
||||
@@ -58,7 +60,8 @@ typedef struct
|
||||
int wbits;
|
||||
int abits;
|
||||
int porder;
|
||||
int reserved[2];
|
||||
int ignore;
|
||||
int reserved;
|
||||
} FLACCLSubframeData;
|
||||
|
||||
typedef struct
|
||||
@@ -67,36 +70,54 @@ typedef struct
|
||||
int coefs[32]; // fixme: should be short?
|
||||
} FLACCLSubframeTask;
|
||||
|
||||
__kernel void clWindowRectangle(__global float* window, int windowOffset)
|
||||
{
|
||||
window[get_global_id(0)] = 1.0f;
|
||||
}
|
||||
|
||||
__kernel void clWindowFlattop(__global float* window, int windowOffset)
|
||||
{
|
||||
float p = M_PI_F * get_global_id(0) / (get_global_size(0) - 1);
|
||||
window[get_global_id(0)] = 1.0f
|
||||
- 1.93f * cos(2 * p)
|
||||
+ 1.29f * cos(4 * p)
|
||||
- 0.388f * cos(6 * p)
|
||||
+ 0.0322f * cos(8 * p);
|
||||
}
|
||||
|
||||
__kernel void clWindowTukey(__global float* window, int windowOffset, float p)
|
||||
{
|
||||
int Np = (int)(p / 2.0f * get_global_size(0)) - 1;
|
||||
int n = select(max(Np, get_global_id(0) - (get_global_size(0) - Np - 1) + Np), get_global_id(0), get_global_id(0) <= Np);
|
||||
window[get_global_id(0)] = 0.5f - 0.5f * cos(M_PI_F * n / Np);
|
||||
}
|
||||
|
||||
__kernel void clStereoDecorr(
|
||||
__global int *samples,
|
||||
__global short2 *src,
|
||||
__global int4 *samples,
|
||||
__global int4 *src,
|
||||
int offset
|
||||
)
|
||||
{
|
||||
int pos = get_global_id(0);
|
||||
if (pos < offset)
|
||||
{
|
||||
short2 s = src[pos];
|
||||
samples[pos] = s.x;
|
||||
samples[1 * offset + pos] = s.y;
|
||||
samples[2 * offset + pos] = (s.x + s.y) >> 1;
|
||||
samples[3 * offset + pos] = s.x - s.y;
|
||||
}
|
||||
int4 s = src[pos];
|
||||
int4 x = (s << 16) >> 16;
|
||||
int4 y = s >> 16;
|
||||
samples[pos] = x;
|
||||
samples[1 * offset + pos] = y;
|
||||
samples[2 * offset + pos] = (x + y) >> 1;
|
||||
samples[3 * offset + pos] = x - y;
|
||||
}
|
||||
|
||||
__kernel void clChannelDecorr2(
|
||||
__global int *samples,
|
||||
__global short2 *src,
|
||||
__global int4 *samples,
|
||||
__global int4 *src,
|
||||
int offset
|
||||
)
|
||||
{
|
||||
int pos = get_global_id(0);
|
||||
if (pos < offset)
|
||||
{
|
||||
short2 s = src[pos];
|
||||
samples[pos] = s.x;
|
||||
samples[1 * offset + pos] = s.y;
|
||||
}
|
||||
int4 s = src[pos];
|
||||
samples[pos] = (s << 16) >> 16;
|
||||
samples[offset + pos] = s >> 16;
|
||||
}
|
||||
|
||||
//__kernel void clChannelDecorr(
|
||||
@@ -113,6 +134,32 @@ __kernel void clChannelDecorr2(
|
||||
#define __ffs(a) (32 - clz(a & (-a)))
|
||||
//#define __ffs(a) (33 - clz(~a & (a - 1)))
|
||||
|
||||
#ifdef __CPU__
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clFindWastedBits(
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
__global int *samples,
|
||||
int tasksPerChannel
|
||||
)
|
||||
{
|
||||
__global FLACCLSubframeTask* ptask = &tasks[get_group_id(0) * tasksPerChannel];
|
||||
int w = 0, a = 0;
|
||||
for (int pos = 0; pos < ptask->data.blocksize; pos ++)
|
||||
{
|
||||
int smp = samples[ptask->data.samplesOffs + pos];
|
||||
w |= smp;
|
||||
a |= smp ^ (smp >> 31);
|
||||
}
|
||||
w = max(0,__ffs(w) - 1);
|
||||
a = 32 - clz(a) - w;
|
||||
for (int i = 0; i < tasksPerChannel; i++)
|
||||
{
|
||||
ptask[i].data.wbits = w;
|
||||
ptask[i].data.abits = a;
|
||||
//ptask[i].data.size = ptask[i].data.obits * ptask[i].data.blocksize;
|
||||
}
|
||||
}
|
||||
#else
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void clFindWastedBits(
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
@@ -154,11 +201,88 @@ void clFindWastedBits(
|
||||
w = max(0,__ffs(wbits[0]) - 1);
|
||||
a = 32 - clz(abits[0]) - w;
|
||||
if (tid < tasksPerChannel)
|
||||
tasks[get_group_id(0) * tasksPerChannel + tid].data.wbits = w;
|
||||
if (tid < tasksPerChannel)
|
||||
