/** * CUETools.Flake: pure managed FLAC audio encoder * Copyright (c) 2009 Gregory S. Chudov * Based on Flake encoder, http://flake-enc.sourceforge.net/ * Copyright (c) 2006-2009 Justin Ruggles * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #define INTEROP using System; using System.Text; using System.IO; using System.Collections.Generic; using System.Collections.Specialized; using System.Security.Cryptography; #if INTEROP using System.Runtime.InteropServices; #endif using CUETools.Codecs; namespace CUETools.Codecs.FLAKE { public class FlakeWriter : IAudioDest { Stream _IO = null; string _path; long _position; // number of audio channels // set by user prior to calling flake_encode_init // valid values are 1 to 8 int channels, ch_code; // audio sample rate in Hz // set by user prior to calling flake_encode_init int sample_rate, sr_code0, sr_code1; // sample size in bits // set by user prior to calling flake_encode_init // only 16-bit is currently supported uint bits_per_sample; int bps_code; // total stream samples // set by user prior to calling flake_encode_init // if 0, stream length is unknown int sample_count; FlakeEncodeParams eparams; // maximum frame size in bytes // set by flake_encode_init // this can be used to allocate memory for output int max_frame_size; byte[] frame_buffer = null; int frame_count = 0; long first_frame_offset = 0; #if INTEROP TimeSpan _userProcessorTime; #endif // header bytes // allocated by flake_encode_init and freed by flake_encode_close byte[] header; int[] samplesBuffer; int[] verifyBuffer; int[] residualBuffer; float[] windowBuffer; int samplesInBuffer = 0; int _compressionLevel = 7; int _blocksize = 0; int _totalSize = 0; int _windowsize = 0, _windowcount = 0; Crc8 crc8; Crc16 crc16; MD5 md5; FlacFrame frame; FlakeReader verify; SeekPoint[] seek_table; int seek_table_offset = -1; bool inited = false; public FlakeWriter(string path, int bitsPerSample, int channelCount, int sampleRate, Stream IO) { if (bitsPerSample != 16) throw new Exception("Bits per sample must be 16."); if (channelCount != 2) throw new Exception("ChannelCount must be 2."); channels = channelCount; sample_rate = sampleRate; bits_per_sample = (uint) bitsPerSample; // flake_validate_params _path = path; _IO = IO; samplesBuffer = new int[Flake.MAX_BLOCKSIZE * (channels == 2 ? 4 : channels)]; residualBuffer = new int[Flake.MAX_BLOCKSIZE * (channels == 2 ? 10 : channels + 1)]; windowBuffer = new float[Flake.MAX_BLOCKSIZE * 2 * lpc.MAX_LPC_WINDOWS]; eparams.flake_set_defaults(_compressionLevel); eparams.padding_size = 8192; crc8 = new Crc8(); crc16 = new Crc16(); frame = new FlacFrame(channels * 2); } public int TotalSize { get { return _totalSize; } } public int PaddingLength { get { return eparams.padding_size; } set { eparams.padding_size = value; } } public int CompressionLevel { get { return _compressionLevel; } set { if (value < 0 || value > 11) throw new Exception("unsupported compression level"); _compressionLevel = value; eparams.flake_set_defaults(_compressionLevel); } } #if INTEROP [DllImport("kernel32.dll")] static extern bool GetThreadTimes(IntPtr hThread, out long lpCreationTime, out long lpExitTime, out long lpKernelTime, out long lpUserTime); [DllImport("kernel32.dll")] static extern IntPtr GetCurrentThread(); #endif void DoClose() { if (inited) { while (samplesInBuffer > 0) { eparams.block_size = samplesInBuffer; output_frame(); } if (_IO.CanSeek) { if (md5 != null) { md5.TransformFinalBlock(frame_buffer, 0, 0); _IO.Position = 26; _IO.Write(md5.Hash, 0, md5.Hash.Length); } if (seek_table != null) { _IO.Position = seek_table_offset; int len = write_seekpoints(header, 0, 0); _IO.Write(header, 4, len - 4); } } _IO.Close(); inited = false; } #if INTEROP long fake, KernelStart, UserStart; GetThreadTimes(GetCurrentThread(), out fake, out fake, out KernelStart, out UserStart); _userProcessorTime = new TimeSpan(UserStart); #endif } public void Close() { DoClose(); if (sample_count != 0 && _position != sample_count) throw new Exception("Samples written differs from the expected sample count."); } public void Delete() { if (inited) { _IO.Close(); inited = false; } if (_path != "") File.Delete(_path); } public long Position { get { return _position; } } public long FinalSampleCount { set { sample_count = (int)value; } } public long BlockSize { set { _blocksize = (int)value; } get { return _blocksize == 0 ? eparams.block_size : _blocksize; } } public OrderMethod OrderMethod { get { return eparams.order_method; } set { eparams.order_method = value; } } public PredictionType PredictionType { get { return eparams.prediction_type; } set { eparams.prediction_type = value; } } public StereoMethod StereoMethod { get { return eparams.stereo_method; } set { eparams.stereo_method = value; } } public int MinPrecisionSearch { get { return eparams.lpc_min_precision_search; } set { if (value < 0 || value > eparams.lpc_max_precision_search) throw new Exception("unsupported MinPrecisionSearch value"); eparams.lpc_min_precision_search = value; } } public int MaxPrecisionSearch { get { return eparams.lpc_max_precision_search; } set { if (value < eparams.lpc_min_precision_search || value >= lpc.MAX_LPC_PRECISIONS) throw new Exception("unsupported MaxPrecisionSearch value"); eparams.lpc_max_precision_search = value; } } public WindowFunction WindowFunction { get { return eparams.window_function; } set { eparams.window_function = value; } } public bool DoMD5 { get { return eparams.do_md5; } set { eparams.do_md5 = value; } } public bool DoVerify { get { return eparams.do_verify; } set { eparams.do_verify = value; } } public bool DoSeekTable { get { return eparams.do_seektable; } set { eparams.do_seektable = value; } } public int VBRMode { get { return eparams.variable_block_size; } set { eparams.variable_block_size = value; } } public int MinPredictionOrder { get { return PredictionType == PredictionType.Fixed ? MinFixedOrder : MinLPCOrder; } set { if (PredictionType == PredictionType.Fixed) MinFixedOrder = value; else MinLPCOrder = value; } } public int MaxPredictionOrder { get { return PredictionType == PredictionType.Fixed ? MaxFixedOrder : MaxLPCOrder; } set { if (PredictionType == PredictionType.Fixed) MaxFixedOrder = value; else MaxLPCOrder = value; } } public int MinLPCOrder { get { return eparams.min_prediction_order; } set { if (value < 1 || value > eparams.max_prediction_order) throw new Exception("invalid MinLPCOrder " + value.ToString()); eparams.min_prediction_order = value; } } public int MaxLPCOrder { get { return eparams.max_prediction_order; } set { if (value > lpc.MAX_LPC_ORDER || value < eparams.min_prediction_order) throw new Exception("invalid MaxLPCOrder " + value.ToString()); eparams.max_prediction_order = value; } } public int EstimationDepth { get { return eparams.estimation_depth; } set { if (value > 32 || value < 1) throw new Exception("invalid estimation_depth " + value.ToString()); eparams.estimation_depth = value; } } public int MinFixedOrder { get { return eparams.min_fixed_order; } set { if (value < 0 || value > eparams.max_fixed_order) throw new Exception("invalid MinFixedOrder " + value.ToString()); eparams.min_fixed_order = value; } } public int MaxFixedOrder { get { return eparams.max_fixed_order; } set { if (value > 4 || value < eparams.min_fixed_order) throw new Exception("invalid MaxFixedOrder " + value.ToString()); eparams.max_fixed_order = value; } } public int MinPartitionOrder { get { return eparams.min_partition_order; } set { if (value < 0 || value > eparams.max_partition_order) throw new Exception("invalid MinPartitionOrder " + value.ToString()); eparams.min_partition_order = value; } } public int MaxPartitionOrder { get { return eparams.max_partition_order; } set { if (value > 8 || value < eparams.min_partition_order) throw new Exception("invalid MaxPartitionOrder " + value.ToString()); eparams.max_partition_order = value; } } public TimeSpan UserProcessorTime { get { #if INTEROP return _userProcessorTime; #else return TimeSpan(0); #endif } } public int BitsPerSample { get { return 16; } } unsafe uint get_wasted_bits(int* signal, int samples) { int i, shift; int x = 0; for (i = 0; i < samples && 0 == (x & 1); i++) x |= signal[i]; if (x == 0) { shift = 0; } else { for (shift = 0; 0 == (x & 1); shift++) x >>= 1; } if (shift > 0) { for (i = 0; i < samples; i++) signal[i] >>= shift; } return (uint)shift; } /// /// Copy channel-interleaved input samples into separate subframes /// /// /// /// unsafe void copy_samples(int[,] samples, int pos, int block) { fixed (int* fsamples = samplesBuffer, src = &samples[pos, 0]) { if (channels == 2) AudioSamples.Deinterlace(fsamples + samplesInBuffer, fsamples + Flake.MAX_BLOCKSIZE + samplesInBuffer, src, block); else for (int ch = 0; ch < channels; ch++) { int* psamples = fsamples + ch * Flake.MAX_BLOCKSIZE + samplesInBuffer; for (int i = 0; i < block; i++) psamples[i] = src[i * channels + ch]; } } samplesInBuffer += block; } unsafe static void channel_decorrelation(int* leftS, int* rightS, int *leftM, int *rightM, int blocksize) { for (int i = 0; i < blocksize; i++) { leftM[i] = (leftS[i] + rightS[i]) >> 1; rightM[i] = leftS[i] - rightS[i]; } } unsafe void encode_residual_verbatim(int* res, int* smp, uint n) { AudioSamples.MemCpy(res, smp, (int) n); } unsafe void encode_residual_fixed(int* res, int* smp, int n, int order) { int i; int s0, s1, s2; switch (order) { case 0: AudioSamples.MemCpy(res, smp, n); return; case 1: *(res++) = s1 = *(smp++); for (i = n - 1; i > 0; i--) { s0 = *(smp++); *(res++) = s0 - s1; s1 = s0; } return; case 2: *(res++) = s2 = *(smp++); *(res++) = s1 = *(smp++); for (i = n - 2; i > 0; i--) { s0 = *(smp++); *(res++) = s0 - 2 * s1 + s2; s2 = s1; s1 = s0; } return; case 3: res[0] = smp[0]; res[1] = smp[1]; res[2] = smp[2]; for (i = 3; i < n; i++) { res[i] = smp[i] - 3 * smp[i - 1] + 3 * smp[i - 2] - smp[i - 3]; } return; case 4: res[0] = smp[0]; res[1] = smp[1]; res[2] = smp[2]; res[3] = smp[3]; for (i = 4; i < n; i++) { res[i] = smp[i] - 4 * smp[i - 1] + 6 * smp[i - 2] - 4 * smp[i - 3] + smp[i - 4]; } return; default: return; } } static unsafe uint calc_optimal_rice_params(int porder, int* parm, uint* sums, uint n, uint pred_order) { uint part = (1U << porder); uint cnt = (n >> porder) - pred_order; int k = cnt > 0 ? Math.Min(Flake.MAX_RICE_PARAM, BitReader.log2i(sums[0] / cnt)) : 0; uint all_bits = cnt * ((uint)k + 1U) + (sums[0] >> k); parm[0] = k; cnt = (n >> porder); for (uint i = 1; i < part; i++) { k = Math.Min(Flake.MAX_RICE_PARAM, BitReader.log2i(sums[i] / cnt)); all_bits += cnt * ((uint)k + 1U) + (sums[i] >> k); parm[i] = k; } return all_bits + (4 * part); } static unsafe void calc_lower_sums(int pmin, int pmax, uint* sums) { for (int i = pmax - 1; i >= pmin; i--) { for (int j = 0; j < (1 << i); j++) { sums[i * Flake.MAX_PARTITIONS + j] = sums[(i + 1) * Flake.MAX_PARTITIONS + 2 * j] + sums[(i + 1) * Flake.MAX_PARTITIONS + 2 * j + 1]; } } } static unsafe void calc_sums(int pmin, int pmax, uint* data, uint n, uint pred_order, uint* sums) { int parts = (1 << pmax); uint* res = data + pred_order; uint cnt = (n >> pmax) - pred_order; uint sum = 0; for (uint j = cnt; j > 0; j--) sum += *(res++); sums[0] = sum; cnt = (n >> pmax); for (int i = 1; i < parts; i++) { sum = 0; for (uint j = cnt; j > 0; j--) sum += *(res++); sums[i] = sum; } } /// /// Special case when (n >> pmax) == 18 /// /// /// /// /// /// /// static unsafe void calc_sums18(int pmin, int pmax, uint* data, uint n, uint pred_order, uint* sums) { int parts = (1 << pmax); uint* res = data + pred_order; uint cnt = 18 - pred_order; uint sum = 0; for (uint j = cnt; j > 