/** * CUETools.FLACCL: FLAC audio encoder using OpenCL * Copyright (c) 2010-2021 Gregory S. Chudov * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _FLACCL_KERNEL_H_ #define _FLACCL_KERNEL_H_ #if defined(__WinterPark__) || defined(__BeaverCreek__) || defined(__Turks__) || defined(__Caicos__) || defined(__Tahiti__) || defined(__Pitcairn__) || defined(__Capeverde__) #define AMD #elif defined(__Cayman__) || defined(__Barts__) || defined(__Cypress__) || defined(__Juniper__) || defined(__Redwood__) || defined(__Cedar__) #define AMD #elif defined(__ATI_RV770__) || defined(__ATI_RV730__) || defined(__ATI_RV710__) #define AMD #endif #define VENDOR_ID_INTEL 0x8086 #define VENDOR_ID_NVIDIA 0x10DE #define VENDOR_ID_ATIAMD 0x1002 #ifndef FLACCL_CPU #if VENDOR_ID == VENDOR_ID_INTEL #define WARP_SIZE 16 #else #define WARP_SIZE 32 #endif #endif #if defined(HAVE_cl_khr_fp64) || defined(HAVE_cl_amd_fp64) #define HAVE_DOUBLE #define ZEROD 0.0 //#define FAST_DOUBLE #else #define double float #define double4 float4 #define ZEROD 0.0f #endif #if defined(HAVE_DOUBLE) && defined(FAST_DOUBLE) #define fastdouble double #define fastdouble4 double4 #define ZEROFD 0.0 #else #define fastdouble float #define fastdouble4 float4 #define ZEROFD 0.0f #endif #if BITS_PER_SAMPLE > 16 #define MAX_RICE_PARAM 30 #define RICE_PARAM_BITS 5 #else #define MAX_RICE_PARAM 14 #define RICE_PARAM_BITS 4 #endif typedef enum { Constant = 0, Verbatim = 1, Fixed = 8, LPC = 32 } SubframeType; typedef struct { int residualOrder; // <= 32 int samplesOffs; int shift; int cbits; int size; int type; int obits; int blocksize; int coding_method; int channel; int residualOffs; int wbits; int abits; int porder; int headerLen; int encodingOffset; } FLACCLSubframeData; typedef struct { FLACCLSubframeData data; int coefs[32]; // fixme: should be short? } FLACCLSubframeTask; #if 0 __kernel void clWindowRectangle(__global float* window, int windowOffset) { window[get_global_id(0)] = 1.0f; } __kernel void clWindowFlattop(__global float* window, int windowOffset) { float p = M_PI_F * get_global_id(0) / (get_global_size(0) - 1); window[get_global_id(0)] = 1.0f - 1.93f * cos(2 * p) + 1.29f * cos(4 * p) - 0.388f * cos(6 * p) + 0.0322f * cos(8 * p); } __kernel void clWindowTukey(__global float* window, int windowOffset, float p) { int tid = get_global_id(0); int Np = (int)(p / 2.0f * get_global_size(0)) - 1; int Np2 = tid - (get_global_size(0) - Np - 1) + Np; int n = select(max(Np, Np2), tid, tid <= Np); window[tid] = 0.5f - 0.5f * cos(M_PI_F * n / Np); } #endif #if BITS_PER_SAMPLE > 16 __kernel void clStereoDecorr( __global int *samples, __global unsigned char *src, int offset ) { int pos = get_global_id(0); int bpos = pos * 6; int x = (((int)src[bpos] << 8) | ((int)src[bpos+1] << 16) | ((int)src[bpos+2] << 24)) >> 8; int y = (((int)src[bpos+3] << 8) | ((int)src[bpos+4] << 16) | ((int)src[bpos+5] << 24)) >> 8; samples[pos] = x; samples[1 * offset + pos] = y; samples[2 * offset + pos] = (x + y) >> 1; samples[3 * offset + pos] = x - y; } __kernel void clChannelDecorr2( __global int *samples, __global unsigned char *src, int offset ) { int pos = get_global_id(0); int bpos = pos * 6; samples[pos] = (((int)src[bpos] << 8) | ((int)src[bpos+1] << 16) | ((int)src[bpos+2] << 24)) >> 8; samples[offset + pos] = (((int)src[bpos+3] << 8) | ((int)src[bpos+4] << 16) | ((int)src[bpos+5] << 24)) >> 8; } __kernel void clChannelDecorrX( __global int *samples, __global unsigned char *src, int offset ) { int pos = get_global_id(0); for (int ch = 0; ch < MAX_CHANNELS; ch++) { int bpos = 3 * (pos * MAX_CHANNELS + ch); samples[offset * ch + pos] = (((int)src[bpos] << 8) | ((int)src[bpos+1] << 16) | ((int)src[bpos+2] << 24)) >> 8; } } #else __kernel void clStereoDecorr( __global int4 *samples, __global int4 *src, int offset ) { int pos = get_global_id(0); int4 s = src[pos]; int4 x = (s << 16) >> 16; int4 y = s >> 16; samples[pos] = x; samples[1 * offset + pos] = y; samples[2 * offset + pos] = (x + y) >> 1; samples[3 * offset + pos] = x - y; } __kernel void clChannelDecorr2( __global int4 *samples, __global int4 *src, int offset ) { int pos = get_global_id(0); int4 s = src[pos]; samples[pos] = (s << 16) >> 16; samples[offset + pos] = s >> 16; } __kernel void clChannelDecorrX( __global int *samples, __global short *src, int offset ) { int pos = get_global_id(0); for (int ch = 0; ch < MAX_CHANNELS; ch++) { int bpos = pos * MAX_CHANNELS + ch; samples[offset * ch + pos] = src[bpos]; } } #endif //__kernel void clChannelDecorr( // int *samples, // short *src, // int offset //) //{ // int pos = get_global_id(0); // if (pos < offset) // samples[get_group_id(1) * offset + pos] = src[pos * get_num_groups(1) + get_group_id(1)]; //} #define __ffs(a) (32 - clz(a & (-a))) //#define __ffs(a) (33 - clz(~a & (a - 1))) #ifdef FLACCL_CPU __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clFindWastedBits( __global FLACCLSubframeTask *tasks, __global int *samples, int tasksPerChannel ) { __global FLACCLSubframeTask* ptask = &tasks[get_group_id(0) * tasksPerChannel]; int w = 0, a = 0; for (int pos = 0; pos < ptask->data.blocksize; pos ++) { int smp = samples[ptask->data.samplesOffs + pos]; w |= smp; a |= smp ^ (smp >> 31); } w = max(0,__ffs(w) - 1); a = 32 - clz(a) - w; for (int i = 0; i < tasksPerChannel; i++) { ptask[i].data.wbits = w; ptask[i].data.abits = a; //ptask[i].data.size = ptask[i].data.obits * ptask[i].data.blocksize; } } #else __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clFindWastedBits( __global FLACCLSubframeTask *tasks, __global int *samples, int tasksPerChannel ) { __local int abits[GROUP_SIZE]; __local int wbits[GROUP_SIZE]; __local FLACCLSubframeData task; int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0) * tasksPerChannel].data))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int w = 0, a = 0; for (int pos = tid; pos < task.blocksize; pos += GROUP_SIZE) { int smp = samples[task.samplesOffs + pos]; w |= smp; a |= smp ^ (smp >> 31); } wbits[tid] = w; abits[tid] = a; barrier(CLK_LOCAL_MEM_FENCE); for (int s = GROUP_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { wbits[tid] |= wbits[tid + s]; abits[tid] |= abits[tid + s]; } barrier(CLK_LOCAL_MEM_FENCE); } w = max(0,__ffs(wbits[0]) - 1); a = 32 - clz(abits[0]) - w; if (tid < tasksPerChannel) { int i = get_group_id(0) * tasksPerChannel + tid; tasks[i].data.wbits = w; tasks[i].data.abits = a; //tasks[i].data.size = tasks[i].data.obits * tasks[i].data.blocksize; } } #endif #ifdef FLACCL_CPU #define TEMPBLOCK 512 #define STORE_AC(ro, val) if (ro <= MAX_ORDER) pout[ro] = val; #define STORE_AC4(ro, val) STORE_AC(ro*4+0, val##ro.x) STORE_AC(ro*4+1, val##ro.y) STORE_AC(ro*4+2, val##ro.z) STORE_AC(ro*4+3, val##ro.w) // get_num_groups(0) == number of tasks // get_num_groups(1) == number of windows __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clComputeAutocor( __global float *output, __global const int *samples, __global const float *window, __global FLACCLSubframeTask *tasks, const int taskCount // tasks per block ) { FLACCLSubframeData task = tasks[get_group_id(0) * taskCount].data; int len = task.blocksize; int windowOffs = get_group_id(1) * len; float data[TEMPBLOCK + MAX_ORDER + 3]; double4 ac0 = 0.0, ac1 = 0.0, ac2 = 0.0, ac3 = 0.0, ac4 = 0.0, ac5 = 0.0, ac6 = 0.0, ac7 = 0.0, ac8 = 0.0; for (int pos = 0; pos < len; pos += TEMPBLOCK) { for (int tid = 0; tid < TEMPBLOCK + MAX_ORDER + 3; tid++) data[tid] = tid < len - pos ? samples[task.samplesOffs + pos + tid] * window[windowOffs + pos + tid] : 0.0f; for (int j = 0; j < TEMPBLOCK;) { float4 temp0 = 0.0f, temp1 = 0.0f, temp2 = 0.0f, temp3 = 0.0f, temp4 = 0.0f, temp5 = 0.0f, temp6 = 0.0f, temp7 = 0.0f, temp8 = 0.0f; for (int k = 0; k < 32; k++) { float d0 = data[j]; temp0 += d0 * vload4(0, &data[j]); temp1 += d0 * vload4(1, &data[j]); #if MAX_ORDER >= 8 temp2 += d0 * vload4(2, &data[j]); #if MAX_ORDER >= 12 temp3 += d0 * vload4(3, &data[j]); #if MAX_ORDER >= 16 temp4 += d0 * vload4(4, &data[j]); temp5 += d0 * vload4(5, &data[j]); temp6 += d0 * vload4(6, &data[j]); temp7 += d0 * vload4(7, &data[j]); temp8 += d0 * vload4(8, &data[j]); #endif #endif #endif j++; } ac0 += convert_double4(temp0); ac1 += convert_double4(temp1); #if MAX_ORDER >= 8 ac2 += convert_double4(temp2); #if MAX_ORDER >= 12 ac3 += convert_double4(temp3); #if MAX_ORDER >= 16 ac4 += convert_double4(temp4); ac5 += convert_double4(temp5); ac6 += convert_double4(temp6); ac7 += convert_double4(temp7); ac8 += convert_double4(temp8); #endif #endif #endif } } __global float * pout = &output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1)]; STORE_AC4(0, ac) STORE_AC4(1, ac) STORE_AC4(2, ac) STORE_AC4(3, ac) STORE_AC4(4, ac) STORE_AC4(5, ac) STORE_AC4(6, ac) STORE_AC4(7, ac) STORE_AC4(8, ac) } #else // get_num_groups(0) == number of tasks // get_num_groups(1) == number of windows __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clComputeAutocor( __global float *output, __global const int *samples, __global const float *window, __global FLACCLSubframeTask *tasks, const int taskCount // tasks per block ) { __local fastdouble data[GROUP_SIZE * 2]; __local FLACCLSubframeData task; const int tid = get_local_id(0); // fetch task data if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(tasks + taskCount * get_group_id(0)))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.blocksize; data[tid] = ZEROFD; const int THREADS_FOR_ORDERS = MAX_ORDER < 8 ? 