tasks[get_group_id(0) * tasksPerChannel + tid].data.abits = a;
|
||||
{
|
||||
int i = get_group_id(0) * tasksPerChannel + tid;
|
||||
tasks[i].data.wbits = w;
|
||||
tasks[i].data.abits = a;
|
||||
//tasks[i].data.size = tasks[i].data.obits * tasks[i].data.blocksize;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __CPU__
|
||||
#define TEMPBLOCK 128
|
||||
#define STORE_AC(ro, val) if (ro <= MAX_ORDER) pout[ro] = val;
|
||||
#define STORE_AC4(ro, val) STORE_AC(ro*4+0, val##ro.x) STORE_AC(ro*4+1, val##ro.y) STORE_AC(ro*4+2, val##ro.z) STORE_AC(ro*4+3, val##ro.w)
|
||||
|
||||
// get_num_groups(0) == number of tasks
|
||||
// get_num_groups(1) == number of windows
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clComputeAutocor(
|
||||
__global float *output,
|
||||
__global const int *samples,
|
||||
__global const float *window,
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
const int taskCount // tasks per block
|
||||
)
|
||||
{
|
||||
FLACCLSubframeData task = tasks[get_group_id(0) * taskCount].data;
|
||||
int len = task.blocksize;
|
||||
int windowOffs = get_group_id(1) * len;
|
||||
float data[TEMPBLOCK + MAX_ORDER + 3];
|
||||
double4 ac0 = 0.0, ac1 = 0.0, ac2 = 0.0, ac3 = 0.0, ac4 = 0.0, ac5 = 0.0, ac6 = 0.0, ac7 = 0.0, ac8 = 0.0;
|
||||
|
||||
for (int pos = 0; pos < len; pos += TEMPBLOCK)
|
||||
{
|
||||
for (int tid = 0; tid < TEMPBLOCK + MAX_ORDER + 3; tid++)
|
||||
data[tid] = tid < len - pos ? samples[task.samplesOffs + pos + tid] * window[windowOffs + pos + tid] : 0.0f;
|
||||
|
||||
for (int j = 0; j < TEMPBLOCK;)
|
||||
{
|
||||
float4 temp0 = 0.0f, temp1 = 0.0f, temp2 = 0.0f, temp3 = 0.0f, temp4 = 0.0f, temp5 = 0.0f, temp6 = 0.0f, temp7 = 0.0f, temp8 = 0.0f;
|
||||
for (int k = 0; k < 32; k++)
|
||||
{
|
||||
float d0 = data[j];
|
||||
temp0 += d0 * vload4(0, &data[j]);
|
||||
temp1 += d0 * vload4(1, &data[j]);
|
||||
#if MAX_ORDER >= 8
|
||||
temp2 += d0 * vload4(2, &data[j]);
|
||||
#if MAX_ORDER >= 12
|
||||
temp3 += d0 * vload4(3, &data[j]);
|
||||
#if MAX_ORDER >= 16
|
||||
temp4 += d0 * vload4(4, &data[j]);
|
||||
temp5 += d0 * vload4(5, &data[j]);
|
||||
temp6 += d0 * vload4(6, &data[j]);
|
||||
temp7 += d0 * vload4(7, &data[j]);
|
||||
temp8 += d0 * vload4(8, &data[j]);
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
j++;
|
||||
}
|
||||
ac0 += convert_double4(temp0);
|
||||
ac1 += convert_double4(temp1);
|
||||
#if MAX_ORDER >= 8
|
||||
ac2 += convert_double4(temp2);
|
||||
#if MAX_ORDER >= 12
|
||||
ac3 += convert_double4(temp3);
|
||||
#if MAX_ORDER >= 16
|
||||
ac4 += convert_double4(temp4);
|
||||
ac5 += convert_double4(temp5);
|
||||
ac6 += convert_double4(temp6);
|
||||
ac7 += convert_double4(temp7);
|
||||
ac8 += convert_double4(temp8);
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
}
|
||||
__global float * pout = &output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1)];
|
||||
STORE_AC4(0, ac) STORE_AC4(1, ac) STORE_AC4(2, ac) STORE_AC4(3, ac)
|
||||
STORE_AC4(4, ac) STORE_AC4(5, ac) STORE_AC4(6, ac) STORE_AC4(7, ac)
|
||||
STORE_AC4(8, ac)
|
||||
}
|
||||
#else
|
||||
// get_num_groups(0) == number of tasks
|
||||
// get_num_groups(1) == number of windows
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
@@ -181,7 +305,16 @@ void clComputeAutocor(
|
||||
int bs = task.blocksize;
|
||||
int windowOffs = get_group_id(1) * bs;
|
||||
|
||||
data[tid] = tid < bs ? samples[task.samplesOffs + tid] * window[windowOffs + tid] : 0.0f;
|
||||
// if (tid < GROUP_SIZE / 4)
|
||||
// {
|
||||
//float4 dd = 0.0f;
|
||||
//if (tid * 4 < bs)
|
||||
// dd = vload4(tid, window + windowOffs) * convert_float4(vload4(tid, samples + task.samplesOffs));
|
||||
//vstore4(dd, tid, &data[0]);
|
||||
// }
|
||||
data[tid] = 0.0f;
|
||||
// This simpler code doesn't work somehow!!!
