using System; using Microsoft.VisualStudio.TestTools.UnitTesting; using CUETools.Codecs; using CUETools.CDImage; using CUETools.AccurateRip; using CUETools.TestHelpers; using CUETools.Parity; namespace CUETools.TestParity { /// ///This is a test class for CDRepairDecodeTest and is intended ///to contain all CDRepairDecodeTest Unit Tests /// [TestClass()] public class CDRepairDecodeTest { // CD has maximum of 360.000 sectors; // If stride equals 10 sectors (10 sectors * 588 samples * 2 words), // then maximum sequence length is 36.000 sectors. // 36.000 is less than (65535 - npar), so we're ok here. // npar == 8 provides error correction for 4 samples out of every 36k, // i.e. at best one sample per 9k can be repaired. // Parity data per one CD requires 10 * 588 * 4 * npar bytes, // which equals 188.160b == 184kb // We might consider shorter strides to reduce parity data size, // but it probably should still be a multiple of 588 * 2; // (or the size of CD CIRC buffer?) const int stride = 10 * 588 * 2; const int errors = stride / 4; const int offset = 48; const int seed = 2423; //const int offset = 5 * 588 - 5; //const int offset = 2000; private static TestImageGenerator generator; private static CDRepairEncode encode; private static string[] encodeSyndrome = new string[33]; private static string[] encodeParity = new string[33]; private static string[] encodeParity1 = new string[33]; private TestContext testContextInstance; /// ///Gets or sets the test context which provides ///information about and functionality for the current test run. /// public TestContext TestContext { get { return testContextInstance; } set { testContextInstance = value; } } #region Additional test attributes // //You can use the following additional attributes as you write your tests: // //Use ClassInitialize to run code before running the first test in the class [ClassInitialize()] public static void MyClassInitialize(TestContext testContext) { generator = new TestImageGenerator("0 9801", seed, 32 * 588, 0); encode = generator.CreateCDRepairEncode(stride); encodeSyndrome[4] = "DP7tAM2tuWBe7kb/A3o5hcS+o59uoT1ckHh9Am+wZxA="; encodeSyndrome[8] = "DP7tAM2tuWCBRjyLjt6a+l7uRv8DejmFzRtv3ofeEWzEvqOfbqE9XFOz/6WaYU+lkHh9Am+wZxCw3m1Y7zKctw=="; encodeSyndrome[16] = "DP7tAM2tuWCBRjyLjt6a+lr7hvwnJWrfZ0MGKOYwFmVe7kb/A3o5hc0bb96H3hFsIcjxCpERbjnJjVvLc5NDJcS+o59uoT1cU7P/pZphT6WaQ4f3L/ImdyD5psk3fWRvkHh9Am+wZxCw3m1Y7zKct8QUsJHnLA6wcmxT/LmmQdE="; encodeParity[8] = "jvR9QJ1cSWpqbyP0I0tBrBkQRjCDTDDQkttZGj14ROvsXyg+AnnxVKxL7gwLZbrQmTw5ZPps1Q3744g94qaOOQ=="; encodeParity[16] = "gwln1GxlYWH/Jn74PreMLv4aFF2glkScSWVFlxMBx94v5D3/3wPx+2guRLquED0s9tOFikPLiSnAv0Xq8aIQ6Q=="; encodeParity1[8] = "CWgEDNLjSi22nIOyaeyp+12R3UCVWlzIb+nbv8XWXg9YEhkHxYr8xqrr1+hIbFwKNEXnj0esJrKbiW3XGbHsYw=="; encodeParity1[16] = "BdvaDZCGCVEggrcfscGQWdfSXnCSrOcpD6NfKZGYraK80J2a+v/zkDPWePOQ9k0u0WdWNJ9hQKvPJD0wf2MN+g=="; } // //Use ClassCleanup to run code after all tests in a class have run //[ClassCleanup()] //public static void MyClassCleanup() //{ //} // //Use TestInitialize to run code before running each test //[TestInitialize()] //public void MyTestInitialize() //{ //} // //Use TestCleanup to run code after each test has run //[TestCleanup()] //public void MyTestCleanup() //{ //} // #endregion [TestMethod()] public void CDRepairEncodeSyndromeTest() { for (int n = 4; n <= AccurateRipVerify.maxNpar; n *= 2) { Assert.AreEqual(encodeSyndrome[n], ParityToSyndrome.ToBase64String(encode.AR.GetSyndrome(n), 0, 4)); } Assert.AreEqual(377539636, encode.CRC); } /// ///A test for Write /// [TestMethod()] public void CDRepairEncodeParityTest() { for (int n = 8; n <= AccurateRipVerify.maxNpar; n *= 2) { Assert.AreEqual(encodeParity[n], Convert.ToBase64String(encode.AR.GetParity(n), 0, 64)); } Assert.AreEqual(377539636, encode.CRC); } /// ///Verifying rip that is accurate /// [TestMethod()] public void CDRepairDecodeOriginalTest() { var decode = generator.CreateCDRepairEncode(stride); int actualOffset; bool hasErrors; Assert.IsTrue(decode.FindOffset(encode.AR.GetSyndrome(), encode.CRC, out actualOffset, out hasErrors)); Assert.IsFalse(hasErrors, "has errors"); Assert.AreEqual(0, actualOffset, "wrong offset"); Assert.IsTrue(decode.FindOffset(encode.AR.GetSyndrome(8), encode.CRC, out actualOffset, out hasErrors)); Assert.IsFalse(hasErrors, "has errors"); Assert.AreEqual(0, actualOffset, "wrong offset"); } /// ///Verifying rip that is accurate with pregap /// [TestMethod()] public void CDRepairDecodeOriginalWithPregapTest() { var generator2 = new TestImageGenerator("32 9833", seed, 0, 0); var decode = generator2.CreateCDRepairEncode(stride); int actualOffset; bool hasErrors; Assert.IsTrue(decode.FindOffset(encode.AR.GetSyndrome(), encode.CRC, out actualOffset, out hasErrors)); Assert.IsTrue(hasErrors, "doesn't have errors"); Assert.AreEqual(-1176, actualOffset, "wrong offset"); CDRepairFix fix = decode.VerifyParity(encode.AR.GetSyndrome(), actualOffset); Assert.IsTrue(fix.HasErrors, "doesn't have errors"); Assert.IsTrue(fix.CanRecover, "cannot recover"); } /// ///Verifying rip that has errors /// [TestMethod()] public void CDRepairDecodeModifiedTest() { var generator2 = new TestImageGenerator("0 9801", seed, 32 * 588, errors); var decode = generator2.CreateCDRepairEncode(stride); int actualOffset; bool hasErrors; Assert.IsTrue(decode.FindOffset(encode.AR.GetSyndrome(), encode.CRC, out actualOffset, out hasErrors)); Assert.IsTrue(hasErrors, "doesn't have errors"); Assert.AreEqual(0, actualOffset, "wrong offset"); CDRepairFix fix = decode.VerifyParity(encode.AR.GetSyndrome(), actualOffset); Assert.IsTrue(fix.HasErrors, "doesn't have errors"); Assert.IsTrue(fix.CanRecover, "cannot recover"); generator2.Write(fix); Assert.AreEqual(encode.CRC, fix.CRC); } /// ///Verifying rip that has positive offset /// [TestMethod()] public void CDRepairDecodePositiveOffsetTest() { var generator2 = new TestImageGenerator("0 9801", seed, 32 * 588 + offset, 0); var decode = generator2.CreateCDRepairEncode(stride); int actualOffset; bool hasErrors; Assert.IsTrue(decode.FindOffset(encode.AR.GetSyndrome(), encode.CRC, out actualOffset, out hasErrors)); Assert.IsFalse(hasErrors, "has errors"); Assert.AreEqual(offset, actualOffset, "wrong offset"); } /// ///Verifying rip that has negative offset /// [TestMethod()] public void CDRepairDecodeNegativeOffsetTest() { var generator2 = new TestImageGenerator("0 9801", seed, 32 * 588 - offset, 0); var decode = generator2.CreateCDRepairEncode(stride); int actualOffset; bool