8 : MAX_ORDER < 16 ? 16 : MAX_ORDER < 32 ? 32 : 64; int lag = tid & (THREADS_FOR_ORDERS - 1); int tid1 = tid + GROUP_SIZE - lag; int pos = 0; const __global float * wptr = &window[get_group_id(1) * bs]; // const __global int * sptr = &samples[task.samplesOffs]; double corr = ZEROD; for (pos = 0; pos + GROUP_SIZE - 1 < bs; pos += GROUP_SIZE) { int off = pos + tid; // fetch samples fastdouble nextData = samples[task.samplesOffs + off] * wptr[off]; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); fastdouble4 tmp = ZEROFD; for (int i = 0; i < THREADS_FOR_ORDERS / 4; i++) tmp += vload4(i, &data[tid1 - lag]) * vload4(i, &data[tid1]); corr += (tmp.x + tmp.y) + (tmp.w + tmp.z); barrier(CLK_LOCAL_MEM_FENCE); data[tid] = nextData; } { int off = pos + tid; // fetch samples double nextData = off < bs ? samples[task.samplesOffs + off] * wptr[off] : ZEROD; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); fastdouble4 tmp = ZEROFD; for (int i = 0; i < THREADS_FOR_ORDERS / 4; i++) tmp += vload4(i, &data[tid1 - lag]) * vload4(i, &data[tid1]); corr += (tmp.x + tmp.y) + (tmp.w + tmp.z); } data[tid] = corr; barrier(CLK_LOCAL_MEM_FENCE); for (int i = GROUP_SIZE / 2; i >= THREADS_FOR_ORDERS; i >>= 1) { if (tid < i) data[tid] += data[tid + i]; barrier(CLK_LOCAL_MEM_FENCE); } if (tid <= MAX_ORDER) output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1) + tid] = data[tid]; } #endif #ifdef FLACCL_CPU __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clComputeLPC( __global float *pautoc, __global float *lpcs, int windowCount ) { int lpcOffs = (get_group_id(0) + get_group_id(1) * windowCount) * (MAX_ORDER + 1) * 32; int autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1); volatile double ldr[32]; volatile double gen0[32]; volatile double gen1[32]; volatile double err[32]; __global float* autoc = pautoc + autocOffs; for (int i = 0; i < MAX_ORDER; i++) { gen0[i] = gen1[i] = autoc[i + 1]; ldr[i] = 0.0; } // Compute LPC using Schur and Levinson-Durbin recursion double error = autoc[0]; for (int order = 0; order < MAX_ORDER; order++) { // Schur recursion double reff = -gen1[0] / error; //error += gen1[0] * reff; // Equivalent to error *= (1 - reff * reff); error *= (1 - reff * reff); for (int j = 0; j < MAX_ORDER - 1 - order; j++) { gen1[j] = gen1[j + 1] + reff * gen0[j]; gen0[j] = gen1[j + 1] * reff + gen0[j]; } err[order] = error; // Levinson-Durbin recursion ldr[order] = reff; for (int j = 0; j < order / 2; j++) { double tmp = ldr[j]; ldr[j] += reff * ldr[order - 1 - j]; ldr[order - 1 - j] += reff * tmp; } if (0 != (order & 1)) ldr[order / 2] += ldr[order / 2] * reff; // Output coeffs for (int j = 0; j <= order; j++) lpcs[lpcOffs + order * 32 + j] = -ldr[order - j]; } // Output prediction error estimates for (int j = 0; j < MAX_ORDER; j++) lpcs[lpcOffs + MAX_ORDER * 32 + j] = err[j]; } #else __kernel __attribute__((reqd_work_group_size(32, 1, 1))) void clComputeLPC( __global float *autoc, __global float *lpcs, int windowCount ) { __local struct { volatile double ldr[32]; volatile double gen1[32]; volatile float error[32]; volatile float autoc[33]; } shared; const int tid = get_local_id(0);// + get_local_id(1) * 32; int autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1); int lpcOffs = autocOffs * 32; shared.autoc[get_local_id(0)] = get_local_id(0) <= MAX_ORDER ? autoc[autocOffs + get_local_id(0)] : 0; if (get_local_id(0) + get_local_size(0) <= MAX_ORDER) shared.autoc[get_local_id(0) + get_local_size(0)] = autoc[autocOffs + get_local_id(0) + get_local_size(0)]; barrier(CLK_LOCAL_MEM_FENCE); // Compute LPC using Schur and Levinson-Durbin recursion double gen0 = shared.gen1[get_local_id(0)] = shared.autoc[get_local_id(0)+1]; shared.ldr[get_local_id(0)] = ZEROD; double error = shared.autoc[0]; #ifdef DEBUGPRINT1 int magic = autocOffs == 0; // shared.autoc[0] == 177286873088.0f; if (magic && get_local_id(0) <= MAX_ORDER) printf("autoc[%d] == %f\n", get_local_id(0), shared.autoc[get_local_id(0)]); #endif barrier(CLK_LOCAL_MEM_FENCE); for (int order = 0; order < MAX_ORDER; order++) { // Schur recursion double reff = -shared.gen1[0] / error; //error += shared.gen1[0] * reff; // Equivalent to error *= (1 - reff * reff); error *= (1 - reff * reff); double gen1; if (get_local_id(0) < MAX_ORDER - 1 - order) { gen1 = shared.gen1[get_local_id(0) + 1] + reff * gen0; gen0 += shared.gen1[get_local_id(0) + 1] * reff; } barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < MAX_ORDER - 1 - order) shared.gen1[get_local_id(0)] = gen1; #ifdef DEBUGPRINT1 if (magic && get_local_id(0) == 0) printf("order == %d, reff == %f, error = %f\n", order, reff, error); if (magic && get_local_id(0) <= MAX_ORDER) printf("gen[%d] == %f, %f\n", get_local_id(0), gen0, gen1); #endif // Store prediction error if (get_local_id(0) == 0) shared.error[order] = error; // Levinson-Durbin recursion double ldr = shared.ldr[get_local_id(0)]; barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < order) shared.ldr[order - 1 - get_local_id(0)] += reff * ldr; if (get_local_id(0) == order) shared.ldr[get_local_id(0)] += reff; barrier(CLK_LOCAL_MEM_FENCE); // Output coeffs if (get_local_id(0) <= order) lpcs[lpcOffs + order * 32 + get_local_id(0)] = -shared.ldr[order - get_local_id(0)]; //if (get_local_id(0) <= order + 1 && fabs(-shared.ldr[0]) > 3000) // printf("coef[%d] == %f, autoc == %f, error == %f\n", get_local_id(0), -shared.ldr[order - get_local_id(0)], shared.autoc[get_local_id(0)], shared.error[get_local_id(0)]); } barrier(CLK_LOCAL_MEM_FENCE); #ifdef DEBUGPRINT1 if (magic && get_local_id(0) < MAX_ORDER) printf("error[%d] == %f\n", get_local_id(0), shared.error[get_local_id(0)]); #endif // Output prediction error estimates if (get_local_id(0) < MAX_ORDER) lpcs[lpcOffs + MAX_ORDER * 32 + get_local_id(0)] = shared.error[get_local_id(0)]; } #endif #ifdef FLACCL_CPU __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clQuantizeLPC( __global FLACCLSubframeTask *tasks, __global float*lpcs, int taskCount, // tasks per block int taskCountLPC, // tasks per set of coeffs (<= 32) int minprecision, int precisions ) { int bs = tasks[get_group_id(1) * taskCount].data.blocksize; int abits = tasks[get_group_id(1) * taskCount].data.abits; int obits = tasks[get_group_id(1) * taskCount].data.obits; int lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32; float error[MAX_ORDER]; int best_orders[MAX_ORDER]; int best8 = 0; // Load prediction error estimates based on Akaike's Criteria for (int tid = 0; tid < MAX_ORDER; tid++) { error[tid] = bs * log(1.0f + lpcs[lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log((float)bs); best_orders[tid] = tid; if (tid < 8 && error[tid] < error[best8]) best8 = tid; } #if 0 for (int i = best8 + 1; i < MAX_ORDER; i++) error[i] += 20.5f * log((float)bs); #endif // Select best orders for (int i = 0; i < MAX_ORDER && i < taskCountLPC; i++) { for (int j = i + 1; j < MAX_ORDER; j++) { if (error[best_orders[j]] < error[best_orders[i]]) { int tmp = best_orders[j]; best_orders[j] = best_orders[i]; best_orders[i] = tmp; } } } // Quantization for (int i = 0; i < taskCountLPC; i ++) { int order = best_orders[i >> precisions]; int tmpi = 0; for (int tid = 0; tid <= order; tid ++) { float lpc = lpcs[lpcOffs + order * 32 + tid]; // get 15 bits of each coeff int c = convert_int_rte(lpc * (1 << 15)); // remove sign bits tmpi |= c ^ (c >> 31); } // choose precision //int cbits = max(3, min(10, 5 + (abits >> 1))); // - convert_int_rte(shared.PE[order - 1]) #if BITS_PER_SAMPLE > 16 int cbits = max(3, min(15 - minprecision + (i - ((i >> precisions) << precisions)) - (bs <= 2304) - (bs <= 1152) - (bs <= 576), abits)); #else int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (bs <= 2304) - (bs <= 1152) - (bs <= 576), abits), clz(order) + 1 - obits)); #endif // calculate shift based on precision and number of leading zeroes in coeffs int shift = max(0,min(15, clz(tmpi) - 18 + cbits)); int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i; tmpi = 0; for (int tid = 0; tid <= order; tid ++) { float lpc = lpcs[lpcOffs + order * 32 + tid]; // quantize coeffs with given shift int c = convert_int_rte(clamp(lpc * (1 << shift), (float)((-1 << (cbits - 1)) + 1), (float)((1 << (cbits - 1)) - 1))); // remove sign bits tmpi |= c ^ (c >> 31); tasks[taskNo].coefs[tid] = c; } // calculate actual number of bits (+1 for sign) cbits = 1 + 32 - clz(tmpi); // output shift, cbits, ro tasks[taskNo].data.shift = shift; tasks[taskNo].data.cbits = cbits; tasks[taskNo].data.residualOrder = order + 1; } } #else __kernel __attribute__((reqd_work_group_size(32, 1, 1))) void clQuantizeLPC( __global FLACCLSubframeTask *tasks, __global float*lpcs, int taskCount, // tasks per block int taskCountLPC, // tasks per set of coeffs (<= 32) int minprecision, int precisions ) { __local struct { FLACCLSubframeData task; volatile int index[64]; volatile float error[64]; volatile int maxcoef[32]; // volatile int best8; } shared; const int tid = get_local_id(0); // fetch task data if (tid < sizeof(shared.task) / sizeof(int)) ((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1) * taskCount))[tid]; barrier(CLK_LOCAL_MEM_FENCE); const int lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32; // Select best orders based on Akaike's Criteria shared.index[tid] = min(MAX_ORDER - 1, tid); shared.error[tid] = shared.task.blocksize * 64 + tid; shared.index[32 + tid] = MAX_ORDER - 1; shared.error[32 + tid] = shared.task.blocksize * 64 + tid + 32; shared.maxcoef[tid] = 0; // Load prediction error estimates if (tid < MAX_ORDER) shared.error[tid] = shared.task.blocksize * log(lpcs[lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log((float)shared.task.blocksize); //shared.error[get_local_id(0)] = shared.task.blocksize * log(lpcs[lpcOffs + MAX_ORDER * 32 + get_local_id(0)]) + get_local_id(0) * 0.30f * (shared.task.abits + 1) * log(shared.task.blocksize); #if 0 if (tid == 0) { int b8 = 0; for (int i = 1; i < 8; i++) if (shared.error[i] < shared.error[b8]) b8 = i; shared.best8 = b8; } shared.error[tid] += select(0.0f, 20.5f * log((float)shared.task.blocksize), tid > shared.best8); #endif barrier(CLK_LOCAL_MEM_FENCE); // Sort using bitonic sort for(int size = 2; size < 64; size <<= 1){ //Bitonic merge int ddd = (tid & (size / 2)) == 0; for(int stride = size / 2; stride > 0; stride >>= 1){ int pos = 2 * tid - (tid & (stride - 1)); float e0 = shared.error[pos]; float e1 = shared.error[pos + stride]; int i0 = shared.index[pos]; int i1 = shared.index[pos + stride]; barrier(CLK_LOCAL_MEM_FENCE); if ((e0 >= e1) == ddd) { shared.error[pos] = e1; shared.error[pos + stride] = e0; shared.index[pos] = i1; shared.index[pos + stride] = i0; } barrier(CLK_LOCAL_MEM_FENCE); } } //ddd == dir for the last bitonic merge step { for(int stride = 32; stride > 0; stride >>= 1){ //barrier(CLK_LOCAL_MEM_FENCE); int pos = 2 * tid - (tid & (stride - 1)); float e0 = shared.error[pos]; float e1 = shared.error[pos + stride]; int i0 = shared.index[pos]; int i1 = shared.index[pos + stride]; barrier(CLK_LOCAL_MEM_FENCE); if (e0 >= e1) { shared.error[pos] = e1; shared.error[pos + stride] = e0; shared.index[pos] = i1; shared.index[pos + stride] = i0; } barrier(CLK_LOCAL_MEM_FENCE); } } //shared.index[tid] = MAX_ORDER - 1; //barrier(CLK_LOCAL_MEM_FENCE); // Quantization for (int i = 0; i < taskCountLPC; i ++) { int order = shared.index[i >> precisions]; float lpc = tid <= order ? lpcs[lpcOffs + order * 32 + tid] : 0.0f; // get 15 bits of each coeff int coef = convert_int_rte(lpc * (1 << 15)); // remove sign bits atomic_or(shared.maxcoef + i, coef ^ (coef >> 31)); barrier(CLK_LOCAL_MEM_FENCE); int cbits = min(51 - 2 * clz(shared.task.blocksize), shared.task.abits) - minprecision + (i - ((i >> precisions) << precisions)); #if BITS_PER_SAMPLE <= 16 // Limit cbits so that 32-bit arithmetics will be enough when calculating residual // (1 << (obits - 1)) * ((1 << (cbits - 1)) - 1) * (order + 1) < (1 << 31) // (1 << (cbits - 1)) - 1 < (1 << (32 - obits)) / (order + 1) // (1 << (cbits - 1)) <= (1 << (32 - obits)) / (order + 1) // (1 << (cbits - 1)) <= (1 << (32 - obits - (32 - clz(order))) <= (1 << (32 - obits)) / (order + 1) // (1 << (cbits - 1)) <= (1 << (clz(order) - obits)) // cbits - 1 <= clz(order) - obits // cbits <= clz(order) - obits + 1 cbits = min(cbits, clz(order) + 1 - shared.task.obits); #endif cbits = clamp(cbits, 3, 15); // Calculate shift based on precision and number of leading zeroes in coeffs. // We know that if shifted by 15, coefs require // 33 - clz(shared.maxcoef[i]) bits; // So to get the desired cbits, we need to shift coefs by // 15 + cbits - (33 - clz(shared.maxcoef[i])); int shift = clamp(clz(shared.maxcoef[i]) - 18 + cbits, 0, 15); int lim = (1 << (cbits - 1)) - 1; coef = clamp(convert_int_rte(lpc * (1 << shift)), -lim, lim); // output shift, cbits and output coeffs int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i; if (tid == 0) tasks[taskNo].data.shift = shift; if (tid == 0) tasks[taskNo].data.cbits = cbits; if (tid == 0) tasks[taskNo].data.residualOrder = order + 1; if (tid <= order) tasks[taskNo].coefs[tid] = coef; } } #endif #ifdef FLACCL_CPU #define TEMPBLOCK1 TEMPBLOCK __kernel __attribute__(( vec_type_hint (int4))) __attribute__((reqd_work_group_size(1, 1, 1))) void clEstimateResidual( __global int*samples, __global int*selectedTasks, __global FLACCLSubframeTask *tasks ) { int selectedTask = selectedTasks[get_group_id(0)]; FLACCLSubframeTask task = tasks[selectedTask]; int ro = task.data.residualOrder; int bs = task.data.blocksize; #define ERPARTS (MAX_BLOCKSIZE >> 6) float len[ERPARTS]; // blocksize / 64!!!! __global int *data = &samples[task.data.samplesOffs]; for (int i = 0; i < ERPARTS; i++) len[i] = 0.0f; if (ro <= 4) { float fcoef[4]; for (int tid = 0; tid < 4; tid++) fcoef[tid] = tid + ro - 4 < 0 ? 0.0f : - ((float) task.coefs[tid + ro - 4]) / (1 << task.data.shift); float4 fc0 = vload4(0, &fcoef[0]); float fdata[4]; for (int pos = 0; pos < 4; pos++) fdata[pos] = pos + ro - 4 < 0 ? 0.0f : (float)(data[pos + ro - 4] >> task.data.wbits); float4 fd0 = vload4(0, &fdata[0]); for (int pos = ro; pos < bs; pos ++) { float4 sum4 = fc0 * fd0; float2 sum2 = sum4.s01 + sum4.s23; fd0 = fd0.s1230; fd0.s3 = (float)(data[pos] >> task.data.wbits); len[pos >> 6] += fabs(fd0.s3 + (sum2.x + sum2.y)); } } else if (ro <= 8) { float fcoef[8]; for (int tid = 0; tid < 8; tid++) fcoef[tid] = tid + ro - 8 < 0 ? 0.0f : - ((float) task.coefs[tid + ro - 8]) / (1 << task.data.shift); float8 fc0 = vload8(0, &fcoef[0]); float fdata[8]; for (int pos = 0; pos < 8; pos++) fdata[pos] = pos + ro - 8 < 0 ? 0.0f : (float)(data[pos + ro - 8] >> task.data.wbits); float8 fd0 = vload8(0, &fdata[0]); for (int pos = ro; pos < bs; pos ++) { float8 sum8 = fc0 * fd0; float4 sum4 = sum8.s0123 + sum8.s4567; float2 sum2 = sum4.s01 + sum4.s23; fd0 = fd0.s12345670; fd0.s7 = (float)(data[pos] >> task.data.wbits); len[pos >> 6] += fabs(fd0.s7 + (sum2.x + sum2.y)); } } else if (ro <= 12) { float fcoef[12]; for (int tid = 0; tid < 12; tid++) fcoef[tid] = tid + ro - 12 >= 0 ? - ((float) task.coefs[tid + ro - 12]) / (1 << task.data.shift) : 0.0f; float4 fc0 = vload4(0, &fcoef[0]); float4 fc1 = vload4(1, &fcoef[0]); float4 fc2 = vload4(2, &fcoef[0]); float fdata[12]; for (int pos = 0; pos < 12; pos++) fdata[pos] = pos + ro - 12 < 0 ? 