|
||||
//data[tid] = tid < bs ? samples[task.samplesOffs + tid] * window[windowOffs + tid] : 0.0f;
|
||||
|
||||
const int THREADS_FOR_ORDERS = MAX_ORDER < 8 ? 8 : MAX_ORDER < 16 ? 16 : MAX_ORDER < 32 ? 32 : 64;
|
||||
float corr = 0.0f;
|
||||
@@ -189,24 +322,24 @@ void clComputeAutocor(
|
||||
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
|
||||
{
|
||||
// fetch samples
|
||||
float nextData = pos + tid + GROUP_SIZE < bs ? samples[task.samplesOffs + pos + tid + GROUP_SIZE] * window[windowOffs + pos + tid + GROUP_SIZE] : 0.0f;
|
||||
float nextData = pos + tid < bs ? samples[task.samplesOffs + pos + tid] * window[windowOffs + pos + tid] : 0.0f;
|
||||
data[tid + GROUP_SIZE] = nextData;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
#ifdef XXXAMD
|
||||
__local float * dptr = &data[tid & ~(THREADS_FOR_ORDERS - 1)];
|
||||
int lag = tid & (THREADS_FOR_ORDERS - 1);
|
||||
int tid1 = tid + GROUP_SIZE - lag;
|
||||
#ifdef AMD
|
||||
float4 res = 0.0f;
|
||||
for (int i = 0; i < THREADS_FOR_ORDERS / 4; i++)
|
||||
res += vload4(i, dptr) * vload4(i, &data[tid]);
|
||||
res += vload4(i, &data[tid1 - lag]) * vload4(i, &data[tid1]);
|
||||
corr += res.x + res.y + res.w + res.z;
|
||||
#else
|
||||
int tid1 = tid & ~(THREADS_FOR_ORDERS - 1);
|
||||
float res = 0.0f;
|
||||
for (int i = 0; i < THREADS_FOR_ORDERS; i++)
|
||||
res += data[tid1 + i] * data[tid + i];
|
||||
res += data[tid1 - lag + i] * data[tid1 + i];
|
||||
corr += res;
|
||||
#endif
|
||||
if (THREADS_FOR_ORDERS > 8 && (pos & (GROUP_SIZE * 7)) == 0)
|
||||
if ((pos & (GROUP_SIZE * 15)) == 0)
|
||||
{
|
||||
corr1 += corr;
|
||||
corr = 0.0f;
|
||||
@@ -228,7 +361,68 @@ void clComputeAutocor(
|
||||
if (tid <= MAX_ORDER)
|
||||
output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1) + tid] = data[tid];
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __CPU__
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clComputeLPC(
|
||||
__global float *pautoc,
|
||||
__global float *lpcs,
|
||||
int windowCount
|
||||
)
|
||||
{
|
||||
int lpcOffs = (get_group_id(0) + get_group_id(1) * windowCount) * (MAX_ORDER + 1) * 32;
|
||||
int autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1);
|
||||
volatile double ldr[32];
|
||||
volatile double gen0[32];
|
||||
volatile double gen1[32];
|
||||
volatile double err[32];
|
||||
__global float* autoc = pautoc + autocOffs;
|
||||
|
||||
for (int i = 0; i < MAX_ORDER; i++)
|
||||
{
|
||||
gen0[i] = gen1[i] = autoc[i + 1];
|
||||
ldr[i] = 0.0;
|
||||
}
|
||||
|
||||
// Compute LPC using Schur and Levinson-Durbin recursion
|
||||
double error = autoc[0];
|
||||
for (int order = 0; order < MAX_ORDER; order++)
|
||||
{
|
||||
// Schur recursion
|
||||
double reff = -gen1[0] / error;
|
||||
//error += gen1[0] * reff; // Equivalent to error *= (1 - reff * reff);
|
||||
error *= (1 - reff * reff);
|
||||
|
||||
for (int j = 0; j < MAX_ORDER - 1 - order; j++)
|
||||
{
|
||||
gen1[j] = gen1[j + 1] + reff * gen0[j];
|
||||
gen0[j] = gen1[j + 1] * reff + gen0[j];
|
||||
}
|
||||
|
||||
err[order] = error;
|
||||
|
||||
// Levinson-Durbin recursion
|
||||
|
||||
ldr[order] = reff;
|
||||
for (int j = 0; j < order / 2; j++)
|
||||
{
|
||||
double tmp = ldr[j];
|
||||
ldr[j] += reff * ldr[order - 1 - j];
|
||||
ldr[order - 1 - j] += reff * tmp;
|
||||
}
|
||||
if (0 != (order & 1))
|
||||
ldr[order / 2] += ldr[order / 2] * reff;
|
||||
|
||||
// Output coeffs
|
||||
for (int j = 0; j <= order; j++)
|
||||
lpcs[lpcOffs + order * 32 + j] = -ldr[order - j];
|
||||
}
|
||||
// Output prediction error estimates
|
||||
for (int j = 0; j < MAX_ORDER; j++)
|
||||
lpcs[lpcOffs + MAX_ORDER * 32 + j] = err[j];
|
||||
}
|
||||
#else
|
||||
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
|
||||
void clComputeLPC(
|
||||
__global float *autoc,
|
||||
@@ -311,7 +505,85 @@ void clComputeLPC(
|
||||
if (get_local_id(0) < MAX_ORDER)
|
||||
lpcs[lpcOffs + MAX_ORDER * 32 + get_local_id(0)] = shared.error[get_local_id(0)];
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __CPU__
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clQuantizeLPC(
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
__global float*lpcs,
|
||||
int taskCount, // tasks per block
|
||||
int taskCountLPC, // tasks per set of coeffs (<= 32)
|
||||
int minprecision,
|
||||
int precisions
|
||||
)
|
||||
{
|
||||
int bs = tasks[get_group_id(1) * taskCount].data.blocksize;