hasErrors; Assert.IsTrue(decode.FindOffset(encode.AR.GetSyndrome(), encode.CRC, out actualOffset, out hasErrors)); Assert.IsFalse(hasErrors, "has errors"); Assert.AreEqual(-offset, actualOffset, "wrong offset"); } /// ///Verifying rip that has errors and positive offset /// [TestMethod()] public void CDRepairDecodePositiveOffsetErrorsTest() { var generator2 = new TestImageGenerator("0 9801", seed, 32 * 588 + offset, errors); var decode = generator2.CreateCDRepairEncode(stride); int actualOffset; bool hasErrors; var syn = encode.AR.GetSyndrome(); Assert.IsTrue(decode.FindOffset(syn, encode.CRC, out actualOffset, out hasErrors)); Assert.IsTrue(hasErrors, "doesn't have errors"); Assert.AreEqual(offset, actualOffset, "wrong offset"); CDRepairFix fix = decode.VerifyParity(syn, actualOffset); Assert.IsTrue(fix.HasErrors, "doesn't have errors"); Assert.IsTrue(fix.CanRecover, "cannot recover"); generator2.Write(fix); Assert.AreEqual(encode.CRC, fix.CRC); } /// ///Verifying rip that has errors and negative offset /// [TestMethod()] public void CDRepairDecodeNegativeOffsetErrorsTest() { var generator2 = new TestImageGenerator("0 999 9801", seed, 32 * 588 - offset, errors); var decode = generator2.CreateCDRepairEncode(stride); int actualOffset; bool hasErrors; Assert.IsTrue(decode.FindOffset(encode.AR.GetSyndrome(), encode.CRC, out actualOffset, out hasErrors), "couldn't find offset"); Assert.IsTrue(hasErrors, "doesn't have errors"); Assert.AreEqual(-offset, actualOffset, "wrong offset"); var fix = decode.VerifyParity(encode.AR.GetSyndrome(), actualOffset); Assert.IsTrue(fix.HasErrors, "doesn't have errors"); Assert.IsTrue(fix.CanRecover, "cannot recover"); generator2.Write(fix); Assert.AreEqual(encode.CRC, fix.CRC); if (AccurateRipVerify.maxNpar > 8) { fix = decode.VerifyParity(encode.AR.GetSyndrome(8), actualOffset); Assert.IsTrue(fix.HasErrors, "doesn't have errors"); Assert.IsTrue(fix.CanRecover, "cannot recover"); generator2.Write(fix); Assert.AreEqual(encode.CRC, fix.CRC); } } [TestMethod] public void GFMiscTest() { var g16 = Galois16.instance; CollectionAssert.AreEqual(new int[] { 5, 33657, 33184, 33657, 5 }, g16.gfconv(new int[] { 1, 2, 3 }, new int[] { 4, 3, 2 })); CollectionAssert.AreEqual(new int[] { 5, 6, 1774, 4, 5 }, g16.gfconv(new int[] { 1, 2, 3 }, new int[] { 4, -1, 2 })); var g8 = Galois81D.instance; Assert.AreEqual(111, g8.gfadd(11, 15)); Assert.AreEqual(11, g8.gfadd(11, -1)); Assert.AreEqual(25, g8.gfadd(1, 0)); var S = new int[8] { -1, -1, -1, -1, -1, -1, -1, -1 }; var received = new int[] { 2, 4, 1, 3, 5 }; for (int ii = 0; ii < 8; ii++) for (int x = 0; x < 5; x++) S[ii] = g8.gfadd(S[ii], g8.gfmul(received[x], g8.gfpow(ii + 1, x))); CollectionAssert.AreEqual(S, new int[] { 219, 96, 208, 202, 116, 211, 182, 129 }); //S[ii] ^= received[x] * a ^ ((ii + 1) * x); //S[0] ^= received[0] * a ^ (1 * 0); //S[0] ^= received[1] * a ^ (1 * 1); //S[0] ^= received[2] * a ^ (1 * 2); //S[1] ^= received[0] * a ^ (2 * 0); //S[1] ^= received[1] * a ^ (2 * 1); //S[1] ^= received[2] * a ^ (2 * 2); received = g8.toExp(received); for (int ii = 0; ii < 8; ii++) { S[ii] = 0; for (int x = 0; x < 5; x++) S[ii] ^= g8.mulExp(received[x], ((ii + 1) * x) % 255); } S = g8.toLog(S); CollectionAssert.AreEqual(S, new int[] { 219, 96, 208, 202, 