0.0f : (float)(data[pos + ro - 12] >> task.data.wbits); float4 fd0 = vload4(0, &fdata[0]); float4 fd1 = vload4(1, &fdata[0]); float4 fd2 = vload4(2, &fdata[0]); for (int pos = ro; pos < bs; pos ++) { float4 sum4 = fc0 * fd0 + fc1 * fd1 + fc2 * fd2; float2 sum2 = sum4.s01 + sum4.s23; fd0 = fd0.s1230; fd1 = fd1.s1230; fd2 = fd2.s1230; fd0.s3 = fd1.s3; fd1.s3 = fd2.s3; fd2.s3 = (float)(data[pos] >> task.data.wbits); len[pos >> 6] += fabs(fd2.s3 + (sum2.x + sum2.y)); } } else { float fcoef[32]; for (int tid = 0; tid < 32; tid++) fcoef[tid] = tid < MAX_ORDER && tid + ro - MAX_ORDER >= 0 ? - ((float) task.coefs[tid + ro - MAX_ORDER]) / (1 << task.data.shift) : 0.0f; float4 fc0 = vload4(0, &fcoef[0]); float4 fc1 = vload4(1, &fcoef[0]); float4 fc2 = vload4(2, &fcoef[0]); float fdata[MAX_ORDER + TEMPBLOCK1 + 32]; for (int pos = 0; pos < MAX_ORDER; pos++) fdata[pos] = 0.0f; for (int pos = MAX_ORDER + TEMPBLOCK1; pos < MAX_ORDER + TEMPBLOCK1 + 32; pos++) fdata[pos] = 0.0f; for (int bpos = 0; bpos < bs; bpos += TEMPBLOCK1) { int end = min(bpos + TEMPBLOCK1, bs); for (int pos = max(bpos - ro, 0); pos < max(bpos, ro); pos++) fdata[MAX_ORDER + pos - bpos] = (float)(data[pos] >> task.data.wbits); for (int pos = max(bpos, ro); pos < end; pos ++) { float next = (float)(data[pos] >> task.data.wbits); float * dptr = fdata + pos - bpos; dptr[MAX_ORDER] = next; float4 sum = fc0 * vload4(0, dptr) + fc1 * vload4(1, dptr) #if MAX_ORDER > 8 + fc2 * vload4(2, dptr) #if MAX_ORDER > 12 + vload4(3, &fcoef[0]) * vload4(3, dptr) #if MAX_ORDER > 16 + vload4(4, &fcoef[0]) * vload4(4, dptr) + vload4(5, &fcoef[0]) * vload4(5, dptr) + vload4(6, &fcoef[0]) * vload4(6, dptr) + vload4(7, &fcoef[0]) * vload4(7, dptr) #endif #endif #endif ; next += sum.x + sum.y + sum.z + sum.w; len[pos >> 6] += fabs(next); } } } int total = 0; for (int i = 0; i < ERPARTS; i++) { int res = convert_int_sat_rte(len[i] * 2); int k = clamp(31 - clz(res) - 6, 0, MAX_RICE_PARAM); // 25 - clz(res) == clz(64) - clz(res) == log2(res / 64) total += (k << 6) + (res >> k); } int partLen = min(0x7ffffff, total) + (bs - ro); int obits = task.data.obits - task.data.wbits; tasks[selectedTask].data.size = min(obits * bs, task.data.type == Fixed ? ro * obits + 6 + RICE_PARAM_BITS + partLen : task.data.type == LPC ? ro * obits + 4 + 5 + ro * task.data.cbits + 6 + RICE_PARAM_BITS/* << porder */ + partLen : task.data.type == Constant ? obits * select(1, bs, partLen != bs - ro) : obits * bs); } #else #define ESTPARTLOG 5 __kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clEstimateResidual( __global int*samples, __global int*selectedTasks, __global FLACCLSubframeTask *tasks ) { __local float data[GROUP_SIZE * 2 + 32]; #if !defined(AMD) __local volatile uint idata[GROUP_SIZE + 16]; #endif __local FLACCLSubframeTask task; __local uint psum[MAX_BLOCKSIZE >> ESTPARTLOG]; __local float fcoef[32]; __local int selectedTask; if (get_local_id(0) == 0) selectedTask = selectedTasks[get_group_id(0)]; barrier(CLK_LOCAL_MEM_FENCE); const int tid = get_local_id(0); if (tid < sizeof(task)/sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[selectedTask]))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int ro = task.data.residualOrder; int bs = task.data.blocksize; if (tid < 32) //fcoef[tid] = select(0.0f, - ((float) task.coefs[tid]) / (1 << task.data.shift), tid < ro); fcoef[tid] = tid < MAX_ORDER && tid + ro - MAX_ORDER >= 0 ? - ((float) task.coefs[tid + ro - MAX_ORDER]) / (1 << task.data.shift) : 0.0f; for (int offs = tid; offs < (MAX_BLOCKSIZE >> ESTPARTLOG); offs += GROUP_SIZE) psum[offs] = 0; data[tid] = 0.0f; // need to initialize "extra" data, because NaNs can produce weird results even when multiplied by zero extra coefs if (tid < 32) data[GROUP_SIZE * 2 + tid] = 0.0f; barrier(CLK_LOCAL_MEM_FENCE); float4 fc0 = vload4(0, &fcoef[0]); float4 fc1 = vload4(1, &fcoef[0]); #if MAX_ORDER > 8 float4 fc2 = vload4(2, &fcoef[0]); #endif __global int * rptr = &samples[task.data.samplesOffs]; int wb = task.data.wbits; int pos; for (pos = 0; pos + GROUP_SIZE - 1 < bs; pos += GROUP_SIZE) { // fetch samples int offs = pos + tid; float nextData = rptr[offs] >> wb; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); // compute residual __local float* dptr = &data[tid + GROUP_SIZE - MAX_ORDER]; float4 sum4 = fc0 * vload4(0, dptr) + fc1 * vload4(1, dptr) #if MAX_ORDER > 8 + fc2 * vload4(2, dptr) #if MAX_ORDER > 12 + vload4(3, &fcoef[0]) * vload4(3, dptr) #if MAX_ORDER > 16 + vload4(4, &fcoef[0]) * vload4(4, dptr) + vload4(5, &fcoef[0]) * vload4(5, dptr) + vload4(6, &fcoef[0]) * vload4(6, dptr) + vload4(7, &fcoef[0]) * vload4(7, dptr) #endif #endif #endif ; float2 sum2 = sum4.s01 + sum4.s23; int it = convert_int_sat_rte(nextData + (sum2.s0 + sum2.s1)); // int t = (int)(nextData + sum.x + sum.y + sum.z + sum.w); barrier(CLK_LOCAL_MEM_FENCE); data[tid] = nextData; // convert to unsigned uint t = (it << 1) ^ (it >> 31); // ensure we're within frame bounds t = select(0U, t, offs >= ro); // overflow protection t = min(t, 0x7ffffffU); #if defined(AMD) atomic_add(&psum[min(MAX_BLOCKSIZE - 1, offs) >> ESTPARTLOG], t); #else idata[tid] = t; #if WARP_SIZE <= (1 << (ESTPARTLOG - 1)) barrier(CLK_LOCAL_MEM_FENCE); for (int l = 1 << (ESTPARTLOG - 1); l >= WARP_SIZE; l >>= 1) { if (!(tid & l)) idata[tid] += idata[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } for (int l = WARP_SIZE / 2; l > 1; l >>= 1) idata[tid] += idata[tid + l]; #else for (int l = 1 << (ESTPARTLOG - 1); l > 1; l >>= 1) idata[tid] += idata[tid + l]; #endif if ((tid & (1 << ESTPARTLOG) - 1) == 0) psum[min(MAX_BLOCKSIZE - 1, offs) >> ESTPARTLOG] = idata[tid] + idata[tid + 1]; #endif } if (pos < bs) { // fetch samples int offs = pos + tid; float nextData = offs < bs ? rptr[offs] >> wb : 0.0f; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); // compute residual __local float* dptr = &data[tid + GROUP_SIZE - MAX_ORDER]; float4 sum = fc0 * vload4(0, dptr) + fc1 * vload4(1, dptr) #if MAX_ORDER > 8 + fc2 * vload4(2, dptr) #if MAX_ORDER > 12 + vload4(3, &fcoef[0]) * vload4(3, dptr) #if MAX_ORDER > 16 + vload4(4, &fcoef[0]) * vload4(4, dptr) + vload4(5, &fcoef[0]) * vload4(5, dptr) + vload4(6, &fcoef[0]) * vload4(6, dptr) + vload4(7, &fcoef[0]) * vload4(7, dptr) #endif #endif #endif ; int it = convert_int_sat_rte(nextData + sum.x + sum.y + sum.z + sum.w); barrier(CLK_LOCAL_MEM_FENCE); data[tid] = nextData; // convert to unsigned uint t = (it << 1) ^ (it >> 31); // ensure we're within frame bounds t = select(0U, t, offs >= ro && offs < bs); // overflow protection t = min(t, 0x7ffffffU); #if defined(AMD) atomic_add(&psum[min(MAX_BLOCKSIZE - 1, offs) >> ESTPARTLOG], t); #else idata[tid] = t; #if WARP_SIZE <= (1 << (ESTPARTLOG - 1)) barrier(CLK_LOCAL_MEM_FENCE); for (int l = 1 << (ESTPARTLOG - 1); l >= WARP_SIZE; l >>= 1) { if (!(tid & l)) idata[tid] += idata[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } for (int l = WARP_SIZE / 2; l > 1; l >>= 1) idata[tid] += idata[tid + l]; #else for (int l = 1 << (ESTPARTLOG - 1); l > 1; l >>= 1) idata[tid] += idata[tid + l]; #endif if ((tid & (1 << ESTPARTLOG) - 1) == 0) psum[min(MAX_BLOCKSIZE - 1, offs) >> ESTPARTLOG] = idata[tid] + idata[tid + 1]; #endif } // calculate rice partition bit length for every 32 samples barrier(CLK_LOCAL_MEM_FENCE); #if (MAX_BLOCKSIZE >> (ESTPARTLOG + 1)) > GROUP_SIZE #error MAX_BLOCKSIZE is too large for this GROUP_SIZE #endif uint pl = tid < (MAX_BLOCKSIZE >> (ESTPARTLOG + 1)) ? psum[tid * 2] + psum[tid * 2 + 1] : 0; barrier(CLK_LOCAL_MEM_FENCE); // for (int pos = 0; pos < (MAX_BLOCKSIZE >> ESTPARTLOG) / 2; pos += GROUP_SIZE) // { //int offs = pos + tid; //int pl = offs < (MAX_BLOCKSIZE >> ESTPARTLOG) / 2 ? psum[offs * 2] + psum[offs * 2 + 1] : 0; ////int pl = psum[offs * 2] + psum[offs * 2 + 1]; //barrier(CLK_LOCAL_MEM_FENCE); //if (offs < (MAX_BLOCKSIZE >> ESTPARTLOG) / 2) // psum[offs] = pl; // } int k = clamp(31 - (int)clz(pl) - (ESTPARTLOG + 1), 0, MAX_RICE_PARAM); // 26 - clz(res) == clz(32) - clz(res) == log2(res / 32) if (tid < MAX_BLOCKSIZE >> (ESTPARTLOG + 1)) psum[tid] = (k << (ESTPARTLOG + 1)) + (pl >> k); barrier(CLK_LOCAL_MEM_FENCE); for (int l = MAX_BLOCKSIZE >> (ESTPARTLOG + 2); l > 0; l >>= 1) { if (tid < l) psum[tid] += psum[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) { int pl = (int)psum[0] + (bs - ro); int obits = task.data.obits - task.data.wbits; int len = min(obits * task.data.blocksize, task.data.type == Fixed ? task.data.residualOrder * obits + 6 + RICE_PARAM_BITS + pl : task.data.type == LPC ? task.data.residualOrder * obits + 4 + 5 + task.data.residualOrder * task.data.cbits + 6 + RICE_PARAM_BITS/* << porder */ + pl : task.data.type == Constant ? obits * select(1, task.data.blocksize, pl != task.data.blocksize - task.data.residualOrder) : obits * task.data.blocksize); tasks[selectedTask].data.size = len; } } #endif __kernel void clSelectStereoTasks( __global FLACCLSubframeTask *tasks, __global int*selectedTasks, __global int*selectedTasksSecondEstimate, __global int*selectedTasksBestMethod, int tasksWindow, int windowCount, int tasksToSecondEstimate, int taskCount, int selectedCount ) { int best_size[4]; int best_wind[4]; for (int ch = 0; ch < 4; ch++) { int