|
||||
int abits = tasks[get_group_id(1) * taskCount].data.abits;
|
||||
int lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32;
|
||||
float error[MAX_ORDER];
|
||||
int best_orders[MAX_ORDER];
|
||||
|
||||
// Load prediction error estimates based on Akaike's Criteria
|
||||
for (int tid = 0; tid < MAX_ORDER; tid++)
|
||||
{
|
||||
error[tid] = bs * log(lpcs[lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log(bs);
|
||||
best_orders[tid] = tid;
|
||||
}
|
||||
|
||||
// Select best orders
|
||||
for (int i = 0; i < MAX_ORDER && i < taskCountLPC; i++)
|
||||
{
|
||||
for (int j = i + 1; j < MAX_ORDER; j++)
|
||||
{
|
||||
if (error[best_orders[j]] < error[best_orders[i]])
|
||||
{
|
||||
int tmp = best_orders[j];
|
||||
best_orders[j] = best_orders[i];
|
||||
best_orders[i] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Quantization
|
||||
for (int i = 0; i < taskCountLPC; i ++)
|
||||
{
|
||||
int order = best_orders[i >> precisions];
|
||||
int tmpi = 0;
|
||||
for (int tid = 0; tid <= order; tid ++)
|
||||
{
|
||||
float lpc = lpcs[lpcOffs + order * 32 + tid];
|
||||
// get 15 bits of each coeff
|
||||
int c = convert_int_rte(lpc * (1 << 15));
|
||||
// remove sign bits
|
||||
tmpi |= c ^ (c >> 31);
|
||||
}
|
||||
// choose precision
|
||||
//int cbits = max(3, min(10, 5 + (abits >> 1))); // - convert_int_rte(shared.PE[order - 1])
|
||||
int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (bs <= 2304) - (bs <= 1152) - (bs <= 576), abits), clz(order) + 1 - abits));
|
||||
// calculate shift based on precision and number of leading zeroes in coeffs
|
||||
int shift = max(0,min(15, clz(tmpi) - 18 + cbits));
|
||||
|
||||
int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i;
|
||||
tmpi = 0;
|
||||
for (int tid = 0; tid <= order; tid ++)
|
||||
{
|
||||
float lpc = lpcs[lpcOffs + order * 32 + tid];
|
||||
// quantize coeffs with given shift
|
||||
int c = convert_int_rte(clamp(lpc * (1 << shift), -1 << (cbits - 1), 1 << (cbits - 1)));
|
||||
// remove sign bits
|
||||
tmpi |= c ^ (c >> 31);
|
||||
tasks[taskNo].coefs[tid] = c;
|
||||
}
|
||||
// calculate actual number of bits (+1 for sign)
|
||||
cbits = 1 + 32 - clz(tmpi);
|
||||
// output shift, cbits, ro
|
||||
tasks[taskNo].data.shift = shift;
|
||||
tasks[taskNo].data.cbits = cbits;
|
||||
tasks[taskNo].data.residualOrder = order + 1;
|
||||
}
|
||||
}
|
||||
#else
|
||||
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
|
||||
void clQuantizeLPC(
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
@@ -443,10 +715,82 @@ void clQuantizeLPC(
|
||||
tasks[taskNo].coefs[tid] = coef;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __CPU__
|
||||
inline int calc_residual(__global int *ptr, int * coefs, int ro)
|
||||
{
|
||||
int sum = 0;
|
||||
for (int i = 0; i < ro; i++)
|
||||
sum += ptr[i] * coefs[i];
|
||||
return sum;
|
||||
}
|
||||
|
||||
#define ENCODE_N(cro,action) for (int pos = cro; pos < bs; pos ++) { \
|
||||
int t = (data[pos] - (calc_residual(data + pos - cro, task.coefs, cro) >> task.data.shift)) >> task.data.wbits; \
|
||||
action; \
|
||||
}
|
||||
#define SWITCH_N(action) \
|
||||
switch (ro) \
|
||||
{ \
|
||||
case 0: ENCODE_N(0, action) break; \
|
||||
case 1: ENCODE_N(1, action) break; \
|
||||
case 2: ENCODE_N(2, action) /*if (task.coefs[0] == -1 && task.coefs[1] == 2) ENCODE_N(2, 2 * ptr[1] - ptr[0], action) else*/ break; \
|
||||
case 3: ENCODE_N(3, action) break; \
|
||||
case 4: ENCODE_N(4, action) break; \
|
||||
case 5: ENCODE_N(5, action) break; \
|
||||
case 6: ENCODE_N(6, action) break; \
|
||||
case 7: ENCODE_N(7, action) break; \
|
||||
case 8: ENCODE_N(8, action) break; \
|
||||
case 9: ENCODE_N(9, action) break; \
|
||||
case 10: ENCODE_N(10, action) break; \
|
||||
case 11: ENCODE_N(11, action) break; \
|
||||
case 12: ENCODE_N(12, action) break; \
|
||||
default: ENCODE_N(ro, action) \
|
||||
}
|
||||
|
||||
__kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clEstimateResidual(
|
||||
__global int*samples,
|
||||
__global int*selectedTasks,
|
||||
__global FLACCLSubframeTask *tasks
|
||||
)
|
||||
{
|
||||
int selectedTask = selectedTasks[get_group_id(0)];
|
||||
FLACCLSubframeTask task = tasks[selectedTask];
|
||||
int ro = task.data.residualOrder;
|
||||
int bs = task.data.blocksize;
|
||||
#define EPO 6
|
||||
int len[1 << EPO]; // blocksize / 64!!!!
