mirror of
https://github.com/claunia/cuetools.net.git
synced 2025-12-16 18:14:25 +00:00
Fix typos found by codespell
- Typos were found by codespell v1.17.0.dev0 (commit 44fea6d) - Command used: codespell -q 2 \ -L ba,bloc,blocs,doubleclick,dur,fille,frmat,numer,optin,passtime \ -L pres,strack,te,tim,tre,uint,whn \ --skip="*.de-DE.resx,./Bwg*,./Freedb,./MusicBrainz,./ProgressODoom" \ --skip="./ThirdParty"
This commit is contained in:
@@ -81,7 +81,7 @@ void memory_init()
|
||||
inverse = t_inverse = (symbol *) malloc(sizeof(symbol) * N_walsh * n_field + 8);
|
||||
coeff = t_coeff = (symbol *) malloc(sizeof(symbol) * N_walsh * n_field + 8);
|
||||
|
||||
// allign memory for SSE operation
|
||||
// align memory for SSE operation
|
||||
while ((int)(inverse) & 0xf) inverse++;
|
||||
while ((int)(coeff) & 0xf) coeff++;
|
||||
}
|
||||
@@ -362,7 +362,7 @@ void compute_product()
|
||||
}
|
||||
|
||||
// Same but quadratic version
|
||||
// Here only for debuging purpose
|
||||
// Here only for debugging purpose
|
||||
void compute_product_quadratic(int K, int *positions)
|
||||
{
|
||||
int i,j;
|
||||
|
||||
@@ -35,7 +35,7 @@
|
||||
|
||||
// type used to store one field symbol
|
||||
// With short int, we can work up to GF(16)
|
||||
// If one wants to work on bigger fied, replace this by int.
|
||||
// If one wants to work on bigger field, replace this by int.
|
||||
typedef unsigned short symbol;
|
||||
typedef unsigned char byte;
|
||||
|
||||
|
||||
@@ -136,7 +136,7 @@ void fill_table(int nf)
|
||||
if (state>>n_field!=0) exit(0);
|
||||
}
|
||||
|
||||
// usefull since later
|
||||
// useful since later
|
||||
// since log_table[0]=0
|
||||
// we set log_table[1]=modulo
|
||||
// so log_table is a bijection...
|
||||
@@ -686,7 +686,7 @@ void incremental_encode(int N, int K, int S, void *b_src, void *b_dst)
|
||||
void *dst = b_dst + (x-K)*S;
|
||||
void *src = b_src + i*S;
|
||||
|
||||
// the second substraction can also
|
||||
// the second subtraction can also
|
||||
// go into quadratic_init
|
||||
int t = product_enc[x] - log_table[i ^ x] - product_enc[i];
|
||||
if (t<0) t+= modulo;
|
||||
@@ -790,7 +790,7 @@ void quadratic_encode(int N, int K, int S, void *b_src, void *b_dst)
|
||||
{
|
||||
void *src = b_src + i*S;
|
||||
|
||||
// the second substraction can also
|
||||
// the second subtraction can also
|
||||
// go into quadratic_init
|
||||
int t = product_enc[x] - log_table[i ^ x] - product_enc[i];
|
||||
if (t<0) t+= modulo;
|
||||
@@ -830,7 +830,7 @@ void quadratic_decode(int N, int K, int S, int *positions, void *b_src, void *b_
|
||||
{
|
||||
void *src = b_src + i*S;
|
||||
|
||||
// the second substraction can also
|
||||
// the second subtraction can also
|
||||
// go into quadratic_init
|
||||
int t = product[x] - log_table[positions[i] ^ x] - product[positions[i]];
|
||||
if (t<0) t+= modulo;
|
||||
@@ -978,7 +978,7 @@ void fast_decode(int N, int K, int S, int *positions, void *b_src, void *b_dst)
|
||||
karatsuba(fast_out+K*S, fast_in+K*S, inverse+K, n_walsh-1, S);
|
||||
memxor(fast_out, fast_out + K*S, K*S);
|
||||
|
||||
// final multiplication of unknow pieces
|
||||
// final multiplication of unknown pieces
|
||||
for (i=0; i<K; i++) {
|
||||
if (pos[i]==0) {
|
||||
process_eq(product[i], b_dst + i*S, fast_out + i*S, S);
|
||||
|
||||
@@ -42,7 +42,7 @@
|
||||
// type used to store one field symbol
|
||||
// With short int, we can work up to GF(16)
|
||||
// and we can apply the fast algo up to N_walsh=15
|
||||
// If one wants to work on bigger fied, replace this by int.
|
||||
// If one wants to work on bigger field, replace this by int.