first_no = selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount]; int best_len = tasks[first_no].data.size; int best_wnd = 0; for (int i = 1; i < selectedCount; i++) { int task_no = selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount + i]; int task_len = tasks[task_no].data.size; int task_wnd = (task_no - first_no) / tasksWindow; task_wnd = select(0, task_wnd, task_wnd < windowCount); best_wnd = select(best_wnd, task_wnd, task_len < best_len); best_len = min(task_len, best_len); } best_size[ch] = best_len; best_wind[ch] = best_wnd; } int bitsBest = best_size[2] + best_size[3]; // MidSide int chMask = 2 | (3 << 2); int bits = best_size[3] + best_size[1]; chMask = select(chMask, 3 | (1 << 2), bits < bitsBest); // RightSide bitsBest = min(bits, bitsBest); bits = best_size[0] + best_size[3]; chMask = select(chMask, 0 | (3 << 2), bits < bitsBest); // LeftSide bitsBest = min(bits, bitsBest); bits = best_size[0] + best_size[1]; chMask = select(chMask, 0 | (1 << 2), bits < bitsBest); // LeftRight bitsBest = min(bits, bitsBest); for (int ich = 0; ich < 2; ich++) { int ch = select(chMask & 3, chMask >> 2, ich > 0); int roffs = tasks[(get_global_id(0) * 4 + ich) * taskCount].data.samplesOffs; int nonSelectedNo = 0; for (int j = taskCount - 1; j >= 0; j--) { int i = select(j, (j % windowCount) * tasksWindow + (j / windowCount), j < windowCount * tasksWindow); int no = (get_global_id(0) * 4 + ch) * taskCount + i; selectedTasksBestMethod[(get_global_id(0) * 2 + ich) * taskCount + i] = no; tasks[no].data.residualOffs = roffs; if (j >= selectedCount) tasks[no].data.size = 0x7fffffff; if (nonSelectedNo < tasksToSecondEstimate) if (tasksToSecondEstimate == taskCount - selectedCount || best_wind[ch] == i / tasksWindow || i >= windowCount * tasksWindow) selectedTasksSecondEstimate[(get_global_id(0) * 2 + ich) * tasksToSecondEstimate + nonSelectedNo++] = no; } } } __kernel void clChooseBestMethod( __global FLACCLSubframeTask *tasks_out, __global FLACCLSubframeTask *tasks, __global int*selectedTasks, int taskCount ) { int best_no = selectedTasks[get_global_id(0) * taskCount]; int best_len = tasks[best_no].data.size; for (int i = 1; i < taskCount; i++) { int task_no = selectedTasks[get_global_id(0) * taskCount + i]; int task_len = tasks[task_no].data.size; best_no = select(best_no, task_no, task_len < best_len); best_len = min(best_len, task_len); } tasks_out[get_global_id(0)] = tasks[best_no]; } #ifdef DO_PARTITIONS #if BITS_PER_SAMPLE > 16 #define residual_t long #define convert_bps_sat convert_int_sat #else #define residual_t int #define convert_bps_sat #endif #ifdef FLACCL_CPU inline residual_t calc_residual(__global int *ptr, int * coefs, int ro) { residual_t sum = 0; for (int i = 0; i < ro; i++) sum += (residual_t)ptr[i] * coefs[i]; //sum += upsample(mul_hi(ptr[i], coefs[i]), as_uint(ptr[i] * coefs[i])); return sum; } #define ENCODE_N(cro,action) for (int pos = cro; pos < bs; pos ++) { \ residual_t t = (data[pos] - (calc_residual(data + pos - cro, task.coefs, cro) >> task.data.shift)) >> task.data.wbits; \ action; \ } #define SWITCH_N(action) \ switch (ro) \ { \ case 0: ENCODE_N(0, action) break; \ case 1: ENCODE_N(1, action) break; \ case 2: ENCODE_N(2, action) /*if (task.coefs[0] == -1 && task.coefs[1] == 2) ENCODE_N(2, 2 * ptr[1] - ptr[0], action) else*/ break; \ case 3: ENCODE_N(3, action) break; \ case 4: ENCODE_N(4, action) break; \ case 5: ENCODE_N(5, action) break; \ case 6: ENCODE_N(6, action) break; \ case 7: ENCODE_N(7, action) break; \ case 8: ENCODE_N(8, action) break; \ case 9: ENCODE_N(9, action) break; \ case 10: ENCODE_N(10, action) break; \ case 11: ENCODE_N(11, action) break; \ case 12: ENCODE_N(12, action) break; \ default: ENCODE_N(ro, action) \ } // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clEncodeResidual( __global ulong *partition_lengths, __global int *residual, __global int *samples, __global FLACCLSubframeTask *tasks, int max_porder, // <= 8 int psize // == task.blocksize >> max_porder? ) { FLACCLSubframeTask task = tasks[get_group_id(0)]; int bs = task.data.blocksize; int ro = task.data.residualOrder; __global int *data = &samples[task.data.samplesOffs]; __global ulong *pl = partition_lengths + (1 << (max_porder + 1)) * get_group_id(0); int r; for (int p = 0; p < (1 << max_porder); p++) pl[p] = 0UL; __global int *rptr = residual + task.data.residualOffs; if (psize == 16) { SWITCH_N((rptr[pos] = r = convert_bps_sat(t), pl[pos >> 4] += (uint)((r << 1) ^ (r >> 31)))); } else { SWITCH_N((rptr[pos] = r = convert_bps_sat(t), pl[pos / psize] += (uint)((r << 1) ^ (r >> 31)))); } } #else // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clEncodeResidual( __global int *partition_lengths, __global int *output, __global int *samples, __global FLACCLSubframeTask *tasks, int max_porder, // <= 8 int psize // == task.blocksize >> max_porder? ) { __local FLACCLSubframeTask task; __local int data[GROUP_SIZE * 2 + MAX_ORDER]; const int tid = get_local_id(0); if (get_local_id(0) < sizeof(task) / sizeof(int)) ((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)]; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.data.blocksize; int ro = task.data.residualOrder; if (tid < 32 && tid >= ro) task.coefs[tid] = 0; barrier(CLK_LOCAL_MEM_FENCE); int4 cptr0 = vload4(0, &task.coefs[0]); int4 cptr1 = vload4(1, &task.coefs[0]); #if MAX_ORDER > 8 int4 cptr2 = vload4(2, &task.coefs[0]); #endif // We tweaked coeffs so that (task.cbits + task.obits + log2i(ro) <= 32) // when BITS_PER_SAMPLE == 16, so we don't need 64bit arithmetics. data[tid] = 0; for (int pos = 0; pos < bs; pos += GROUP_SIZE) { // fetch samples int off = pos + tid; int nextData = off < bs ? samples[task.data.samplesOffs + off] >> task.data.wbits : 0; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); // compute residual __local int* dptr = &data[tid + GROUP_SIZE - ro]; #if BITS_PER_SAMPLE > 16 long4 sum = upsample(mul_hi(cptr0, vload4(0, dptr)), as_uint4(cptr0 * vload4(0, dptr))) + upsample(mul_hi(cptr1, vload4(1, dptr)), as_uint4(cptr1 * vload4(1, dptr))) #if MAX_ORDER > 8 + upsample(mul_hi(cptr2, vload4(2, dptr)), as_uint4(cptr2 * vload4(2, dptr))) #if MAX_ORDER > 12 + upsample(mul_hi(vload4(3, &task.coefs[0]), vload4(3, dptr)), as_uint4(vload4(3, &task.coefs[0]) * vload4(3, dptr))) #if MAX_ORDER > 16 + upsample(mul_hi(vload4(4, &task.coefs[0]), vload4(4, dptr)), as_uint4(vload4(4, &task.coefs[0]) * vload4(4, dptr))) + upsample(mul_hi(vload4(5, &task.coefs[0]), vload4(5, dptr)), as_uint4(vload4(5, &task.coefs[0]) * vload4(5, dptr))) + upsample(mul_hi(vload4(6, &task.coefs[0]), vload4(6, dptr)), as_uint4(vload4(6, &task.coefs[0]) * vload4(6, dptr))) + upsample(mul_hi(vload4(7, &task.coefs[0]), vload4(7, dptr)), as_uint4(vload4(7, &task.coefs[0]) * vload4(7, dptr))) #endif #endif #endif #else int4 sum = cptr0 * vload4(0, dptr) + cptr1 * vload4(1, dptr) #if MAX_ORDER > 8 + cptr2 * vload4(2, dptr) #if MAX_ORDER > 12 + vload4(3, &task.coefs[0]) * vload4(3, dptr) #if MAX_ORDER > 16 + vload4(4, &task.coefs[0]) * vload4(4, dptr) + vload4(5, &task.coefs[0]) * vload4(5, dptr) + vload4(6, &task.coefs[0]) * vload4(6, dptr) + vload4(7, &task.coefs[0]) * vload4(7, dptr) #endif #endif #endif #endif ; if (off >= ro && off < bs) output[task.data.residualOffs + off] = convert_bps_sat(nextData - ((sum.x + sum.y + sum.z + sum.w) >> task.data.shift)); barrier(CLK_LOCAL_MEM_FENCE); data[tid] = nextData; } } #endif #ifndef FLACCL_CPU // get_group_id(0) == partition index / (GROUP_SIZE / 16) // get_group_id(1) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clCalcPartition( __global int *partition_lengths, __global int *residual, __global FLACCLSubframeTask *tasks, int max_porder, // <= 8 int psize // == task.blocksize >> max_porder? ) { __local uint pl[(GROUP_SIZE / 16)][MAX_RICE_PARAM + 1]; __local FLACCLSubframeData task; const int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(1)]))[tid]; if (tid < (GROUP_SIZE / 16)) { for (int k = 0; k <= MAX_RICE_PARAM; k++) pl[tid][k] = 0; } barrier(CLK_LOCAL_MEM_FENCE); int start = get_group_id(0) * psize * (GROUP_SIZE / 16); int end = min(start + psize * (GROUP_SIZE / 16), task.blocksize); for (int offs = start + tid; offs < end; offs += GROUP_SIZE) { // fetch residual int s = (offs >= task.residualOrder && offs < end) ? residual[task.residualOffs + offs] : 0; // convert to unsigned uint t = (s << 1) ^ (s >> 31); // calc number of unary bits for each residual sample with each rice parameter int part = (offs - start) / psize; // we must ensure that psize * (t >> k) doesn't overflow; uint lim = 0x7fffffffU / (uint)psize; for (int k = 0; k <= MAX_RICE_PARAM; k++) atomic_add(&pl[part][k], min(lim, t >> k)); //pl[part][k] += s >> k; } barrier(CLK_LOCAL_MEM_FENCE); int part = get_group_id(0) * (GROUP_SIZE / 16) + tid; if (tid < (GROUP_SIZE / 16) && part < (1 << max_porder)) { for (int k = 0; k <= MAX_RICE_PARAM; k++) { // output length const int pos = ((MAX_RICE_PARAM + 1) << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1)); uint plen = pl[tid][k]; partition_lengths[pos + part] = min(0x007fffffU, plen) + (uint)(psize - select(0, task.residualOrder, part == 0)) * (k + 1); // if (get_group_id(1) == 0) //printf("pl[%d][%d] == %d\n", k, part, min(0x7fffff, pl[k][tid]) + (psize - task.residualOrder * (part == 0)) * (k + 1)); } } } __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clCalcPartition16( __global unsigned int *partition_lengths, __global int *residual, __global FLACCLSubframeTask *tasks, int max_porder // <= 8 ) { __local FLACCLSubframeData task; __local unsigned int res[GROUP_SIZE]; __local unsigned int pl[GROUP_SIZE >> 4][MAX_RICE_PARAM + 1]; const int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.blocksize; int ro = task.residualOrder; barrier(CLK_LOCAL_MEM_FENCE); for (int pos = 0; pos < bs; pos += GROUP_SIZE) { int offs = pos + tid; // fetch residual int s = (offs >= ro && offs < bs) ? residual[task.residualOffs + offs] : 0; // convert to unsigned res[tid] = (s << 1) ^ (s >> 31); barrier(CLK_LOCAL_MEM_FENCE); // we must ensure that psize * (t >> k) doesn't overflow; uint4 lim = 0x07ffffffU; int x = tid >> 4; __local uint * chunk = &res[x << 4]; for (int k0 = 0; k0 <= MAX_RICE_PARAM; k0 += 16) { // calc number of unary bits for each group of 16 residual samples // with each rice parameter. int k = k0 + (tid & 15); uint4 rsum = min(lim, vload4(0,chunk) >> k) + min(lim, vload4(1,chunk) >> k) + min(lim, vload4(2,chunk) >> k) + min(lim, vload4(3,chunk) >> k) ; uint rs = rsum.x + rsum.y + rsum.z + rsum.w; // We can safely limit length here to 0x007fffffU, not causing length // mismatch, because any such length would cause Verbatim frame anyway. // And this limit protects us from overflows when calculating larger // partitions, as we can have a maximum of 2^8 partitions, resulting // in maximum partition length of 0x7fffffffU + change. if (k <= MAX_RICE_PARAM) pl[x][k] = min(0x007fffffU, rs) + (uint)(16 - select(0, ro, offs < 16)) * (k + 1); } barrier(CLK_LOCAL_MEM_FENCE); for (int k0 = 0; k0 <= MAX_RICE_PARAM; k0 += 16) { int k1 = k0 + (tid >> (GROUP_SIZE_LOG - 4)), x1 = tid & ((1 << (GROUP_SIZE_LOG - 4)) - 1); if (k1 <= MAX_RICE_PARAM && (pos >> 4) + x1 < (1 << max_porder)) partition_lengths[((MAX_RICE_PARAM + 1) << (max_porder + 1)) * get_group_id(0) + (k1 << (max_porder + 1)) + (pos >> 4) + x1] = pl[x1][k1]; } } } __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clCalcPartition32( __global unsigned int *partition_lengths, __global int *residual, __global FLACCLSubframeTask *tasks, int max_porder // <= 8 ) { __local FLACCLSubframeData task; __local unsigned int res[GROUP_SIZE]; __local unsigned int pl[GROUP_SIZE >> 5][32]; const int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.blocksize; int ro = task.residualOrder; barrier(CLK_LOCAL_MEM_FENCE); for (int pos = 0; pos < bs; pos += GROUP_SIZE) { int offs = pos + tid; // fetch residual int s = (offs >= ro && offs < bs) ? residual[task.residualOffs + offs] : 0; // convert to unsigned res[tid] = (s << 1) ^ (s >> 31); barrier(CLK_LOCAL_MEM_FENCE); // we must ensure that psize * (t >> k) doesn't overflow; uint4 lim = 0x03ffffffU; int x = tid >> 5; __local uint * chunk = &res[x << 5]; // calc number of unary bits for each group of 32 residual samples // with each rice parameter. int k = tid & 31; uint4 rsum = min(lim, vload4(0,chunk) >> k) + min(lim, vload4(1,chunk) >> k) + min(lim, vload4(2,chunk) >> k) + min(lim, vload4(3,chunk) >> k) + min(lim, vload4(4,chunk) >> k) + min(lim, vload4(5,chunk) >> k) + min(lim, vload4(6,chunk) >> k) + min(lim, vload4(7,chunk) >> k) ; uint rs = rsum.x + rsum.y + rsum.z + rsum.w; // We can safely limit length here to 0x007fffffU, not causing length // mismatch, because any such length would cause Verbatim frame anyway. // And this limit protects us from overflows when calculating larger // partitions, as we can have a maximum of 2^8 partitions, resulting // in maximum partition length of 0x7fffffffU + change. if (k <= MAX_RICE_PARAM) pl[x][k] = min(0x007fffffU, rs) + (uint)(32 - select(0, ro, offs < 32)) * (k + 1); barrier(CLK_LOCAL_MEM_FENCE); int k1 = (tid >> (GROUP_SIZE_LOG - 5)), x1 = tid & ((1 << (GROUP_SIZE_LOG - 5)) - 1); if (k1 <= MAX_RICE_PARAM && (pos >> 5) + x1 < (1 << max_porder)) partition_lengths[((MAX_RICE_PARAM + 1) << (max_porder + 1)) * get_group_id(0) + (k1 << (max_porder + 1)) + (pos >> 5) + x1] = pl[x1][k1]; } } #endif #ifdef FLACCL_CPU // Sums partition lengths for a certain k == get_group_id(0) // get_group_id(0) == k // get_group_id(1) == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clSumPartition( __global ulong* partition_lengths, int max_porder ) { if (get_group_id(0) != 0) // ignore k != 0 return; __global ulong * sums = partition_lengths + (1 << (max_porder + 1)) * get_group_id(1); for (int i = max_porder - 1; i >= 0; i--) { for (int j = 0; j < (1 << i); j++) { sums[(2 << i) + j] = sums[2 * j] + sums[2 * j + 1]; // if (get_group_id(1) == 0) //printf("[%d][%d]: %d + %d == %d\n", i, j, sums[2 * j], sums[2 * j + 1], sums[2 * j] + sums[2 * j + 1]); } sums += 2 << i; } } #else // Sums partition lengths for a certain k == get_group_id(0) // Requires 128 threads // get_group_id(0) == k // get_group_id(1) == task index __kernel __attribute__((reqd_work_group_size(128, 1, 1))) void clSumPartition( __global uint* partition_lengths, int max_porder ) { __local uint data[256]; // max_porder <= 8, data length <= 1 << 9. const int pos = ((MAX_RICE_PARAM + 1) << (max_porder + 1)) * get_group_id(1) + (get_group_id(0) << (max_porder + 1)); // fetch partition lengths uint2 pl = get_local_id(0) * 2 < (1 << max_porder) ? vload2(get_local_id(0),&partition_lengths[pos]) : 0; data[get_local_id(0)] = pl.x + pl.y; barrier(CLK_LOCAL_MEM_FENCE); int in_pos = (get_local_id(0) << 1); int out_pos = (1 << (max_porder - 1)) + get_local_id(0); for (int bs = 1 << (max_porder - 2); bs > 0; bs >>= 1) { if (get_local_id(0) < bs) data[out_pos] = data[in_pos] + data[in_pos + 1]; in_pos += bs << 1; out_pos += bs; barrier(CLK_LOCAL_MEM_FENCE); } if (get_local_id(0) < (1 << max_porder)) partition_lengths[pos + (1 << max_porder) + get_local_id(0)] = data[get_local_id(0)]; if (get_local_size(0) + get_local_id(0) < (1 << max_porder)) partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = data[get_local_size(0) + get_local_id(0)]; } #endif #ifdef FLACCL_CPU // Finds optimal rice parameter for each partition. // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clFindRiceParameter( __global FLACCLSubframeTask *tasks, __global int* rice_parameters, __global ulong* partition_lengths, int max_porder ) { __global FLACCLSubframeTask* task = tasks + get_group_id(0); const int tid = get_local_id(0); int lim = (2 << max_porder) - 1; //int psize = task->data.blocksize >> max_porder; int bs = task->data.blocksize; int ro = task->data.residualOrder; __global ulong* ppl = &partition_lengths[get_group_id(0) << (max_porder + 1)]; __global int* prp = &rice_parameters[get_group_id(0) << (max_porder + 2)]; __global int* pol = prp + (1 << (max_porder + 1)); for (int porder = max_porder; porder >= 0; porder--) { int pos = (2 << max_porder) - (2 << porder); int fin = pos + (1 << porder); ulong pl = ppl[pos]; int ps = (bs >> porder) - ro; int k = clamp(63 - (int)clz(pl / max(1, ps)), 0, MAX_RICE_PARAM); int plk = ps * (k + 1) + (int)(pl >> k); // output rice parameter prp[pos] = k; // output length pol[pos] = plk; ps = (bs >> porder); for (int offs = pos + 1; offs < fin; offs++) { pl = ppl[offs]; k = clamp(63 - (int)clz(pl / ps), 0, MAX_RICE_PARAM); plk = ps * (k + 1) + (int)(pl >> k); // output rice parameter prp[offs] = k; // output length pol[offs] = plk; } } } #else // Finds optimal rice parameter for each partition. // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clFindRiceParameter( __global FLACCLSubframeTask *tasks, __global int* rice_parameters, __global uint* partition_lengths, int max_porder ) { for (int offs = get_local_id(0); offs < (2 << max_porder); offs += GROUP_SIZE) { const int pos = ((MAX_RICE_PARAM + 1) << (max_porder + 1)) * get_group_id(0) + offs; uint best_l = partition_lengths[pos]; int best_k = 0; for (int k = 1; k <= MAX_RICE_PARAM; k++) { uint l = partition_lengths[pos + (k << (max_porder + 1))]; best_k = select(best_k, k, l < best_l); best_l = min(best_l, l); } // output rice parameter rice_parameters[(get_group_id(0) << (max_porder + 2)) + offs] = best_k; // output length rice_parameters[(get_group_id(0) << (max_porder + 2)) + (1 << (max_porder + 1)) + offs] = best_l; } } #endif #ifdef FLACCL_CPU // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clFindPartitionOrder( __global int *residual, __global int* best_rice_parameters, __global FLACCLSubframeTask *tasks, __global int* rice_parameters, int max_porder ) { __global FLACCLSubframeTask* task = tasks + get_group_id(0); int partlen[9]; for (int p = 0; p < 9; p++) partlen[p] = 0; // fetch partition lengths const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder); for (int porder = max_porder; porder >= 0; porder--) { int start = (2 << max_porder) - (2 << porder); for (int offs = 0; offs < (1 << porder); offs ++) partlen[porder] += rice_parameters[pos + start + offs]; } int best_length = partlen[0] + RICE_PARAM_BITS; int best_porder = 0; for (int porder = 1; porder <= max_porder; porder++) { int length = (RICE_PARAM_BITS << porder) + partlen[porder]; best_porder = select(best_porder, porder, length < best_length); best_length = min(best_length, length); } best_length = (RICE_PARAM_BITS << best_porder) + task->data.blocksize - task->data.residualOrder; int best_psize = task->data.blocksize >> best_porder; int start = task->data.residualOffs + task->data.residualOrder; int fin = task->data.residualOffs + best_psize; for (int p = 0; p < (1 << best_porder); p++) { int k = rice_parameters[pos - (2 << best_porder) + p]; best_length += k * (fin - start); for (int i = start; i < fin; i++) { int t = residual[i]; best_length += ((t << 1) ^ (t >> 31)) >> k; } start = fin; fin += best_psize; } int obits = task->data.obits - task->data.wbits; task->data.porder = best_porder; task->data.headerLen = task->data.type == Constant ? obits : task->data.type == Verbatim ? obits * task->data.blocksize : task->data.type == Fixed ? task->data.residualOrder * obits + 6 : task->data.type == LPC ? task->data.residualOrder * obits + 6 + 4 + 5 + task->data.residualOrder * task->data.cbits : 0; task->data.size = task->data.headerLen + ((task->data.type == Fixed || task->data.type == LPC) ? best_length : 0); if (task->data.size >= obits * task->data.blocksize) { task->data.headerLen = task->data.size = obits * task->data.blocksize; task->data.type = Verbatim; } for (int offs = 0; offs < (1 << best_porder); offs ++) best_rice_parameters[(get_group_id(0) << max_porder) + offs] = rice_parameters[pos - (2 << best_porder) + offs]; } #else // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clFindPartitionOrder( __global int *residual, __global int* best_rice_parameters, __global FLACCLSubframeTask *tasks, __global int* rice_parameters, int max_porder ) { __local int partlen[16]; __local FLACCLSubframeData task; const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder); if (get_local_id(0) < sizeof(task) / sizeof(int)) ((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)]; if (get_local_id(0) < 16) partlen[get_local_id(0)] = 0; barrier(CLK_LOCAL_MEM_FENCE); // fetch partition lengths int lim = (2 << max_porder) - 1; for (int offs = get_local_id(0); offs < lim; offs += GROUP_SIZE) { int len = rice_parameters[pos + offs]; int porder = 31 - clz(lim - offs); atomic_add(&partlen[porder], len); } barrier(CLK_LOCAL_MEM_FENCE); int best_length = partlen[0] + RICE_PARAM_BITS; int best_porder = 0; for (int porder = 1; porder <= max_porder; porder++) { int length = (RICE_PARAM_BITS << porder) + partlen[porder]; best_porder = select(best_porder, porder, length < best_length); best_length = min(best_length, length); } if (get_local_id(0) == 0) { task.porder = best_porder; int obits = task.obits - task.wbits; task.headerLen = task.type == Fixed ? task.residualOrder * obits + 6 : task.type == LPC ? task.residualOrder * obits + 6 + 4 + 5 + task.residualOrder * task.cbits : task.type == Constant ? obits : /* task.type == Verbatim ? */ obits * task.blocksize; task.size = task.headerLen + select(0, best_length, task.type == Fixed || task.type == LPC); if (task.size >= obits * task.blocksize) { task.headerLen = task.size = obits * task.blocksize; task.type = Verbatim; } } barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < sizeof(task) / sizeof(int)) ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)] = ((__local int*)&task)[get_local_id(0)]; for (int offs = get_local_id(0); offs < (1 << best_porder); offs += GROUP_SIZE) best_rice_parameters[(get_group_id(0) << max_porder) + offs] = rice_parameters[pos - (2 << best_porder) + offs]; // FIXME: should be bytes? } #endif #ifdef DO_RICE #ifdef FLACCL_CPU typedef struct BitWriter_t { __global unsigned int *buffer; unsigned int bit_buf; int bit_left; int buf_ptr; } BitWriter; inline void writebits(BitWriter *bw, int bits, int v) { uint val = ((uint)v) & ((1 << bits) - 1); if (bits < bw->bit_left) { bw->bit_buf = (bw->bit_buf << bits) | val; bw->bit_left -= bits; } else { // if (bits >= 32) printf("\n\n\n\n-------------------------\n\n\n"); unsigned int bb = (bw->bit_buf << bw->bit_left) | (val >> (bits - bw->bit_left)); bw->buffer[bw->buf_ptr++] = (bb >> 24) | ((bb >> 8) & 0xff00) | ((bb << 8) & 0xff0000) | ((bb << 24) & 0xff000000); bw->bit_left += (32 - bits); bw->bit_buf = val; // bw->bit_buf = val & ((1 << (32 - bw->bit_left)) - 1); } } inline void flush(BitWriter *bw) { if (bw->bit_left < 32) writebits(bw, bw->bit_left, 0); } #endif inline int len_utf8(int n) { int bts = 31 - clz(n); return select(8, 8 * ((bts + 4) / 5), bts > 6); } #ifdef FLACCL_CPU // get_global_id(0) * channels == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clCalcOutputOffsets( __global int *residual, __global int *samples, __global FLACCLSubframeTask *tasks, int channels, int frameCount, int firstFrame ) { int offset = 0; for (int iFrame = 0; iFrame < frameCount; iFrame++) { //printf("len_utf8(%d) == %d\n", firstFrame + iFrame, len_utf8(firstFrame + iFrame)); offset += 15 + 1 + 4 + 4 + 4 + 3 + 1 + len_utf8(firstFrame + iFrame) // + 8-16 // custom block size // + 8-16 // custom sample rate ; int bs = tasks[iFrame * channels].data.blocksize; //public static readonly int[] flac_blocksizes = new int[15] { 0, 192, 576, 1152, 2304, 4608, 0, 0, 256, 512, 1024, 2048, 4096, 8192, 16384 }; offset += select(0, select(8, 16, bs >= 256), bs != 4096 && bs != 4608); // TODO: check all other standard sizes // assert (offset % 8) == 0 offset += 8; for (int ch = 0; ch < channels; ch++) { __global FLACCLSubframeTask* task = tasks + iFrame * channels + ch; offset += 8 + task->data.wbits; // Add 32 bits to separate frames if header is too small so they can intersect offset += 64; task->data.encodingOffset = offset + task->data.headerLen; offset += task->data.size; } offset = (offset + 7) & ~7; offset += 16; } } #else // get_global_id(0) * channels == task index __kernel __attribute__((reqd_work_group_size(32, 1, 1))) void clCalcOutputOffsets( __global int *residual, __global int *samples, __global FLACCLSubframeTask *tasks, int channels1, int frameCount, int firstFrame ) { __local FLACCLSubframeData ltasks[MAX_CHANNELS]; __local volatile int mypos[MAX_CHANNELS]; int offset = 0; for (int iFrame = 0; iFrame < frameCount; iFrame++) { if (get_local_id(0) < sizeof(ltasks[0]) / sizeof(int)) for (int ch = 0; ch < MAX_CHANNELS; ch++) ((__local int*)<asks[ch])[get_local_id(0)] = ((__global int*)(&tasks[iFrame * MAX_CHANNELS + ch]))[get_local_id(0)]; //printf("len_utf8(%d) == %d\n", firstFrame + iFrame, len_utf8(firstFrame + iFrame)); offset += 15 + 1 + 4 + 4 + 4 + 3 + 1 + len_utf8(firstFrame + iFrame) // + 8-16 // custom block size // + 8-16 // custom sample rate ; int bs = ltasks[0].blocksize; //public static readonly int[] flac_blocksizes = new int[15] { 0, 192, 576, 1152, 2304, 4608, 0, 0, 256, 512, 1024, 2048, 4096, 8192, 16384 }; offset += select(0, select(8, 16, bs >= 256), bs != 4096 && bs != 4608); // TODO: check all other standard sizes // assert (offset % 8) == 0 offset += 8; if (get_local_id(0) < MAX_CHANNELS) { int ch = get_local_id(0); // Add 64 bits to separate frames if header is too small so they can intersect