|
||||
|
||||
__global int *data = &samples[task.data.samplesOffs];
|
||||
// for (int i = ro; i < 32; i++)
|
||||
//task.coefs[i] = 0;
|
||||
for (int i = 0; i < 1 << EPO; i++)
|
||||
len[i] = 0;
|
||||
|
||||
SWITCH_N((t = clamp(t, -0x7fffff, 0x7fffff), len[pos >> (12 - EPO)] += (t << 1) ^ (t >> 31)))
|
||||
|
||||
int total = 0;
|
||||
for (int i = 0; i < 1 << EPO; i++)
|
||||
{
|
||||
int res = min(0x7fffff,len[i]);
|
||||
int k = clamp(clz(1 << (12 - EPO)) - clz(res), 0, 14); // 27 - clz(res) == clz(16) - clz(res) == log2(res / 16)
|
||||
total += (k << (12 - EPO)) + (res >> k);
|
||||
}
|
||||
int partLen = min(0x7ffffff, total) + (bs - ro);
|
||||
int obits = task.data.obits - task.data.wbits;
|
||||
tasks[selectedTask].data.size = min(obits * bs,
|
||||
task.data.type == Fixed ? ro * obits + 6 + (4 * 1/2) + partLen :
|
||||
task.data.type == LPC ? ro * obits + 4 + 5 + ro * task.data.cbits + 6 + (4 * 1/2)/* << porder */ + partLen :
|
||||
task.data.type == Constant ? obits * select(1, bs, partLen != bs - ro) :
|
||||
obits * bs);
|
||||
}
|
||||
#else
|
||||
__kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void clEstimateResidual(
|
||||
__global int*samples,
|
||||
__global int*selectedTasks,
|
||||
__global FLACCLSubframeTask *tasks
|
||||
)
|
||||
{
|
||||
@@ -454,11 +798,16 @@ void clEstimateResidual(
|
||||
__local FLACCLSubframeTask task;
|
||||
__local int psum[64];
|
||||
__local float fcoef[32];
|
||||
__local int selectedTask;
|
||||
|
||||
if (get_local_id(0) == 0)
|
||||
selectedTask = selectedTasks[get_group_id(0)];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
const int tid = get_local_id(0);
|
||||
if (tid < sizeof(task)/sizeof(int))
|
||||
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid];
|
||||
barrier(CLK_GLOBAL_MEM_FENCE);
|
||||
((__local int*)&task)[tid] = ((__global int*)(&tasks[selectedTask]))[tid];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int ro = task.data.residualOrder;
|
||||
int bs = task.data.blocksize;
|
||||
@@ -571,106 +920,101 @@ void clEstimateResidual(
|
||||
task.data.type == LPC ? task.data.residualOrder * obits + 4 + 5 + task.data.residualOrder * task.data.cbits + 6 + (4 * 1/2)/* << porder */ + pl :
|
||||
task.data.type == Constant ? obits * select(1, task.data.blocksize, pl != task.data.blocksize - task.data.residualOrder) :
|
||||
obits * task.data.blocksize);
|
||||
tasks[get_group_id(0)].data.size = len;
|
||||
tasks[selectedTask].data.size = len;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
__kernel
|
||||
void clSelectStereoTasks(
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
__global int*selectedTasks,
|
||||
__global int*selectedTasksSecondEstimate,
|
||||
__global int*selectedTasksBestMethod,
|
||||
int taskCount,
|
||||
int selectedCount
|
||||
)
|
||||
{
|
||||
int best_size[4];
|
||||
for (int ch = 0; ch < 4; ch++)
|
||||
{
|
||||
int first_no = selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount];
|
||||
int best_len = tasks[first_no].data.size;
|
||||
for (int i = 1; i < selectedCount; i++)
|
||||
{
|
||||
int task_no = selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount + i];
|
||||
int task_len = tasks[task_no].data.size;
|
||||
best_len = min(task_len, best_len);
|
||||
}
|
||||
best_size[ch] = best_len;
|
||||
}
|
||||
|
||||
int bitsBest = best_size[2] + best_size[3]; // MidSide
|
||||
int chMask = 2 | (3 << 2);
|
||||
int bits = best_size[3] + best_size[1];
|
||||
chMask = select(chMask, 3 | (1 << 2), bits < bitsBest); // RightSide
|
||||
bitsBest = min(bits, bitsBest);
|
||||
bits = best_size[0] + best_size[3];
|
||||
chMask = select(chMask, 0 | (3 << 2), bits < bitsBest); // LeftSide
|
||||
bitsBest = min(bits, bitsBest);
|
||||
bits = best_size[0] + best_size[1];
|
||||
chMask = select(chMask, 0 | (1 << 2), bits < bitsBest); // LeftRight
|
||||
bitsBest = min(bits, bitsBest);
|
||||
for (int ich = 0; ich < 2; ich++)
|
||||
{
|
||||
int ch = select(chMask & 3, chMask >> 2, ich > 0);
|
||||
int roffs = tasks[(get_global_id(0) * 4 + ich) * taskCount].data.samplesOffs;
|
||||
int nonSelectedNo = 0;
|
||||
for (int i = 0; i < taskCount; i++)
|
||||
{
|
||||
int no = (get_global_id(0) * 4 + ch) * taskCount + i;
|
||||
selectedTasksBestMethod[(get_global_id(0) * 2 + ich) * taskCount + i] = no;
|
||||
tasks[no].data.residualOffs = roffs;
|
||||
int selectedFound = 0;
|
||||
for(int selectedNo = 0; selectedNo < selectedCount; selectedNo++)
|
||||
selectedFound |= (selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount + selectedNo] == no);
|
||||
if (!selectedFound)
|
||||
selectedTasksSecondEstimate[(get_global_id(0) * 2 + ich) * (taskCount - selectedCount) + nonSelectedNo++] = no;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
|
||||
__kernel
|
||||
void clChooseBestMethod(
|
||||
__global FLACCLSubframeTask *tasks_out,
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
__global int*selectedTasks,
|