0; j--) sum += *(res++); sums[0] = sum; for (int i = 1; i < parts; i++) { sums[i] = *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++); } } /// /// Special case when (n >> pmax) == 18 /// /// /// /// /// /// /// static unsafe void calc_sums16(int pmin, int pmax, uint* data, uint n, uint pred_order, uint* sums) { int parts = (1 << pmax); uint* res = data + pred_order; uint cnt = 16 - pred_order; uint sum = 0; for (uint j = cnt; j > 0; j--) sum += *(res++); sums[0] = sum; for (int i = 1; i < parts; i++) { sums[i] = *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++) + *(res++); } } static unsafe uint calc_rice_params(RiceContext rc, int pmin, int pmax, int* data, uint n, uint pred_order) { uint* udata = stackalloc uint[(int)n]; uint* sums = stackalloc uint[(pmax + 1) * Flake.MAX_PARTITIONS]; int* parm = stackalloc int[(pmax + 1) * Flake.MAX_PARTITIONS]; //uint* bits = stackalloc uint[Flake.MAX_PARTITION_ORDER]; //assert(pmin >= 0 && pmin <= Flake.MAX_PARTITION_ORDER); //assert(pmax >= 0 && pmax <= Flake.MAX_PARTITION_ORDER); //assert(pmin <= pmax); for (uint i = 0; i < n; i++) udata[i] = (uint) ((data[i] << 1) ^ (data[i] >> 31)); // sums for highest level if ((n >> pmax) == 18) calc_sums18(pmin, pmax, udata, n, pred_order, sums + pmax * Flake.MAX_PARTITIONS); else if ((n >> pmax) == 16) calc_sums16(pmin, pmax, udata, n, pred_order, sums + pmax * Flake.MAX_PARTITIONS); else calc_sums(pmin, pmax, udata, n, pred_order, sums + pmax * Flake.MAX_PARTITIONS); // sums for lower levels calc_lower_sums(pmin, pmax, sums); uint opt_bits = AudioSamples.UINT32_MAX; int opt_porder = pmin; for (int i = pmin; i <= pmax; i++) { uint bits = calc_optimal_rice_params(i, parm + i * Flake.MAX_PARTITIONS, sums + i * Flake.MAX_PARTITIONS, n, pred_order); if (bits <= opt_bits) { opt_bits = bits; opt_porder = i; } } rc.porder = opt_porder; fixed (int* rparms = rc.rparams) AudioSamples.MemCpy(rparms, parm + opt_porder * Flake.MAX_PARTITIONS, (1 << opt_porder)); return opt_bits; } static int get_max_p_order(int max_porder, int n, int order) { int porder = Math.Min(max_porder, BitReader.log2i(n ^ (n - 1))); if (order > 0) porder = Math.Min(porder, BitReader.log2i(n / order)); return porder; } unsafe void encode_residual_lpc_sub(FlacFrame frame, float* lpcs, int iWindow, int order, int ch) { // select LPC precision based on block size uint lpc_precision; if (frame.blocksize <= 192) lpc_precision = 7U; else if (frame.blocksize <= 384) lpc_precision = 8U; else if (frame.blocksize <= 576) lpc_precision = 9U; else if (frame.blocksize <= 1152) lpc_precision = 10U; else if (frame.blocksize <= 2304) lpc_precision = 11U; else if (frame.blocksize <= 4608) lpc_precision = 12U; else if (frame.blocksize <= 8192) lpc_precision = 13U; else if (frame.blocksize <= 16384) lpc_precision = 14U; else lpc_precision = 15; for (int i_precision = eparams.lpc_min_precision_search; i_precision <= eparams.lpc_max_precision_search && lpc_precision + i_precision < 16; i_precision++) // check if we already calculated with this order, window and precision if ((frame.subframes[ch].lpc_ctx[iWindow].done_lpcs[i_precision] & (1U << (order - 1))) == 0) { frame.subframes[ch].lpc_ctx[iWindow].done_lpcs[i_precision] |= (1U << (order - 1)); uint cbits = lpc_precision + (uint)i_precision; frame.current.type = SubframeType.LPC; frame.current.order = order; frame.current.window = iWindow; fixed (int* coefs = frame.current.coefs) { lpc.quantize_lpc_coefs(lpcs + (frame.current.order - 1) * lpc.MAX_LPC_ORDER, frame.current.order, cbits, coefs, out frame.current.shift, 15, 0); if (frame.current.shift < 0 || frame.current.shift > 15) throw new Exception("negative shift"); ulong csum = 0; for (int i = frame.current.order; i > 0; i--) csum += (ulong)Math.Abs(coefs[i - 1]); if ((csum << (int)frame.subframes[ch].obits) >= 1UL << 32) lpc.encode_residual_long(frame.current.residual, frame.subframes[ch].samples, frame.blocksize, frame.current.order, coefs, frame.current.shift); else lpc.encode_residual(frame.current.residual, frame.subframes[ch].samples, frame.blocksize, frame.current.order, coefs, frame.current.shift); } int pmax = get_max_p_order(eparams.max_partition_order, frame.blocksize, frame.current.order); int pmin = Math.Min(eparams.min_partition_order, pmax); uint best_size = calc_rice_params(frame.current.rc, pmin, pmax, frame.current.residual, (uint)frame.blocksize, (uint)frame.current.order); // not working //for (int o = 1; o <= frame.current.order; o++) //{ // if (frame.current.coefs[o - 1] > -(1 << frame.current.shift)) // { // for (int i = o; i < frame.blocksize; i++) // frame.current.residual[i] += frame.subframes[ch].samples[i - o] >> frame.current.shift; // frame.current.coefs[o - 1]--; // uint new_size = calc_rice_params(ref frame.current.rc, pmin, pmax, frame.current.residual, (uint)frame.blocksize, (uint)frame.current.order); // if (new_size > best_size) // { // for (int i = o; i < frame.blocksize; i++) // frame.current.residual[i] -= frame.subframes[ch].samples[i - o] >> frame.current.shift; // frame.current.coefs[o - 1]++; // } // } //} frame.current.size = (uint)frame.current.order * frame.subframes[ch].obits + 4 + 5 + (uint)frame.current.order * cbits + 6 + best_size; frame.ChooseBestSubframe(ch); } } unsafe void encode_residual_fixed_sub(FlacFrame frame, int order, int ch) { if ((frame.subframes[ch].done_fixed & (1U << order)) != 0) return; // already calculated; frame.current.order = order; frame.current.type = SubframeType.Fixed; encode_residual_fixed(frame.current.residual, frame.subframes[ch].samples, frame.blocksize, frame.current.order); int pmax = get_max_p_order(eparams.max_partition_order, frame.blocksize, frame.current.order); int pmin = Math.Min(eparams.min_partition_order, pmax); frame.current.size = (uint)frame.current.order * frame.subframes[ch].obits + 6 + calc_rice_params(frame.current.rc, pmin, pmax, frame.current.residual, (uint)frame.blocksize, (uint)frame.current.order); frame.subframes[ch].done_fixed |= (1U << order); frame.ChooseBestSubframe(ch); } unsafe void encode_residual(FlacFrame frame, int ch, PredictionType predict, OrderMethod omethod, int pass) { int* smp = frame.subframes[ch].samples; int i, n = frame.blocksize; // save best.window, because we can overwrite it later with fixed frame int best_window = frame.subframes[ch].best.type == SubframeType.LPC ? frame.subframes[ch].best.window : -1; // CONSTANT for (i = 1; i < n; i++) { if (smp[i] != smp[0]) break; } if (i == n) { frame.subframes[ch].best.type = SubframeType.Constant; frame.subframes[ch].best.residual[0] = smp[0]; frame.subframes[ch].best.size = frame.subframes[ch].obits; return; } // VERBATIM frame.current.type = SubframeType.Verbatim; frame.current.size = frame.subframes[ch].obits * (uint)frame.blocksize; frame.ChooseBestSubframe(ch); if (n < 5 || predict == PredictionType.None) return; // FIXED if (predict == PredictionType.Fixed || (predict == PredictionType.Search && pass != 1) || //predict == PredictionType.Search || //(pass == 2 && frame.subframes[ch].best.type == SubframeType.Fixed) || n <= eparams.max_prediction_order) { int max_fixed_order = Math.Min(eparams.max_fixed_order, 4); int min_fixed_order = Math.Min(eparams.min_fixed_order, max_fixed_order); for (i = min_fixed_order; i <= max_fixed_order; i++) encode_residual_fixed_sub(frame, i, ch); } // LPC if (n > eparams.max_prediction_order && (predict == PredictionType.Levinson || predict == PredictionType.Search) //predict == PredictionType.Search || //(pass == 2 && frame.subframes[ch].best.type == SubframeType.LPC)) ) { float* lpcs = stackalloc float[lpc.MAX_LPC_ORDER * lpc.MAX_LPC_ORDER]; int min_order = eparams.min_prediction_order; int max_order = eparams.max_prediction_order; for (int iWindow = 0; iWindow < _windowcount; iWindow++) { if (pass == 2 && iWindow != best_window) continue; LpcContext lpc_ctx = frame.subframes[ch].lpc_ctx[iWindow]; lpc_ctx.GetReflection(max_order, smp, n, frame.window_buffer + iWindow * Flake.MAX_BLOCKSIZE * 2); lpc_ctx.ComputeLPC(lpcs); //int frameSize = n; //float* F = stackalloc float[frameSize]; //float* B = stackalloc float[frameSize]; //float* PE = stackalloc float[max_order + 1]; //float* arp = stackalloc float[max_order]; //float* rc = stackalloc float[max_order]; //for (int j = 0; j < frameSize; j++) // F[j] = B[j] = smp[j]; //for (int K = 1; K <= max_order; K++) //{ // // BURG: // float denominator = 0.0f; // //float denominator = F[K - 1] * F[K - 1] + B[frameSize - K] * B[frameSize - K]; // for (int j = 0; j < frameSize - K; j++) // denominator += F[j + K] * F[j + K] + B[j] * B[j]; // denominator /= 2; // // Estimate error // PE[K - 1] = denominator / (frameSize - K); // float reflectionCoeff = 0.0f; // for (int j = 0; j < frameSize - K; j++) // reflectionCoeff += F[j + K] * B[j]; // reflectionCoeff /= denominator; // rc[K - 1] = arp[K - 1] = reflectionCoeff; // // Levinson-Durbin // for (int j = 0; j < (K - 1) >> 1; j++) // { // float arptmp = arp[j]; // arp[j] -= reflectionCoeff * arp[K - 2 - j]; // arp[K - 2 - j] -= reflectionCoeff * arptmp; // } // if (((K - 1) & 1) != 0) // arp[(K - 1) >> 1] -= reflectionCoeff * arp[(K - 1) >> 1]; // for (int j = 0; j < frameSize - K; j++) // { // float f = F[j + K]; // float b = B[j]; // F[j + K] = f - reflectionCoeff * b; // B[j] = b - reflectionCoeff * f; // } // for (int j = 0; j < K; j++) // lpcs[(K - 1) * lpc.MAX_LPC_ORDER + j] = (float)arp[j]; //} switch (omethod) { case OrderMethod.Akaike: lpc_ctx.SortOrdersAkaike(frame.blocksize, eparams.estimation_depth); break; default: throw new Exception("unknown order method"); } for (i = 0; i < eparams.estimation_depth && i < max_order; i++) encode_residual_lpc_sub(frame, lpcs, iWindow, lpc_ctx.best_orders[i], ch); } } } unsafe void output_frame_header(FlacFrame frame, BitWriter bitwriter) { bitwriter.writebits(15, 0x7FFC); bitwriter.writebits(1, eparams.variable_block_size > 0 ? 1 : 0); bitwriter.writebits(4, frame.bs_code0); bitwriter.writebits(4, sr_code0); if (frame.ch_mode == ChannelMode.NotStereo) bitwriter.writebits(4, ch_code); else bitwriter.writebits(4, (int) frame.ch_mode); bitwriter.writebits(3, bps_code); bitwriter.writebits(1, 0); bitwriter.write_utf8(frame_count); // custom block size if (frame.bs_code1 >= 0) { if (frame.bs_code1 < 256) bitwriter.writebits(8, frame.bs_code1); else bitwriter.writebits(16, frame.bs_code1); } // custom sample rate if (sr_code1 > 0) { if (sr_code1 < 256) bitwriter.writebits(8, sr_code1); else bitwriter.writebits(16, sr_code1); } // CRC-8 of frame header bitwriter.flush(); byte crc = crc8.ComputeChecksum(frame_buffer, 0, bitwriter.Length); bitwriter.writebits(8, crc); } unsafe void output_residual(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub) { // rice-encoded block bitwriter.writebits(2, 0); // partition order int porder = sub.best.rc.porder; int psize = frame.blocksize >> porder; //assert(porder >= 0); bitwriter.writebits(4, porder); int res_cnt = psize - sub.best.order; // residual int j = sub.best.order; fixed (byte* fixbuf = &frame_buffer[0]) for (int p = 0; p < (1 << porder); p++) { int k = sub.best.rc.rparams[p]; bitwriter.writebits(4, k); if (p == 1) res_cnt = psize; int cnt = Math.Min(res_cnt, frame.blocksize - j); bitwriter.write_rice_block_signed(fixbuf, k, sub.best.residual + j, cnt); j += cnt; } } unsafe void output_subframe_constant(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub) { bitwriter.writebits_signed(sub.obits, sub.best.residual[0]); } unsafe void output_subframe_verbatim(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub) { int n = frame.blocksize; for (int i = 0; i < n; i++) bitwriter.writebits_signed(sub.obits, sub.samples[i]); // Don't