int mylen = 8 + ltasks[ch].wbits + 64 + ltasks[ch].size; mypos[ch] = mylen; for (int offset = 1; offset < WARP_SIZE && offset < MAX_CHANNELS; offset <<= 1) if (ch >= offset) mypos[ch] += mypos[ch - offset]; mypos[ch] += offset; tasks[iFrame * MAX_CHANNELS + ch].data.encodingOffset = mypos[ch] - ltasks[ch].size + ltasks[ch].headerLen; } offset = mypos[MAX_CHANNELS - 1]; offset = (offset + 7) & ~7; offset += 16; } } #endif // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clRiceEncoding( __global int *residual, __global int *samples, __global int* best_rice_parameters, __global FLACCLSubframeTask *tasks, __global unsigned int* output, int max_porder ) { #ifdef FLACCL_CPU __global FLACCLSubframeTask* task = tasks + get_group_id(0); if (task->data.type == Fixed || task->data.type == LPC) { int ro = task->data.residualOrder; int bs = task->data.blocksize; int porder = task->data.porder; int psize = bs >> porder; BitWriter bw; bw.buffer = output; bw.buf_ptr = task->data.encodingOffset / 32; bw.bit_left = 32 - (task->data.encodingOffset & 31); bw.bit_buf = 0; //if (get_group_id(0) == 0) printf("%d\n", offs); int res_cnt = psize - ro; // residual int j = ro; __global int * kptr = &best_rice_parameters[get_group_id(0) << max_porder]; for (int p = 0; p < (1 << porder); p++) { int k = kptr[p]; writebits(&bw, RICE_PARAM_BITS, k); //if (get_group_id(0) == 0) printf("[%x] ", k); //if (get_group_id(0) == 0) printf("(%x) ", bw.bit_buf); if (p == 1) res_cnt = psize; int cnt = min(res_cnt, bs - j); unsigned int kexp = 1U << k; __global int *rptr = &residual[task->data.residualOffs + j]; for (int i = 0; i < cnt; i++) { int iv = rptr[i]; unsigned int v = (iv << 1) ^ (iv >> 31); // write quotient in unary int bits = k + (v >> k) + 1; while (bits > 31) { int b = min(bits - 31, 31); if (b < bw.bit_left) { bw.bit_buf <<= b; bw.bit_left -= b; } else { unsigned int bb = bw.bit_buf << bw.bit_left; bw.bit_buf = 0; bw.bit_left += (32 - b); bw.buffer[bw.buf_ptr++] = as_int(as_char4(bb).wzyx); } bits -= b; } unsigned int val = (v & (kexp - 1)) | kexp; if (bits < bw.bit_left) { bw.bit_buf = (bw.bit_buf << bits) | val; bw.bit_left -= bits; } else { unsigned int bb = (bw.bit_buf << bw.bit_left) | (val >> (bits - bw.bit_left)); bw.bit_buf = val; bw.bit_left += (32 - bits); bw.buffer[bw.buf_ptr++] = as_int(as_char4(bb).wzyx); } ////if (get_group_id(0) == 0) printf("%x ", v); //writebits(&bw, (v >> k) + 1, 1); ////if (get_group_id(0) == 0) printf("(%x) ", bw.bit_buf); //writebits(&bw, k, v); ////if (get_group_id(0) == 0) printf("(%x) ", bw.bit_buf); } j += cnt; } //if (bw.buf_ptr * 32 + 32 - bw.bit_left != task->data.encodingOffset - task->data.headerLen + task->data.size) // printf("bit length mismatch: encodingOffset == %d, headerLen == %d, size == %d, so should be %d, but is %d\n", // task->data.encodingOffset, task->data.headerLen, task->data.size, // task->data.encodingOffset - task->data.headerLen + task->data.size, // bw.buf_ptr * 32 + 32 - bw.bit_left // ); //if (get_group_id(0) == 0) printf("\n"); flush(&bw); } #else __local uint data[GROUP_SIZE]; __local volatile int mypos[GROUP_SIZE+1]; #if 0 __local int brp[256]; #endif __local volatile int warppos[WARP_SIZE]; __local FLACCLSubframeData task; int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid]; barrier(CLK_LOCAL_MEM_FENCE); if (task.type != Fixed && task.type != LPC) return; if (tid == 0) mypos[GROUP_SIZE] = 0; if (tid < WARP_SIZE) warppos[tid] = 0; #if 0 for (int offs = tid; offs < (1 << task.porder); offs ++) brp[offs] = best_rice_parameters[(get_group_id(0) << max_porder) + offs]; #endif data[tid] = 0; barrier(CLK_LOCAL_MEM_FENCE); const int bs = task.blocksize; int start = task.encodingOffset; int plen = bs >> task.porder; //int plenoffs = 12 - task.porder; uint remainder = 0U; int pos; for (pos = 0; pos + GROUP_SIZE - 1 < bs; pos += GROUP_SIZE) { int offs = pos + tid; int iv = residual[task.residualOffs + offs]; int part = offs / plen; //int part = offs >> plenoffs; #if 0 int k = brp[part]; #else int k = best_rice_parameters[(get_group_id(0) << max_porder) + part]; #endif int pstart = offs == part * plen; //int pstart = offs == part << plenoffs; uint v = (iv << 1) ^ (iv >> 31); int mylen = select(0, (int)(v >> k) + 1 + k, offs >= task.residualOrder && offs < bs) + select(0, RICE_PARAM_BITS, pstart); mypos[tid] = mylen; // Inclusive scan(+) int lane = (tid & (WARP_SIZE - 1)); for (int offset = 1; offset < WARP_SIZE; offset <<= 1) mypos[tid] += mypos[select(GROUP_SIZE, tid - offset, lane >= offset)]; int mp = mypos[tid]; if ((tid & (WARP_SIZE - 1)) == WARP_SIZE - 1) warppos[tid/WARP_SIZE] = mp; barrier(CLK_LOCAL_MEM_FENCE); if (tid < GROUP_SIZE/WARP_SIZE) { for (int offset = 1; offset < GROUP_SIZE/WARP_SIZE; offset <<= 1) warppos[tid] += warppos[select(GROUP_SIZE/WARP_SIZE, tid - offset, tid >= offset)]; } barrier(CLK_LOCAL_MEM_FENCE); mp += start + select(0, warppos[tid / WARP_SIZE - 1], tid / WARP_SIZE > 0); int start32 = start >> 5; start += mypos[GROUP_SIZE - 1] + warppos[GROUP_SIZE / WARP_SIZE - 2]; //if (start / 32 - start32 >= GROUP_SIZE - 3) // tasks[get_group_id(0)].data.size = 1; //if (tid == GROUP_SIZE - 1 && mypos[tid] > (GROUP_SIZE/2) * 32) // printf("Oops: %d\n", mypos[tid]); data[tid] = select(0U, remainder, tid == 0); barrier(CLK_LOCAL_MEM_FENCE); if (pstart) { int kpos = mp - mylen; int kpos0 = (kpos >> 5) - start32; int kpos1 = kpos & 31; uint kval = (uint)k << (32 - RICE_PARAM_BITS); uint kval0 = kval >> kpos1; uint kval1 = kval << (32 - kpos1); if (kval0) atomic_or(&data[kpos0], kval0); if (kpos1 && kval1) atomic_or(&data[kpos0 + 1], kval1); } if (offs >= task.residualOrder && offs < bs) { int qpos = mp - k - 1; int qpos0 = (qpos >> 5) - start32; int qpos1 = qpos & 31; uint qval = (1U << 31) | (v << (31 - k)); uint qval0 = qval >> qpos1; uint qval1= qval << (32 - qpos1); if (qval0) atomic_or(&data[qpos0], qval0); if (qpos1 && qval1) atomic_or(&data[qpos0 + 1], qval1); } barrier(CLK_LOCAL_MEM_FENCE); if ((start32 + tid) * 32 <= start) output[start32 + tid] = as_int(as_char4(data[tid]).wzyx); remainder = data[start / 32 - start32]; } if (pos < bs) { int offs = pos + tid; int iv = offs < bs ? residual[task.residualOffs + offs] : 0; int part = offs / plen; // >> plenoffs; //int k = brp[min(255, part)]; int k = offs < bs ? best_rice_parameters[(get_group_id(0) << max_porder) + part] : 0; int pstart = offs == part * plen; uint v = (iv << 1) ^ (iv >> 31); int mylen = select(0, (int)(v >> k) + 1 + k, offs >= task.residualOrder && offs < bs) + select(0, RICE_PARAM_BITS, pstart); mypos[tid] = mylen; // Inclusive scan(+) int lane = (tid & (WARP_SIZE - 1)); for (int offset = 1; offset < WARP_SIZE; offset <<= 1) mypos[tid] += mypos[select(GROUP_SIZE, tid - offset, lane >= offset)]; int mp = mypos[tid]; if ((tid & (WARP_SIZE - 1)) == WARP_SIZE - 1) warppos[tid/WARP_SIZE] = mp; barrier(CLK_LOCAL_MEM_FENCE); if (tid < GROUP_SIZE/WARP_SIZE) { for (int offset = 1; offset < GROUP_SIZE/WARP_SIZE; offset <<= 1) warppos[tid] += warppos[select(GROUP_SIZE/WARP_SIZE, tid - offset, tid >= offset)]; } barrier(CLK_LOCAL_MEM_FENCE); mp += start + select(0, warppos[tid / WARP_SIZE - 1], tid / WARP_SIZE > 0); int start32 = start >> 5; start += mypos[GROUP_SIZE - 1] + warppos[GROUP_SIZE / WARP_SIZE - 2]; //if (tid == GROUP_SIZE - 1 && mypos[tid] > (GROUP_SIZE/2) * 32) // printf("Oops: %d\n", mypos[tid]); data[tid] = select(0U, remainder, tid == 0); barrier(CLK_LOCAL_MEM_FENCE); if (pstart) { int kpos = mp - mylen; int kpos0 = (kpos >> 5) - start32; int kpos1 = kpos & 31; uint kval = (uint)k << (32 - RICE_PARAM_BITS); uint kval0 = kval >> kpos1; uint kval1 = kval << (32 - kpos1); if (kval0) atomic_or(&data[kpos0], kval0); if (kpos1 && kval1) atomic_or(&data[kpos0 + 1], kval1); } if (offs >= task.residualOrder && offs < bs) { int qpos = mp - k - 1; int qpos0 = (qpos >> 5) - start32; int qpos1 = qpos & 31; uint qval = (1U << 31) | (v << (31 - k)); uint qval0 = qval >> qpos1; uint qval1= qval << (32 - qpos1); if (qval0) atomic_or(&data[qpos0], qval0); if (qpos1 && qval1) atomic_or(&data[qpos0 + 1], qval1); } barrier(CLK_LOCAL_MEM_FENCE); if ((start32 + tid) * 32 <= start) output[start32 + tid] = as_int(as_char4(data[tid]).wzyx); remainder = data[start / 32 - start32]; } // if (tid == 0 && start != task.encodingOffset - task.headerLen + task.size) //printf("size mismatch: %d != %d\n", start, task.encodingOffset - task.headerLen + task.size); #endif } #endif /* DO_RICE */ #endif /* DO_PARTITIONS */ #endif