||||
int taskCount
|
||||
)
|
||||
{
|
||||
int best_length = 0x7fffffff;
|
||||
int best_index = 0;
|
||||
const int tid = get_local_id(0);
|
||||
|
||||
for (int taskNo = 0; taskNo < taskCount; taskNo++)
|
||||
int best_no = selectedTasks[get_global_id(0) * taskCount];
|
||||
int best_len = tasks[best_no].data.size;
|
||||
for (int i = 1; i < taskCount; i++)
|
||||
{
|
||||
if (tid == 0)
|
||||
{
|
||||
int len = tasks[taskNo + taskCount * get_group_id(0)].data.size;
|
||||
if (len < best_length)
|
||||
{
|
||||
best_length = len;
|
||||
best_index = taskNo;
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
int task_no = selectedTasks[get_global_id(0) * taskCount + i];
|
||||
int task_len = tasks[task_no].data.size;
|
||||
best_no = select(best_no, task_no, task_len < best_len);
|
||||
best_len = min(best_len, task_len);
|
||||
}
|
||||
|
||||
if (tid == 0)
|
||||
tasks[taskCount * get_group_id(0)].data.best_index = taskCount * get_group_id(0) + best_index;
|
||||
tasks_out[get_global_id(0)] = tasks[best_no];
|
||||
}
|
||||
|
||||
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
|
||||
void clCopyBestMethod(
|
||||
__global FLACCLSubframeTask *tasks_out,
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
int count
|
||||
#ifdef __CPU__
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clEncodeResidual(
|
||||
__global int *residual,
|
||||
__global int *samples,
|
||||
__global FLACCLSubframeTask *tasks
|
||||
)
|
||||
{
|
||||
__local int best_index;
|
||||
if (get_local_id(0) == 0)
|
||||
best_index = tasks[count * get_group_id(0)].data.best_index;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
|
||||
((__global int*)(tasks_out + get_group_id(0)))[get_local_id(0)] = ((__global int*)(tasks + best_index))[get_local_id(0)];
|
||||
FLACCLSubframeTask task = tasks[get_group_id(0)];
|
||||
int bs = task.data.blocksize;
|
||||
int ro = task.data.residualOrder;
|
||||
__global int *data = &samples[task.data.samplesOffs];
|
||||
SWITCH_N(residual[task.data.residualOffs + pos] = t);
|
||||
}
|
||||
|
||||
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
|
||||
void clCopyBestMethodStereo(
|
||||
__global FLACCLSubframeTask *tasks_out,
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
int count
|
||||
)
|
||||
{
|
||||
__local struct {
|
||||
int best_index[4];
|
||||
int best_size[4];
|
||||
int lr_index[2];
|
||||
} shared;
|
||||
if (get_local_id(0) < 4)
|
||||
shared.best_index[get_local_id(0)] = tasks[count * (get_group_id(0) * 4 + get_local_id(0))].data.best_index;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (get_local_id(0) < 4)
|
||||
shared.best_size[get_local_id(0)] = tasks[shared.best_index[get_local_id(0)]].data.size;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (get_local_id(0) == 0)
|
||||
{
|
||||
int bitsBest = shared.best_size[2] + shared.best_size[3]; // MidSide
|
||||
shared.lr_index[0] = shared.best_index[2];
|
||||
shared.lr_index[1] = shared.best_index[3];
|
||||
if (bitsBest > shared.best_size[3] + shared.best_size[1]) // RightSide
|
||||
{
|
||||
bitsBest = shared.best_size[3] + shared.best_size[1];
|
||||
shared.lr_index[0] = shared.best_index[3];
|
||||
shared.lr_index[1] = shared.best_index[1];
|
||||
}
|
||||
if (bitsBest > shared.best_size[0] + shared.best_size[3]) // LeftSide
|
||||
{
|
||||
bitsBest = shared.best_size[0] + shared.best_size[3];
|
||||
shared.lr_index[0] = shared.best_index[0];
|
||||
shared.lr_index[1] = shared.best_index[3];
|
||||
}
|
||||
if (bitsBest > shared.best_size[0] + shared.best_size[1]) // LeftRight
|
||||
{
|
||||
bitsBest = shared.best_size[0] + shared.best_size[1];
|
||||
shared.lr_index[0] = shared.best_index[0];
|
||||
shared.lr_index[1] = shared.best_index[1];
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
|
||||
((__global int*)(tasks_out + 2 * get_group_id(0)))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[0]))[get_local_id(0)];
|
||||
if (get_local_id(0) == 0)
|
||||
tasks_out[2 * get_group_id(0)].data.residualOffs = tasks[shared.best_index[0]].data.residualOffs;
|
||||
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
|
||||
((__global int*)(tasks_out + 2 * get_group_id(0) + 1))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[1]))[get_local_id(0)];
|
||||
if (get_local_id(0) == 0)
|
||||
tasks_out[2 * get_group_id(0) + 1].data.residualOffs = tasks[shared.best_index[1]].data.residualOffs;
|
||||
}
|
||||
|
||||
#else
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void clEncodeResidual(
|
||||
@@ -737,7 +1081,38 @@ void clEncodeResidual(
|
||||
data[tid] = nextData;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __CPU__
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clCalcPartition(
|
||||
__global int *partition_lengths,
|
||||
__global int *residual,
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
int max_porder, // <= 8
|
||||
int psize // == task.blocksize >> max_porder?