|
||||
typedef uint16_t symbol;
|
||||
typedef uint8_t byte;
|
||||
|
||||
|
||||
@@ -136,7 +136,7 @@ void fill_table()
|
||||
if (state>>n_field!=0) exit(0);
|
||||
}
|
||||
|
||||
// usefull since later
|
||||
// useful since later
|
||||
// log_table[1] = modulo
|
||||
exp_table[2*modulo]=1;
|
||||
}
|
||||
@@ -283,7 +283,7 @@ void compute_product_quadratic(int K, int *positions)
|
||||
// [output] is where we will write the result
|
||||
|
||||
// both functions are almost identical
|
||||
// but it is usefull to have two for profiling
|
||||
// but it is useful to have two for profiling
|
||||
|
||||
void quadratic_enc(int K, int S, symbol *data, symbol *output, int x)
|
||||
{
|
||||
@@ -292,7 +292,7 @@ void quadratic_enc(int K, int S, symbol *data, symbol *output, int x)
|
||||
|
||||
// first time we overwrite output
|
||||
{
|
||||
// the second substraction can also
|
||||
// the second subtraction can also
|
||||
// go into quadratic_init
|
||||
int t = m - log_table[x] - product_enc[0];
|
||||
if (t<0) t+= modulo;
|
||||
@@ -317,7 +317,7 @@ void quadratic_enc(int K, int S, symbol *data, symbol *output, int x)
|
||||
// other time we just xor into the output
|
||||
for (i=1; i<K; i++)
|
||||
{
|
||||
// the second substraction can also
|
||||
// the second subtraction can also
|
||||
// go into quadratic_init
|
||||
int t = m - log_table[i ^ x] - product_enc[i];
|
||||
if (t<0) t+= modulo;
|
||||
@@ -347,7 +347,7 @@ void quadratic_dec(int K, int S, int *positions, symbol *data, symbol *output, i
|
||||
|
||||
// first time we erase output
|
||||
{
|
||||
// the second substraction can also
|
||||
// the second subtraction can also
|
||||
// go into quadratic_init
|
||||
int t = m - log_table[positions[0] ^ x] - product[positions[0]];
|
||||
if (t<0) t+= modulo;
|
||||
@@ -372,7 +372,7 @@ void quadratic_dec(int K, int S, int *positions, symbol *data, symbol *output, i
|
||||
// other time we just xor into the output
|
||||
for (i=1; i<K; i++)
|
||||
{
|
||||
// the second substraction can also
|
||||
// the second subtraction can also
|
||||
// go into quadratic_init
|
||||
int t = m - log_table[positions[i] ^ x] - product[positions[i]];
|
||||
if (t<0) t+= modulo;
|
||||
|
||||
@@ -28,7 +28,7 @@ t = h/2
|
||||
|
||||
%*** Generate the Galois Field and Generator polynomial ***
|
||||
|
||||
% This step is neccessary for Matlab. Here we create the Galois Field which is used for
|
||||
% This step is necessary for Matlab. Here we create the Galois Field which is used for
|
||||
% computations of the Reed-Solomon code
|
||||
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ function DECODED = RS_E_E_DEC(received, erasures,n,k,t,h,g,field);
|
||||
|
||||
%syndrome calculation
|
||||
S = [];
|
||||
%Subtitute alpha^i in received polynomial - Lin + Costello p.152 eq. 6.13
|
||||
%Substitute alpha^i in received polynomial - Lin + Costello p.152 eq. 6.13
|
||||
for ii = 1:2*t
|
||||
S(ii)= -Inf;
|
||||
for cc = 1:n
|
||||
@@ -21,7 +21,7 @@ for ii = 1:2*t
|
||||
end
|
||||
%S
|
||||
|
||||
%Test if syndrome = 0, if syndrome equals 0, assume that no errors occured
|
||||
%Test if syndrome = 0, if syndrome equals 0, assume that no errors occurred
|
||||
for i = 1:2*t
|
||||
test_pol(i) = -Inf;
|
||||
end
|
||||
@@ -78,7 +78,7 @@ else
|
||||
else
|
||||
for i = 1:length(S_M)
|
||||
if (S_M(i) ~= -Inf)
|
||||
flag = 1; %Other errors occured in conjunction with erasures
|
||||
flag = 1; %Other errors occurred in conjunction with erasures
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
function sum = gfsubstitute(polynomial,value,terms,n,field)
|
||||
|
||||
%use: gfsubstitute(polynomial,value,terms,n,field)
|
||||
%Subtitute i^value in polynomial
|
||||
%Substitute i^value in polynomial
|
||||
%the number of terms in polynomial
|
||||
%n = n of the decoder
|
||||
|
||||
|
||||
Reference in New Issue
Block a user