use residual here, because we don't copy samples to residual for verbatim frames. } unsafe void output_subframe_fixed(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub) { // warm-up samples for (int i = 0; i < sub.best.order; i++) bitwriter.writebits_signed(sub.obits, sub.best.residual[i]); // residual output_residual(frame, bitwriter, sub); } unsafe void output_subframe_lpc(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub) { // warm-up samples for (int i = 0; i < sub.best.order; i++) bitwriter.writebits_signed(sub.obits, sub.best.residual[i]); // LPC coefficients int cbits = 1; for (int i = 0; i < sub.best.order; i++) while (cbits < 16 && sub.best.coefs[i] != (sub.best.coefs[i] << (32 - cbits)) >> (32 - cbits)) cbits++; bitwriter.writebits(4, cbits - 1); bitwriter.writebits_signed(5, sub.best.shift); for (int i = 0; i < sub.best.order; i++) bitwriter.writebits_signed(cbits, sub.best.coefs[i]); // residual output_residual(frame, bitwriter, sub); } unsafe void output_subframes(FlacFrame frame, BitWriter bitwriter) { for (int ch = 0; ch < channels; ch++) { FlacSubframeInfo sub = frame.subframes[ch]; // subframe header int type_code = (int) sub.best.type; if (sub.best.type == SubframeType.Fixed) type_code |= sub.best.order; if (sub.best.type == SubframeType.LPC) type_code |= sub.best.order - 1; bitwriter.writebits(1, 0); bitwriter.writebits(6, type_code); bitwriter.writebits(1, sub.wbits != 0 ? 1 : 0); if (sub.wbits > 0) bitwriter.writebits((int)sub.wbits, 1); // subframe switch (sub.best.type) { case SubframeType.Constant: output_subframe_constant(frame, bitwriter, sub); break; case SubframeType.Verbatim: output_subframe_verbatim(frame, bitwriter, sub); break; case SubframeType.Fixed: output_subframe_fixed(frame, bitwriter, sub); break; case SubframeType.LPC: output_subframe_lpc(frame, bitwriter, sub); break; } } } void output_frame_footer(BitWriter bitwriter) { bitwriter.flush(); ushort crc = crc16.ComputeChecksum(frame_buffer, 0, bitwriter.Length); bitwriter.writebits(16, crc); bitwriter.flush(); } unsafe void encode_residual_pass1(FlacFrame frame, int ch) { int max_prediction_order = eparams.max_prediction_order; int max_fixed_order = eparams.max_fixed_order; int min_fixed_order = eparams.min_fixed_order; int lpc_min_precision_search = eparams.lpc_min_precision_search; int lpc_max_precision_search = eparams.lpc_max_precision_search; int max_partition_order = eparams.max_partition_order; int estimation_depth = eparams.estimation_depth; eparams.min_fixed_order = 2; eparams.max_fixed_order = 2; eparams.lpc_min_precision_search = eparams.lpc_max_precision_search; eparams.max_prediction_order = 8; eparams.estimation_depth = 1; encode_residual(frame, ch, eparams.prediction_type, OrderMethod.Akaike, 1); eparams.min_fixed_order = min_fixed_order; eparams.max_fixed_order = max_fixed_order; eparams.max_prediction_order = max_prediction_order; eparams.lpc_min_precision_search = lpc_min_precision_search; eparams.lpc_max_precision_search = lpc_max_precision_search; eparams.max_partition_order = max_partition_order; eparams.estimation_depth = estimation_depth; } unsafe void encode_residual_pass2(FlacFrame frame, int ch) { encode_residual(frame, ch, eparams.prediction_type, eparams.order_method, 2); } unsafe void encode_residual_onepass(FlacFrame frame, int ch) { if (_windowcount > 1) { encode_residual_pass1(frame, ch); encode_residual_pass2(frame, ch); } else encode_residual(frame, ch, eparams.prediction_type, eparams.order_method, 0); } unsafe void estimate_frame(FlacFrame frame, bool do_midside) { int subframes = do_midside ? channels * 2 : channels; switch (eparams.stereo_method) { case StereoMethod.Estimate: for (int ch = 0; ch < subframes; ch++) { LpcContext lpc_ctx = frame.subframes[ch].lpc_ctx[0]; lpc_ctx.GetReflection(4, frame.subframes[ch].samples, frame.blocksize, frame.window_buffer); lpc_ctx.SortOrdersAkaike(frame.blocksize, 1); frame.subframes[ch].best.size = Math.Max(0U, (uint)lpc_ctx.Akaike(frame.blocksize, lpc_ctx.best_orders[0])); } break; case StereoMethod.Evaluate: for (int ch = 0; ch < subframes; ch++) { int windowcount = _windowcount; _windowcount = 1; encode_residual_pass1(frame, ch); _windowcount = windowcount; } break; case StereoMethod.Search: for (int ch = 0; ch < subframes; ch++) encode_residual_onepass(frame, ch); break; } } unsafe uint measure_frame_size(FlacFrame frame, bool do_midside) { // crude estimation of header/footer size uint total = (uint)(32 + ((BitReader.log2i(frame_count) + 4) / 5) * 8 + (eparams.variable_block_size != 0 ? 16 : 0) + 16); if (do_midside) { uint bitsBest = AudioSamples.UINT32_MAX; ChannelMode modeBest = ChannelMode.LeftRight; if (bitsBest > frame.subframes[2].best.size + frame.subframes[3].best.size) { bitsBest = frame.subframes[2].best.size + frame.subframes[3].best.size; modeBest = ChannelMode.MidSide; } if (bitsBest > frame.subframes[3].best.size + frame.subframes[1].best.size) { bitsBest = frame.subframes[3].best.size + frame.subframes[1].best.size; modeBest = ChannelMode.RightSide; } if (bitsBest > frame.subframes[3].best.size + frame.subframes[0].best.size) { bitsBest = frame.subframes[3].best.size + frame.subframes[0].best.size; modeBest = ChannelMode.LeftSide; } if (bitsBest > frame.subframes[0].best.size + frame.subframes[1].best.size) { bitsBest = frame.subframes[0].best.size + frame.subframes[1].best.size; modeBest = ChannelMode.LeftRight; } frame.ch_mode = modeBest; return total + bitsBest; } for (int ch = 0; ch < channels; ch++) total += frame.subframes[ch].best.size; return total; } unsafe void encode_estimated_frame(FlacFrame frame) { switch (eparams.stereo_method) { case StereoMethod.Estimate: for (int ch = 0; ch < channels; ch++) { frame.subframes[ch].best.size = AudioSamples.UINT32_MAX; encode_residual_onepass(frame, ch); } break; case