|
||||
)
|
||||
{
|
||||
FLACCLSubframeTask task = tasks[get_group_id(1)];
|
||||
int bs = task.data.blocksize;
|
||||
int ro = task.data.residualOrder;
|
||||
//int psize = bs >> max_porder;
|
||||
__global int *pl = partition_lengths + (1 << (max_porder + 1)) * get_group_id(1);
|
||||
|
||||
for (int p = 0; p < (1 << max_porder); p++)
|
||||
pl[p] = 0;
|
||||
|
||||
for (int pos = ro; pos < bs; pos ++)
|
||||
{
|
||||
int t = residual[task.data.residualOffs + pos];
|
||||
// overflow protection
|
||||
t = clamp(t, -0x7fffff, 0x7fffff);
|
||||
// convert to unsigned
|
||||
t = (t << 1) ^ (t >> 31);
|
||||
pl[pos / psize] += t;
|
||||
}
|
||||
}
|
||||
#else
|
||||
// get_group_id(0) == partition index / (GROUP_SIZE / 16)
|
||||
// get_group_id(1) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
@@ -794,7 +1169,31 @@ void clCalcPartition(
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __CPU__
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clCalcPartition16(
|
||||
__global int *partition_lengths,
|
||||
__global int *residual,
|
||||
__global int *samples,
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
int max_porder // <= 8
|
||||
)
|
||||
{
|
||||
FLACCLSubframeTask task = tasks[get_global_id(0)];
|
||||
int bs = task.data.blocksize;
|
||||
int ro = task.data.residualOrder;
|
||||
__global int *data = &samples[task.data.samplesOffs];
|
||||
__global int *pl = partition_lengths + (1 << (max_porder + 1)) * get_global_id(0);
|
||||
for (int p = 0; p < (1 << max_porder); p++)
|
||||
pl[p] = 0;
|
||||
//__global int *rptr = residual + task.data.residualOffs;
|
||||
//SWITCH_N((rptr[pos] = t, pl[pos >> 4] += (t << 1) ^ (t >> 31)));
|
||||
SWITCH_N((residual[task.data.residualOffs + pos] = t, t = clamp(t, -0x7fffff, 0x7fffff), t = (t << 1) ^ (t >> 31), pl[pos >> 4] += t));
|
||||
}
|
||||
#else
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void clCalcPartition16(
|
||||
@@ -881,7 +1280,33 @@ void clCalcPartition16(
|
||||
partition_lengths[lpos] = min(0x7fffff, s) + (16 - select(0, ro, offs < 16)) * (k + 1);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __CPU__
|
||||
// Sums partition lengths for a certain k == get_group_id(0)
|
||||
// get_group_id(0) == k
|
||||
// get_group_id(1) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clSumPartition(
|
||||
__global int* partition_lengths,
|
||||
int max_porder
|
||||
)
|
||||
{
|
||||
if (get_group_id(0) != 0) // ignore k != 0
|
||||
return;
|
||||
__global int * sums = partition_lengths + (1 << (max_porder + 1)) * get_group_id(1);
|
||||
for (int i = max_porder - 1; i >= 0; i--)
|
||||
{
|
||||
for (int j = 0; j < (1 << i); j++)
|
||||
{
|
||||
sums[(2 << i) + j] = sums[2 * j] + sums[2 * j + 1];
|
||||
// if (get_group_id(1) == 0)
|
||||
//printf("[%d][%d]: %d + %d == %d\n", i, j, sums[2 * j], sums[2 * j + 1], sums[2 * j] + sums[2 * j + 1]);
|
||||
}
|
||||
sums += 2 << i;
|
||||
}
|
||||
}
|
||||
#else
|
||||
// Sums partition lengths for a certain k == get_group_id(0)
|
||||
// Requires 128 threads
|
||||
// get_group_id(0) == k
|
||||
@@ -914,7 +1339,42 @@ void clSumPartition(
|
||||
if (get_local_size(0) + get_local_id(0) < (1 << max_porder))
|
||||
partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = data[get_local_size(0) + get_local_id(0)];
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __CPU__
|
||||
// Finds optimal rice parameter for each partition.
