using System; using System.Collections.Generic; using System.Text; using CUETools.Codecs; using CUETools.Parity; namespace CUETools.CDRepair { public class CDRepair : IAudioDest { protected int sampleCount; protected int finalSampleCount; protected Galois galois; protected RsDecode rs; protected Crc32 crc32; protected uint crc; protected int[] encodeGx; protected int stride; protected int laststride; protected int stridecount; protected int npar; public CDRepair(int finalSampleCount, int stride, int npar) { this.npar = npar; this.stride = stride; this.finalSampleCount = finalSampleCount; sampleCount = 0; galois = Galois16.instance; rs = new RsDecode16(npar, galois); crc32 = new Crc32(); //crc = 0xffffffff; encodeGx = galois.makeEncodeGxLog(npar); laststride = stride + (finalSampleCount * 2) % stride; stridecount = (finalSampleCount * 2) / stride - 2; // minus one for leadin and one for leadout if ((finalSampleCount * 2 + stride - 1) / stride + npar > galois.Max) throw new Exception("invalid stride"); } public CDRepair(CDRepair src) : this(src.finalSampleCount, src.stride, src.npar) { } public unsafe void Write(AudioBuffer sampleBuffer) { throw new Exception("unsupported"); } public unsafe void Close() { if (sampleCount != finalSampleCount) throw new Exception("sampleCount != finalSampleCount"); } public void Delete() { throw new Exception("unsupported"); } public int CompressionLevel { get { return 0; } set { } } public string Options { set { if (value == null || value == "") return; throw new Exception("Unsupported options " + value); } } public AudioPCMConfig PCM { get { return AudioPCMConfig.RedBook; } } public long FinalSampleCount { set { if (value < 0) // != _toc.Length? throw new Exception("invalid FinalSampleCount"); finalSampleCount = (int)value; } } public long BlockSize { set { throw new Exception("unsupported"); } } public string Path { get { throw new Exception("unsupported"); } } public int NPAR { get { return npar; } } public uint CRC { get { return crc32.Combine(0xffffffff, crc, stride * 2 * stridecount) ^ 0xffffffff; } } } public class CDRepairEncode : CDRepair { protected byte[] parity; protected ushort[,] syndrome; protected ushort[] leadin; protected ushort[] leadout; protected bool verify; protected bool encode; protected uint crcA, crcB; public CDRepairEncode(int finalSampleCount, int stride, int npar, bool verify, bool encode) : base (finalSampleCount, stride, npar) { this.verify = verify; this.encode = encode; parity = new byte[stride * npar * 2]; if (verify) { syndrome = new ushort[stride, npar]; leadin = new ushort[stride * 2]; leadout = new ushort[stride + laststride]; } else syndrome = new ushort[1, npar]; } private unsafe void ProcessStride(int currentStride, int currentPart, int count, ushort* data) { fixed (uint* crct = crc32.table) fixed (byte* bpar = parity) fixed (ushort* exp = galois.ExpTbl, log = galois.LogTbl, synptr = syndrome) fixed (int* gx = encodeGx) for (int pos = 0; pos < count; pos++) { ushort* par = (ushort*)bpar; int part = currentPart + pos; ushort* wr = ((ushort*)par) + part * npar; ushort dd = data[pos]; crc = (crc >> 8) ^ crct[(byte)(crc ^ dd)]; crc = (crc >> 8) ^ crct[(byte)(crc ^ (dd >> 8))]; if (verify) { ushort* syn = synptr + part * npar; syn[0] ^= dd; // wk += data for (int i = 1; i < npar; i++) syn[i] = (ushort)(dd ^ galois.mulExp(syn[i], i)); // wk = data + wk * α^i } int ib = wr[0] ^ dd; if (ib != 0) { ushort* myexp = exp + log[ib]; for (int i = 0; i < npar - 1; i++) wr[i] = (ushort)(wr[i + 1] ^ myexp[gx[i]]); wr[npar - 1] = myexp[gx[npar - 1]]; } else { for (int i = 0; i < npar - 1; i++) wr[i] = wr[i + 1]; wr[npar - 1] = 0; } } } private unsafe void ProcessStride8(int currentStride, int currentPart, int count, ushort* data) { fixed (uint* crct = crc32.table) fixed (byte* bpar = parity) fixed (ushort* exp = galois.ExpTbl, log = galois.LogTbl, synptr = syndrome) for (int pos = 0; pos < count; pos++) { ushort* par = (ushort*)bpar; int part = currentPart + pos; ushort* wr = par + part * 8; ushort dd = data[pos]; crc = (crc >> 8) ^ crct[(byte)(crc ^ dd)]; crc = (crc >> 8) ^ crct[(byte)(crc ^ (dd >> 8))]; if (encode) { int ib = wr[0] ^ dd; if (ib != 0) { ushort* myexp = exp + log[ib]; wr[0] = (ushort)(wr[1] ^ myexp[19483]); wr[1] = (ushort)(wr[2] ^ myexp[41576]); wr[2] = (ushort)(wr[3] ^ myexp[9460]); wr[3] = (ushort)(wr[4] ^ myexp[52075]); wr[4] = (ushort)(wr[5] ^ myexp[9467]); wr[5] = (ushort)(wr[6] ^ myexp[41590]); wr[6] = (ushort)(wr[7] ^ myexp[19504]); wr[7] = myexp[28]; } else { wr[0] = wr[1]; wr[1] = wr[2]; wr[2] = wr[3]; wr[3] = wr[4]; wr[4] = wr[5]; wr[5] = wr[6]; wr[6] = wr[7]; wr[7] = 0; } } // syn[i] += data[pos] * α^(n*i) if (verify && dd != 0) { int n = stridecount - currentStride; ushort* syn = synptr + part * 8; syn[0] ^= dd; int idx = log[dd]; idx += n; syn[1] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[2] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[3] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[4] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[5] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[6] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[7] ^= exp[(idx & 0xffff) + (idx >> 16)]; } } } private unsafe void ProcessStride16(int currentStride, int currentPart, int count, ushort* data) { fixed (uint* crct = crc32.table) fixed (byte* bpar = parity) fixed (ushort* exp = galois.ExpTbl, log = galois.LogTbl, synptr = syndrome) for (int pos = 0; pos < count; pos++) { ushort* par = (ushort*)bpar; int part = currentPart + pos; ushort* wr = par + part * 16; ushort dd = data[pos]; crc = (crc >> 8) ^ crct[(byte)(crc ^ dd)]; crc = (crc >> 8) ^ crct[(byte)(crc ^ (dd >> 8))]; int ib = wr[0] ^ dd; if (ib != 0) { ushort* myexp = exp + log[ib]; wr[0] = (ushort)(wr[1] ^ myexp[0x000059f1]); wr[1] = (ushort)(wr[2] ^ myexp[0x0000608f]); wr[2] = (ushort)(wr[3] ^ myexp[0x0000918b]); wr[3] = (ushort)(wr[4] ^ myexp[0x00004487]); wr[4] = (ushort)(wr[5] ^ myexp[0x0000a151]); wr[5] = (ushort)(wr[6] ^ myexp[0x0000c074]); wr[6] = (ushort)(wr[7] ^ myexp[0x00004178]); wr[7] = (ushort)(wr[8] ^ myexp[0x00004730]); wr[8] = (ushort)(wr[9] ^ myexp[0x00004187]); wr[9] = (ushort)(wr[10] ^ myexp[0x0000c092]); wr[10] = (ushort)(wr[11] ^ myexp[0x0000a17e]); wr[11] = (ushort)(wr[12] ^ myexp[0x000044c3]); wr[12] = (ushort)(wr[13] ^ myexp[0x000091d6]); wr[13] = (ushort)(wr[14] ^ myexp[0x000060e9]); wr[14] = (ushort)(wr[15] ^ myexp[0x00005a5a]); wr[15] = myexp[0x00000078]; } else { wr[0] = wr[1]; wr[1] = wr[2]; wr[2] = wr[3]; wr[3] = wr[4]; wr[4] = wr[5]; wr[5] = wr[6]; wr[6] = wr[7]; wr[7] = wr[8]; wr[8] = wr[9]; wr[9] = wr[10]; wr[10] = wr[11]; wr[11] = wr[12]; wr[12] = wr[13]; wr[13] = wr[14]; wr[14] = wr[15]; wr[15] = 0; } // syn[i] += data[pos] * α^(n*i) if (verify && dd != 0) { int n = stridecount - currentStride; ushort* syn = synptr + part * 16; syn[0] ^= dd; int idx = log[dd]; idx += n; syn[1] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[2] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[3] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[4] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[5] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[6] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[7] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[8] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[9] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[10] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[11] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[12] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[13] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[14] ^= exp[(idx & 0xffff) + (idx >> 16)]; idx += n; syn[15] ^= exp[(idx & 0xffff) + (idx >> 16)]; } } } new public unsafe void Write(AudioBuffer sampleBuffer) { sampleBuffer.Prepare(this); if ((sampleBuffer.ByteLength & 1) != 0) throw new Exception("never happens"); fixed (byte* bytes = sampleBuffer.Bytes) { int offs = 0; while (offs < sampleBuffer.Length) { int currentPart = (sampleCount * 2) % stride; int currentStride = (sampleCount * 2) / stride; // Process no more than there is in the buffer, and no more than up to a stride boundary. int copyCount = Math.Min((sampleBuffer.Length - offs) * 2, stride - currentPart); ushort* data = ((ushort*)bytes) + offs * 2; if (verify) { // remember CRC after leadin if (sampleCount * 2 == stride * 2) crcA = crc; // remember CRC before leadout if ((finalSampleCount - sampleCount) * 2 == stride + laststride) crcB = crc; if (currentStride < 2) for (int pos = 0; pos < copyCount; pos++) leadin[sampleCount * 2 + pos] = data[pos]; if (currentStride >= stridecount) for (int pos = 0; pos < copyCount; pos++) { int remaining = (finalSampleCount - sampleCount) * 2 - pos - 1; if (remaining < stride + laststride) leadout[remaining] = data[pos]; } } if (currentStride >= 1 && currentStride <= stridecount) { if (npar == 8) ProcessStride8(currentStride, currentPart, copyCount, data); else if (npar == 16) ProcessStride16(currentStride, currentPart, copyCount, data); else ProcessStride(currentStride, currentPart, copyCount, data); } sampleCount += copyCount >> 1; offs += copyCount >> 1; } } } public unsafe CDRepairFix VerifyParity(byte[] parity2, int actualOffset) { return VerifyParity(npar, parity2, 0, parity2.Length, actualOffset); } private unsafe uint OffsettedCRC(int actualOffset) { fixed (uint* crct = crc32.table) { // calculate leadin CRC uint crc0 = 0; for (int off = stride - 2 * actualOffset; off < 2 * stride; off++) { ushort dd = leadin[off]; crc0 = (crc0 >> 8) ^ crct[(byte)(crc0 ^ dd)]; crc0 = (crc0 >> 8) ^ crct[(byte)(crc0 ^ (dd >> 8))]; } // calculate leadout CRC uint crc2 = 0; for (int off = laststride + stride - 1; off >= laststride + 2 * actualOffset; off--) { ushort dd = leadout[off]; crc2 = (crc2 >> 8) ^ crct[(byte)(crc2 ^ dd)]; crc2 = (crc2 >> 8) ^ crct[(byte)(crc2 ^ (dd >> 8))]; } // calculate middle CRC uint crc1 = crc32.Combine(crcA, crcB, (stridecount - 2) * stride * 2); // calculate offsettedCRC as sum of 0xffffffff, crc0, crc1, crc2; return crc32.Combine( 0xffffffff, crc32.Combine( crc32.Combine( crc0, crc1, (stridecount - 2) * stride * 2), crc2, (stride - 2 * actualOffset) * 2), stridecount * stride * 2) ^ 0xffffffff; } } public unsafe bool FindOffset(int npar2, byte[] parity2, int pos, uint expectedCRC, out int actualOffset, out bool hasErrors) { if (npar2 != npar) throw new Exception("npar mismatch"); if (!verify) throw new Exception("verify was not enabled"); if (sampleCount != finalSampleCount) throw new Exception("sampleCount != finalSampleCount"); // find offset fixed (byte* par2ptr = &parity2[pos]) { ushort* par2 = (ushort*)par2ptr; int* _sigma = stackalloc int[npar]; int* _errpos = stackalloc int[npar]; bool foundOffset = false; for (int allowed_errors = 0; allowed_errors < npar / 2 && !foundOffset; allowed_errors++) { int part2 = 0; ushort* wr = par2 + part2 * npar; // We can only use offset if Abs(offset * 2) < stride, // else we might need to add/remove more than one sample // from syndrome calculations, and that would be too difficult // and will probably require longer leadin/leadout. for (int offset = 1 - stride / 2; offset < stride / 2; offset++) { int err = 0; int part = (part2 + stride - offset * 2) % stride; int* syn = stackalloc int[npar]; for (int i = 0; i < npar; i++) { int synI = syndrome[part, i]; // offset < 0 if (part < -offset * 2) { synI ^= galois.mulExp(leadin[stride + part], (i * (stridecount - 1)) % galois.Max); synI = leadout[laststride - part - 1] ^ galois.mulExp(synI, i); } // offset > 0 if (part >= stride - offset * 2) { synI = galois.divExp(synI ^ leadout[laststride + stride - part - 1], i); synI ^= galois.mulExp(leadin[part], (i * (stridecount - 1)) % galois.Max); } for (int j = 0; j < npar; j++) synI = wr[j] ^ galois.mulExp(synI, i); syn[i] = synI; err |= synI; } int err_count = err == 0 ? 