StereoMethod.Evaluate: for (int ch = 0; ch < channels; ch++) { if (_windowcount > 1) encode_residual_pass1(frame, ch); encode_residual_pass2(frame, ch); } break; case StereoMethod.Search: break; } } unsafe delegate void window_function(float* window, int size); unsafe void calculate_window(float* window, window_function func, WindowFunction flag) { if ((eparams.window_function & flag) == 0 || _windowcount == lpc.MAX_LPC_WINDOWS) return; int sz = _windowsize; float* pos = window + _windowcount * Flake.MAX_BLOCKSIZE * 2; do { func(pos, sz); if ((sz & 1) != 0) break; pos += sz; sz >>= 1; } while (sz >= 32); _windowcount++; } unsafe int encode_frame(out int size) { fixed (int* s = samplesBuffer, r = residualBuffer) fixed (float* window = windowBuffer) { frame.InitSize(eparams.block_size, eparams.variable_block_size != 0); if (frame.blocksize != _windowsize && frame.blocksize > 4) { _windowsize = frame.blocksize; _windowcount = 0; calculate_window(window, lpc.window_welch, WindowFunction.Welch); calculate_window(window, lpc.window_tukey, WindowFunction.Tukey); calculate_window(window, lpc.window_hann, WindowFunction.Hann); calculate_window(window, lpc.window_flattop, WindowFunction.Flattop); calculate_window(window, lpc.window_bartlett, WindowFunction.Bartlett); if (_windowcount == 0) throw new Exception("invalid windowfunction"); } if (channels != 2 || frame.blocksize <= 32 || eparams.stereo_method == StereoMethod.Independent) { frame.window_buffer = window; frame.current.residual = r + channels * Flake.MAX_BLOCKSIZE; frame.ch_mode = channels != 2 ? ChannelMode.NotStereo : ChannelMode.LeftRight; for (int ch = 0; ch < channels; ch++) frame.subframes[ch].Init(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, bits_per_sample, get_wasted_bits(s + ch * Flake.MAX_BLOCKSIZE, frame.blocksize)); for (int ch = 0; ch < channels; ch++) encode_residual_onepass(frame, ch); } else { channel_decorrelation(s, s + Flake.MAX_BLOCKSIZE, s + 2 * Flake.MAX_BLOCKSIZE, s + 3 * Flake.MAX_BLOCKSIZE, frame.blocksize); frame.window_buffer = window; frame.current.residual = r + 4 * Flake.MAX_BLOCKSIZE; for (int ch = 0; ch < 4; ch++) frame.subframes[ch].Init(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, bits_per_sample + (ch == 3 ? 1U : 0U), get_wasted_bits(s + ch * Flake.MAX_BLOCKSIZE, frame.blocksize)); //for (int ch = 0; ch < 4; ch++) // for (int iWindow = 0; iWindow < _windowcount; iWindow++) // frame.subframes[ch].lpc_ctx[iWindow].GetReflection(32, frame.subframes[ch].samples, frame.blocksize, frame.window_buffer + iWindow * Flake.MAX_BLOCKSIZE * 2); estimate_frame(frame, true); uint fs = measure_frame_size(frame, true); if (0 != eparams.variable_block_size) { FlacFrame frame2 = new FlacFrame(channels * 2); FlacFrame frame3 = new FlacFrame(channels * 2); int tumbler = 1; while ((frame.blocksize & 1) == 0 && frame.blocksize >= 1024) { frame2.InitSize(frame.blocksize / 2, true); frame2.window_buffer = frame.window_buffer + frame.blocksize; frame2.current.residual = r + tumbler * 5 * Flake.MAX_BLOCKSIZE; for (int ch = 0; ch < 4; ch++) frame2.subframes[ch].Init(frame.subframes[ch].samples, frame2.current.residual + (ch + 1) * frame2.blocksize, frame.subframes[ch].obits + frame.subframes[ch].wbits, frame.subframes[ch].wbits); estimate_frame(frame2, true); uint fs2 = measure_frame_size(frame2, true); uint fs3 = fs2; if (eparams.variable_block_size == 2 || eparams.variable_block_size == 4) { frame3.InitSize(frame2.blocksize, true); frame3.window_buffer = frame2.window_buffer; frame3.current.residual = frame2.current.residual + 5 * frame2.blocksize; for (int ch = 0; ch < 4; ch++) frame3.subframes[ch].Init(frame2.subframes[ch].samples + frame2.blocksize, frame3.current.residual + (ch + 1) * frame3.blocksize, frame.subframes[ch].obits + frame.subframes[ch].wbits, frame.subframes[ch].wbits); estimate_frame(frame3, true); fs3 = measure_frame_size(frame3, true); } if (fs2 + fs3 > fs) break; FlacFrame tmp = frame; frame = frame2; frame2 = tmp; fs = fs2; if (eparams.variable_block_size <= 2) break; tumbler = 1 - tumbler; } } frame.ChooseSubframes(); encode_estimated_frame(frame); } BitWriter bitwriter = new BitWriter(frame_buffer, 0, max_frame_size); output_frame_header(frame, bitwriter); output_subframes(frame, bitwriter); output_frame_footer(bitwriter); if (frame_buffer != null) { if (eparams.variable_block_size > 0) frame_count += frame.blocksize; else frame_count++; } size = frame.blocksize; return bitwriter.Length; } } unsafe int output_frame() { if (verify != null) { fixed (int* s = verifyBuffer, r = samplesBuffer) for (int ch = 0; ch < channels; ch++) AudioSamples.MemCpy(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, eparams.block_size); } int fs, bs; //if (0 != eparams.variable_block_size && 0 == (eparams.block_size & 7) && eparams.block_size >= 128) // fs = encode_frame_vbs(); //else fs = encode_frame(out bs); if (seek_table != null && _IO.CanSeek) { for (int sp = 0; sp < seek_table.Length; sp++) { if (seek_table[sp].framesize != 0) continue; if (seek_table[sp].number > (ulong)_position + (ulong)bs) break; if (seek_table[sp].number >= (ulong)_position) { seek_table[sp].number = (ulong)_position; seek_table[sp].offset = (ulong)(_IO.Position - first_frame_offset); seek_table[sp].framesize = (uint)bs; } } } _position += bs; _IO.Write(frame_buffer, 0, fs); _totalSize += fs; if (verify != null) { int decoded = verify.DecodeFrame(frame_buffer, 0, fs); if (decoded != fs || verify.Remaining != (ulong)bs) throw new Exception("validation failed!"); fixed (int* s = verifyBuffer, r = verify.Samples) { for (int ch = 0; ch < channels; ch++) if (AudioSamples.MemCmp(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, bs)) throw new Exception("validation failed!"); } } if (bs < eparams.block_size) { fixed (int* s = samplesBuffer) for (int ch = 0; ch < channels; ch++) AudioSamples.MemCpy(s + ch * Flake.MAX_BLOCKSIZE, s + bs + ch * Flake.MAX_BLOCKSIZE, eparams.block_size - bs); } samplesInBuffer -= bs; return bs; } public void Write(int[,] buff, int pos, int sampleCount) { if (!inited) { if (_IO == null) _IO = new FileStream(_path, FileMode.Create, FileAccess.Write, FileShare.Read); int header_size = flake_encode_init(); _IO.Write(header, 0, header_size); if (_IO.CanSeek) first_frame_offset = _IO.Position; inited = true; } int len = sampleCount; while (len > 0) { int block = Math.Min(len, eparams.block_size - samplesInBuffer); copy_samples(buff, pos, block); if (md5 != null) { AudioSamples.FLACSamplesToBytes(buff, pos, frame_buffer, 0, block, channels, (int)bits_per_sample); md5.TransformBlock(frame_buffer, 0, block * channels * ((int)bits_per_sample >> 3), null, 0); } len -= block; pos += block; while (samplesInBuffer >= eparams.block_size) output_frame(); } } public string Path { get { return _path; } } string vendor_string = "Flake#0.1"; int select_blocksize(int samplerate, int time_ms) { int blocksize = Flake.flac_blocksizes[1]; int target = (samplerate * time_ms) / 1000; if (eparams.variable_block_size > 0) { blocksize = 1024; while (target >= blocksize) blocksize <<= 1; return blocksize >> 1; } for (int i = 0; i < Flake.flac_blocksizes.Length; i++) if (target >= Flake.flac_blocksizes[i] && Flake.flac_blocksizes[i] > blocksize) { blocksize = Flake.flac_blocksizes[i]; } return blocksize; } void write_streaminfo(byte[] header, int pos, int last) { Array.Clear(header, pos, 38); BitWriter bitwriter = new BitWriter(header, pos, 38); // metadata header bitwriter.writebits(1, last); bitwriter.writebits(7, (int)MetadataType.StreamInfo); bitwriter.writebits(24, 34); if (eparams.variable_block_size > 0) bitwriter.writebits(16, 0); else bitwriter.writebits(16, eparams.block_size); bitwriter.writebits(16, eparams.block_size); bitwriter.writebits(24, 0); bitwriter.writebits(24, max_frame_size); bitwriter.writebits(20, sample_rate); bitwriter.writebits(3, channels - 1); bitwriter.writebits(5, bits_per_sample - 1); // total samples if (sample_count > 0) { bitwriter.writebits(4, 0); bitwriter.writebits(32, sample_count); } else { bitwriter.writebits(4, 0); bitwriter.writebits(32, 0); } bitwriter.flush(); } /** * Write vorbis comment metadata block to byte array. * Just writes the vendor string for now. */ int write_vorbis_comment(byte[] comment, int pos, int last) { BitWriter bitwriter = new BitWriter(comment, pos, 4); Encoding enc = new ASCIIEncoding(); int vendor_len = enc.GetBytes(vendor_string, 0, vendor_string.Length, comment, pos + 8); // metadata header bitwriter.writebits(1, last); bitwriter.writebits(7, (int)MetadataType.VorbisComment); bitwriter.writebits(24, vendor_len + 8); comment[pos + 4] = (byte)(vendor_len & 0xFF); comment[pos + 5] = (byte)((vendor_len >> 8) & 0xFF); comment[pos + 6] = (byte)((vendor_len >> 16) & 0xFF); comment[pos + 7] = (byte)((vendor_len >> 24) & 0xFF); comment[pos + 8 + vendor_len] = 0; comment[pos + 9 + vendor_len] = 0; comment[pos + 10 + vendor_len] = 0; comment[pos + 11 + vendor_len] = 0; bitwriter.flush(); return vendor_len + 12; } int write_seekpoints(byte[] header, int pos, int last) { seek_table_offset = pos + 4; BitWriter bitwriter = new BitWriter(header, pos, 4 + 18 * seek_table.Length); // metadata header bitwriter.writebits(1, last); bitwriter.writebits(7, (int)MetadataType.Seektable); bitwriter.writebits(24, 18 * seek_table.Length); for (int i = 0; i < seek_table.Length; i++) { bitwriter.writebits64(Flake.FLAC__STREAM_METADATA_SEEKPOINT_SAMPLE_NUMBER_LEN, seek_table[i].number); bitwriter.writebits64(Flake.FLAC__STREAM_METADATA_SEEKPOINT_STREAM_OFFSET_LEN, seek_table[i].offset); bitwriter.writebits(Flake.FLAC__STREAM_METADATA_SEEKPOINT_FRAME_SAMPLES_LEN, seek_table[i].framesize); } bitwriter.flush(); return 4 + 18 * seek_table.Length; } /** * Write padding metadata block to byte array. */ int write_padding(byte[] padding, int pos, int last, int padlen) { BitWriter bitwriter = new BitWriter(padding, pos, 4); // metadata header bitwriter.writebits(1, last); bitwriter.writebits(7, (int)MetadataType.Padding); bitwriter.writebits(24, padlen); return padlen + 4; } int write_headers() { int header_size = 0; int last = 0; // stream marker header[0] = 0x66; header[1] = 0x4C; header[2] = 0x61; header[3] = 0x43; header_size += 4; // streaminfo write_streaminfo(header, header_size, last); header_size += 38; // seek table if (_IO.CanSeek && seek_table != null) header_size += write_seekpoints(header, header_size, last); // vorbis comment if (eparams.padding_size == 0) last = 1; header_size += write_vorbis_comment(header, header_size, last); // padding if (eparams.padding_size > 0) { last = 1; header_size += write_padding(header, header_size, last, eparams.padding_size); } return header_size; } int flake_encode_init() { int i, header_len; //if(flake_validate_params(s) < 0) ch_code = channels - 1; // find samplerate in table for (i = 4; i < 12; i++) { if (sample_rate == Flake.flac_samplerates[i]) { sr_code0 = i; break; } } // if not in table, samplerate is non-standard if (i == 12) throw new Exception("non-standard samplerate"); for (i = 1; i < 8; i++) { if (bits_per_sample == Flake.flac_bitdepths[i]) { bps_code = i; break; } } if (i == 8) throw new Exception("non-standard bps"); // FIXME: For now, only 16-bit encoding is supported if (bits_per_sample != 16) throw new Exception("non-standard bps"); if (_blocksize == 0) { if (eparams.block_size == 0) eparams.block_size = select_blocksize(sample_rate, eparams.block_time_ms); _blocksize = eparams.block_size; } else eparams.block_size = _blocksize; // set maximum encoded frame size (if larger, re-encodes in verbatim mode) if (channels == 2) max_frame_size = 16 + ((eparams.block_size * (int)(bits_per_sample + bits_per_sample + 1) + 7) >> 3); else max_frame_size = 16 + ((eparams.block_size * channels * (int)bits_per_sample + 7) >> 3); if (_IO.CanSeek && eparams.do_seektable) { int seek_points_distance = sample_rate * 10; int num_seek_points = 1 + sample_count / seek_points_distance; // 1 seek point per 10 seconds if (sample_count % seek_points_distance == 0) num_seek_points--; seek_table = new SeekPoint[num_seek_points]; for (int sp = 0; sp < num_seek_points; sp++) { seek_table[sp].framesize = 0; seek_table[sp].offset = 0; seek_table[sp].number = (ulong)(sp * seek_points_distance); } } // output header bytes header = new byte[eparams.padding_size + 1024 + (seek_table == null ? 