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clFindRiceParameter(
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
__global int* rice_parameters,
|
||||
__global int* partition_lengths,
|
||||
int max_porder
|
||||
)
|
||||
{
|
||||
__global FLACCLSubframeTask* task = tasks + get_group_id(0);
|
||||
const int tid = get_local_id(0);
|
||||
int lim = (2 << max_porder) - 1;
|
||||
int psize = task->data.blocksize >> max_porder;
|
||||
int bs = task->data.blocksize;
|
||||
int ro = task->data.residualOrder;
|
||||
for (int offs = 0; offs < lim; offs ++)
|
||||
{
|
||||
int pl = partition_lengths[(1 << (max_porder + 1)) * get_group_id(0) + offs];
|
||||
int porder = 31 - clz(lim - offs);
|
||||
int ps = (bs >> porder) - select(0, ro, offs == lim + 1 - (2 << porder));
|
||||
//if (ps <= 0)
|
||||
// printf("max_porder == %d, porder == %d, ro == %d\n", max_porder, porder, ro);
|
||||
int k = clamp(31 - clz(pl / max(1, ps)), 0, 14);
|
||||
int plk = ps * (k + 1) + (pl >> k);
|
||||
|
||||
// output rice parameter
|
||||
rice_parameters[(get_group_id(0) << (max_porder + 2)) + offs] = k;
|
||||
// output length
|
||||
rice_parameters[(get_group_id(0) << (max_porder + 2)) + (1 << (max_porder + 1)) + offs] = plk;
|
||||
}
|
||||
}
|
||||
#else
|
||||
// Finds optimal rice parameter for each partition.
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
@@ -943,7 +1403,69 @@ void clFindRiceParameter(
|
||||
rice_parameters[(get_group_id(0) << (max_porder + 2)) + (1 << (max_porder + 1)) + offs] = best_l;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __CPU__
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(1, 1, 1)))
|
||||
void clFindPartitionOrder(
|
||||
__global int *residual,
|
||||
__global int* best_rice_parameters,
|
||||
__global FLACCLSubframeTask *tasks,
|
||||
__global int* rice_parameters,
|
||||
int max_porder
|
||||
)
|
||||
{
|
||||
__global FLACCLSubframeTask* task = tasks + get_group_id(0);
|
||||
int partlen[9];
|
||||
for (int p = 0; p < 9; p++)
|
||||
partlen[p] = 0;
|
||||
// fetch partition lengths
|
||||
const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder);
|
||||
int lim = (2 << max_porder) - 1;
|
||||
for (int offs = 0; offs < lim; offs ++)
|
||||
{
|
||||
int len = rice_parameters[pos + offs];
|
||||
int porder = 31 - clz(lim - offs);
|
||||
partlen[porder] += len;
|
||||
}
|
||||
|
||||
int best_length = partlen[0] + 4;
|
||||
int best_porder = 0;
|
||||
for (int porder = 1; porder <= max_porder; porder++)
|
||||
{
|
||||
int length = (4 << porder) + partlen[porder];
|
||||
best_porder = select(best_porder, porder, length < best_length);
|
||||
best_length = min(best_length, length);
|
||||
}
|
||||
|
||||
best_length = (4 << best_porder) + task->data.blocksize - task->data.residualOrder;
|
||||
int best_psize = task->data.blocksize >> best_porder;
|
||||
int start = task->data.residualOffs + task->data.residualOrder;
|
||||
int fin = task->data.residualOffs + best_psize;
|
||||
for (int p = 0; p < (1 << best_porder); p++)
|
||||
{
|
||||
int k = rice_parameters[pos - (2 << best_porder) + p];
|
||||
best_length += k * (fin - start);
|
||||
for (int i = start; i < fin; i++)
|
||||
{
|
||||
int t = residual[i];
|
||||
best_length += ((t << 1) ^ (t >> 31)) >> k;
|
||||
}
|
||||
start = fin;
|
||||
fin += best_psize;
|
||||
}
|
||||
|
||||
int obits = task->data.obits - task->data.wbits;
|
||||
task->data.porder = best_porder;
|
||||
task->data.size =
|
||||
task->data.type == Fixed ? task->data.residualOrder * obits + 6 + best_length :
|
||||
task->data.type == LPC ? task->data.residualOrder * obits + 6 + best_length + 4 + 5 + task->data.residualOrder * task->data.cbits :
|
||||
task->data.type == Constant ? obits : obits * task->data.blocksize;
|
||||
for (int offs = 0; offs < (1 << best_porder); offs ++)
|
||||
best_rice_parameters[(get_group_id(0) << max_porder) + offs] = rice_parameters[pos - (2 << best_porder) + offs];
|
||||
}
|
||||
#else
|
||||
// get_group_id(0) == task index
|
||||
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
|
||||
void clFindPartitionOrder(
|
||||
@@ -998,3 +1520,4 @@ void clFindPartitionOrder(
|
||||
// FIXME: should be bytes?
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user