0 : rs.calcSigmaMBM(_sigma, syn); if (err_count == allowed_errors && (err_count == 0 || rs.chienSearch(_errpos, stridecount + npar, err_count, _sigma))) { actualOffset = offset; hasErrors = err_count != 0 || OffsettedCRC(offset) != expectedCRC; return true; } } } } actualOffset = 0; hasErrors = true; return false; } public unsafe CDRepairFix VerifyParity(int npar2, byte[] parity2, int pos, int len, int actualOffset) { if (len != stride * npar * 2) throw new Exception("wrong size"); CDRepairFix fix = new CDRepairFix(this); fix.actualOffset = actualOffset; fix.correctableErrors = 0; fix.hasErrors = false; fix.canRecover = true; fix.sigma = new int[stride, npar / 2 + 2]; fix.omega = new int[stride, npar / 2 + 1]; fix.errpos = new int[stride, npar / 2]; fix.erroff = new int[stride, npar / 2]; fix.errors = new int[stride]; fixed (byte* par = &parity2[pos]) fixed (ushort* exp = galois.ExpTbl, log = galois.LogTbl) { int* syn = stackalloc int[npar]; int offset = fix.actualOffset; for (int part = 0; part < stride; part++) { int part2 = (part + offset * 2 + stride) % stride; ushort* wr = (ushort*)par + part2 * npar; int err = 0; for (int i = 0; i < npar; i++) { syn[i] = syndrome[part, i]; // offset < 0 if (part < -offset * 2) { syn[i] ^= galois.mulExp(leadin[stride + part], (i * (stridecount - 1)) % galois.Max); syn[i] = leadout[laststride - part - 1] ^ galois.mulExp(syn[i], i); } // offset > 0 if (part >= stride - offset * 2) { syn[i] = galois.divExp(syn[i] ^ leadout[laststride + stride - part - 1], i); syn[i] ^= galois.mulExp(leadin[part], (i * (stridecount - 1)) % galois.Max); } //syn[i] = galois.mulExp(syn[i], i * npar); for (int j = 0; j < npar; j++) syn[i] = wr[j] ^ galois.mulExp(syn[i], i); // wk = data + wk * α^i err |= syn[i]; } //for (int j = 0; j < npar; j++) // if (wr[j] != 0) // { // ushort* myexp = exp + log[wr[j]]; // syn[0] ^= wr[j]; // for (int i = 1; i < npar; i++) // syn[i] ^= myexp[(npar - j - 1) * i]; // } //for (int i = 0; i < npar; i++) // err |= syn[i]; if (err != 0) { fixed (int* s = &fix.sigma[part, 0], o = &fix.omega[part, 0], e = &fix.errpos[part, 0], f = &fix.erroff[part, 0]) { fix.errors[part] = rs.calcSigmaMBM(s, syn); fix.hasErrors = true; fix.correctableErrors += fix.errors[part]; if (fix.errors[part] <= 0 || !rs.chienSearch(e, stridecount + npar, fix.errors[part], s)) fix.canRecover = false; else { galois.mulPoly(o, s, syn, npar / 2 + 1, npar, npar); for (int i = 0; i < fix.errors[part]; i++) f[i] = galois.toPos(stridecount + npar, e[i]); } } } else fix.errors[part] = 0; } } return fix; } public byte[] Parity { get { return parity; } } } public class CDRepairFix : CDRepair { internal bool hasErrors = false, canRecover = true; internal int actualOffset = 0; internal int correctableErrors = 0; internal int[,] sigma; internal int[,] omega; internal int[,] errpos; internal int[,] erroff; internal int[] errors; public CDRepairFix(CDRepairEncode decode) : base(decode) { } new public unsafe void Write(AudioBuffer sampleBuffer) { sampleBuffer.Prepare(this); if ((sampleBuffer.ByteLength & 1) != 0) throw new Exception("never happens"); int firstPos = Math.Max(0, stride - sampleCount * 2 - ActualOffset * 2); int lastPos = Math.Min(sampleBuffer.ByteLength >> 1, (finalSampleCount - sampleCount) * 2 - laststride - ActualOffset * 2); fixed (byte* bytes = sampleBuffer.Bytes) fixed (uint* t = crc32.table) { ushort* data = (ushort*)bytes; for (int pos = firstPos; pos < lastPos; pos++) { int part = (sampleCount * 2 + pos) % stride; int nerrors = errors[part]; fixed (int* s = &sigma[part, 0], o = &omega[part, 0], f = &erroff[part, 0]) for (int i = 0; i < nerrors; i++) if (f[i] == (sampleCount * 2 + ActualOffset * 2 + pos) / stride - 1) data[pos] ^= (ushort)rs.doForney(nerrors, errpos[part, i], s, o); ushort dd = data[pos]; crc = (crc >> 8) ^ t[(byte)(crc ^ dd)]; crc = (crc >> 8) ^ t[(byte)(crc ^ (dd >> 8))]; } } sampleCount += sampleBuffer.Length; } public bool HasErrors { get { return hasErrors; } } public bool CanRecover { get { return canRecover; } } public int CorrectableErrors { get { return correctableErrors; } } public int ActualOffset { get { return actualOffset; } } } }