0 : seek_table.Length * 18)]; header_len = write_headers(); // initialize CRC & MD5 if (_IO.CanSeek && eparams.do_md5) md5 = new MD5CryptoServiceProvider(); if (eparams.do_verify) { verify = new FlakeReader(channels, bits_per_sample); verifyBuffer = new int[Flake.MAX_BLOCKSIZE * channels]; } frame_buffer = new byte[max_frame_size]; return header_len; } } struct FlakeEncodeParams { // compression quality // set by user prior to calling flake_encode_init // standard values are 0 to 8 // 0 is lower compression, faster encoding // 8 is higher compression, slower encoding // extended values 9 to 12 are slower and/or use // higher prediction orders public int compression; // prediction order selection method // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 5 // 0 = use maximum order only // 1 = use estimation // 2 = 2-level // 3 = 4-level // 4 = 8-level // 5 = full search // 6 = log search public OrderMethod order_method; // stereo decorrelation method // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 2 // 0 = independent L+R channels // 1 = mid-side encoding public StereoMethod stereo_method; // block size in samples // set by the user prior to calling flake_encode_init // if set to 0, a block size is chosen based on block_time_ms // can also be changed by user before encoding a frame public int block_size; // block time in milliseconds // set by the user prior to calling flake_encode_init // used to calculate block_size based on sample rate // can also be changed by user before encoding a frame public int block_time_ms; // padding size in bytes // set by the user prior to calling flake_encode_init // if set to less than 0, defaults to 4096 public int padding_size; // minimum LPC order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 1 to 32 public int min_prediction_order; // maximum LPC order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 1 to 32 public int max_prediction_order; // Number of LPC orders to try (for estimate mode) // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 1 to 32 public int estimation_depth; // minimum fixed prediction order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 4 public int min_fixed_order; // maximum fixed prediction order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 4 public int max_fixed_order; // type of linear prediction // set by user prior to calling flake_encode_init public PredictionType prediction_type; // minimum partition order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 8 public int min_partition_order; // maximum partition order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 8 public int max_partition_order; // whether to use variable block sizes // set by user prior to calling flake_encode_init // 0 = fixed block size // 1 = variable block size public int variable_block_size; // whether to try various lpc_precisions // 0 - use only one precision // 1 - try two precisions public int lpc_max_precision_search; public int lpc_min_precision_search; public WindowFunction window_function; public bool do_md5; public bool do_verify; public bool do_seektable; public int flake_set_defaults(int lvl) { compression = lvl; if ((lvl < 0 || lvl > 12) && (lvl != 99)) { return -1; } // default to level 5 params window_function = WindowFunction.Flattop | WindowFunction.Tukey; order_method = OrderMethod.Akaike; stereo_method = StereoMethod.Evaluate; block_size = 0; block_time_ms = 105; prediction_type = PredictionType.Search; min_prediction_order = 1; max_prediction_order = 12; estimation_depth = 1; min_fixed_order = 2; max_fixed_order = 2; min_partition_order = 0; max_partition_order = 8; variable_block_size = 0; lpc_min_precision_search = 1; lpc_max_precision_search = 1; do_md5 = true; do_verify = false; do_seektable = true; // differences from level 7 switch (lvl) { case 0: block_time_ms = 53; prediction_type = PredictionType.Fixed; stereo_method = StereoMethod.Independent; max_partition_order = 6; break; case 1: prediction_type = PredictionType.Levinson; stereo_method = StereoMethod.Independent; window_function = WindowFunction.Bartlett; max_prediction_order = 8; max_partition_order = 6; break; case 2: stereo_method = StereoMethod.Independent; window_function = WindowFunction.Bartlett; max_partition_order = 6; break; case 3: stereo_method = StereoMethod.Estimate; window_function = WindowFunction.Bartlett; max_prediction_order = 8; break; case 4: stereo_method = StereoMethod.Estimate; window_function = WindowFunction.Bartlett; break; case 5: window_function = WindowFunction.Bartlett; break; case 6: stereo_method = StereoMethod.Estimate; break; case 7: break; case 8: estimation_depth = 2; min_fixed_order = 0; lpc_min_precision_search = 0; break; case 9: window_function = WindowFunction.Bartlett; max_prediction_order = 32; break; case 10: min_fixed_order = 0; max_fixed_order = 4; max_prediction_order = 32; //lpc_max_precision_search = 2; break; case 11: min_fixed_order = 0; max_fixed_order = 4; max_prediction_order = 32; estimation_depth = 5; //lpc_max_precision_search = 2; variable_block_size = 4; break; } return 0; } } }