116, 211, 182, 129 }); } /// ///A test for CRC parralelism /// [TestMethod()] //[Ignore] public void CDRepairSplitTest() { var seed = 723722; var ar0 = new TestImageGenerator("13 68 99 136", seed, 0, 0).CreateCDRepairEncode(stride); var splits = new int[] { 1, 13 * 588 - 1, 13 * 588, 13 * 588 + 1, 30 * 588 - 1, 30 * 588, 30 * 588 + 1, 68 * 588 - 1, 68 * 588, 68 * 588 + 1 }; foreach (int split in splits) { var ar1 = new TestImageGenerator("13 68 99 136", seed, 0, 0, 0, split).CreateCDRepairEncode(stride); var ar2 = new TestImageGenerator("13 68 99 136", seed, 0, 0, split, (int)ar0.FinalSampleCount).CreateCDRepairEncode(stride); ar1.AR.Combine(ar2.AR, split, (int)ar0.FinalSampleCount); string message = "split = " + CDImageLayout.TimeToString((uint)split / 588) + "." + (split % 588).ToString(); Assert.AreEqual(ar0.CRC, ar1.CRC, "CRC was not set correctly, " + message); CollectionAssert.AreEqual(ar0.AR.GetParity(), ar1.AR.GetParity(), "Parity was not set correctly, " + message); } } /// ///A test for CRC parralelism speed /// [TestMethod()] public unsafe void CDRepairSplitSpeedTest() { var seed = 723722; var split = 20 * 588; var ar1 = new TestImageGenerator("13 68 99 136", seed, 0, 0, 0, split).CreateCDRepairEncode(stride); var ar2 = new TestImageGenerator("13 68 99 136", seed, 0, 0, split, (int)ar1.FinalSampleCount).CreateCDRepairEncode(stride); for (int i = 0; i < 20; i++) ar1.AR.Combine(ar2.AR, split, (int)ar1.FinalSampleCount); } /// ///A test for Syndrome2Parity speed /// [TestMethod()] public unsafe void CDRepairSyndrome2ParitySpeedTest() { byte[] parityCopy = new byte[encode.AR.GetParity().Length]; var syndrome = encode.AR.GetSyndrome(); for (int t = 0; t < 100; t++) ParityToSyndrome.Syndrome2Parity(syndrome, parityCopy); CollectionAssert.AreEqual(encode.AR.GetParity(), parityCopy); } [TestMethod] public unsafe void CDRepairEncodeSynParTest() { var parityCopy = ParityToSyndrome.Syndrome2Parity(encode.AR.GetSyndrome()); CollectionAssert.AreEqual(encode.AR.GetParity(), parityCopy); } [TestMethod] public void CDRepairEncodeSpeedTest() { var generator = new TestImageGenerator("0 75000", seed, 0, 0); var encode = generator.CreateCDRepairEncode(stride); Assert.AreEqual(encodeParity1[AccurateRipVerify.maxNpar], Convert.ToBase64String(encode.AR.GetParity(), 0, 64), "parity mismatch"); } /// ///Verifying rip that has errors /// [TestMethod()] [Ignore] public void CDRepairVerifyParitySpeedTest() { var generator1 = new TestImageGenerator("0 98011", seed, 32 * 588, 0); var encode1 = generator1.CreateCDRepairEncode(stride); var generator2 = new TestImageGenerator("0 98011", seed, 32 * 588, errors/2); var decode = generator2.CreateCDRepairEncode(stride); int actualOffset; bool hasErrors; var syndrome = encode1.AR.GetSyndrome(); Assert.IsTrue(decode.FindOffset(syndrome, encode1.CRC, out actualOffset, out hasErrors)); Assert.IsTrue(hasErrors, "doesn't have errors"); Assert.AreEqual(0, actualOffset, "wrong offset"); for (int t = 0; t < 1000; t++) decode.VerifyParity(syndrome, actualOffset); CDRepairFix fix = decode.VerifyParity(syndrome, actualOffset); Assert.IsTrue(fix.HasErrors, "doesn't have errors"); Assert.IsTrue(fix.CanRecover, "cannot recover"); generator2.Write(fix); Assert.AreEqual(encode1.CRC, fix.CRC); } } }