/** * CUETools.FLACCL: FLAC audio encoder using OpenCL * Copyright (c) 2010 Gregory S. Chudov * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _FLACCL_KERNEL_H_ #define _FLACCL_KERNEL_H_ #if defined(__Cedar__) || defined(__Redwood__) || defined(__Juniper__) || defined(__Cypress__) || defined(__CPU__) #define AMD #ifdef DEBUG #pragma OPENCL EXTENSION cl_amd_printf : enable #endif #ifdef __CPU__ #pragma OPENCL EXTENSION cl_amd_fp64 : enable #endif #define iclamp(a,b,c) clamp(a,b,c) #else #define iclamp(a,b,c) max(b,min(a,c)) #ifndef M_PI_F #define M_PI_F M_PI #endif #endif #pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics: enable #pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics: enable typedef enum { Constant = 0, Verbatim = 1, Fixed = 8, LPC = 32 } SubframeType; typedef struct { int residualOrder; // <= 32 int samplesOffs; int shift; int cbits; int size; int type; int obits; int blocksize; int best_index; int channel; int residualOffs; int wbits; int abits; int porder; int headerLen; int encodingOffset; } FLACCLSubframeData; typedef struct { FLACCLSubframeData data; int coefs[32]; // fixme: should be short? } FLACCLSubframeTask; __kernel void clWindowRectangle(__global float* window, int windowOffset) { window[get_global_id(0)] = 1.0f; } __kernel void clWindowFlattop(__global float* window, int windowOffset) { float p = M_PI_F * get_global_id(0) / (get_global_size(0) - 1); window[get_global_id(0)] = 1.0f - 1.93f * cos(2 * p) + 1.29f * cos(4 * p) - 0.388f * cos(6 * p) + 0.0322f * cos(8 * p); } __kernel void clWindowTukey(__global float* window, int windowOffset, float p) { int tid = get_global_id(0); int Np = (int)(p / 2.0f * get_global_size(0)) - 1; int Np2 = tid - (get_global_size(0) - Np - 1) + Np; int n = select(max(Np, Np2), tid, tid <= Np); window[tid] = 0.5f - 0.5f * cos(M_PI_F * n / Np); } __kernel void clStereoDecorr( __global int4 *samples, __global int4 *src, int offset ) { int pos = get_global_id(0); int4 s = src[pos]; int4 x = (s << 16) >> 16; int4 y = s >> 16; samples[pos] = x; samples[1 * offset + pos] = y; samples[2 * offset + pos] = (x + y) >> 1; samples[3 * offset + pos] = x - y; } __kernel void clChannelDecorr2( __global int4 *samples, __global int4 *src, int offset ) { int pos = get_global_id(0); int4 s = src[pos]; samples[pos] = (s << 16) >> 16; samples[offset + pos] = s >> 16; } //__kernel void clChannelDecorr( // int *samples, // short *src, // int offset //) //{ // int pos = get_global_id(0); // if (pos < offset) // samples[get_group_id(1) * offset + pos] = src[pos * get_num_groups(1) + get_group_id(1)]; //} #define __ffs(a) (32 - clz(a & (-a))) //#define __ffs(a) (33 - clz(~a & (a - 1))) #ifdef __CPU__ __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clFindWastedBits( __global FLACCLSubframeTask *tasks, __global int *samples, int tasksPerChannel ) { __global FLACCLSubframeTask* ptask = &tasks[get_group_id(0) * tasksPerChannel]; int w = 0, a = 0; for (int pos = 0; pos < ptask->data.blocksize; pos ++) { int smp = samples[ptask->data.samplesOffs + pos]; w |= smp; a |= smp ^ (smp >> 31); } w = max(0,__ffs(w) - 1); a = 32 - clz(a) - w; for (int i = 0; i < tasksPerChannel; i++) { ptask[i].data.wbits = w; ptask[i].data.abits = a; //ptask[i].data.size = ptask[i].data.obits * ptask[i].data.blocksize; } } #else __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clFindWastedBits( __global FLACCLSubframeTask *tasks, __global int *samples, int tasksPerChannel ) { __local int abits[GROUP_SIZE]; __local int wbits[GROUP_SIZE]; __local FLACCLSubframeData task; int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0) * tasksPerChannel].data))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int w = 0, a = 0; for (int pos = tid; pos < task.blocksize; pos += GROUP_SIZE) { int smp = samples[task.samplesOffs + pos]; w |= smp; a |= smp ^ (smp >> 31); } wbits[tid] = w; abits[tid] = a; barrier(CLK_LOCAL_MEM_FENCE); for (int s = GROUP_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { wbits[tid] |= wbits[tid + s]; abits[tid] |= abits[tid + s]; } barrier(CLK_LOCAL_MEM_FENCE); } w = max(0,__ffs(wbits[0]) - 1); a = 32 - clz(abits[0]) - w; if (tid < tasksPerChannel) { int i = get_group_id(0) * tasksPerChannel + tid; tasks[i].data.wbits = w; tasks[i].data.abits = a; //tasks[i].data.size = tasks[i].data.obits * tasks[i].data.blocksize; } } #endif #ifdef __CPU__ #define TEMPBLOCK 128 #define STORE_AC(ro, val) if (ro <= MAX_ORDER) pout[ro] = val; #define STORE_AC4(ro, val) STORE_AC(ro*4+0, val##ro.x) STORE_AC(ro*4+1, val##ro.y) STORE_AC(ro*4+2, val##ro.z) STORE_AC(ro*4+3, val##ro.w) // get_num_groups(0) == number of tasks // get_num_groups(1) == number of windows __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clComputeAutocor( __global float *output, __global const int *samples, __global const float *window, __global FLACCLSubframeTask *tasks, const int taskCount // tasks per block ) { FLACCLSubframeData task = tasks[get_group_id(0) * taskCount].data; int len = task.blocksize; int windowOffs = get_group_id(1) * len; float data[TEMPBLOCK + MAX_ORDER + 3]; double4 ac0 = 0.0, ac1 = 0.0, ac2 = 0.0, ac3 = 0.0, ac4 = 0.0, ac5 = 0.0, ac6 = 0.0, ac7 = 0.0, ac8 = 0.0; for (int pos = 0; pos < len; pos += TEMPBLOCK) { for (int tid = 0; tid < TEMPBLOCK + MAX_ORDER + 3; tid++) data[tid] = tid < len - pos ? samples[task.samplesOffs + pos + tid] * window[windowOffs + pos + tid] : 0.0f; for (int j = 0; j < TEMPBLOCK;) { float4 temp0 = 0.0f, temp1 = 0.0f, temp2 = 0.0f, temp3 = 0.0f, temp4 = 0.0f, temp5 = 0.0f, temp6 = 0.0f, temp7 = 0.0f, temp8 = 0.0f; for (int k = 0; k < 32; k++) { float d0 = data[j]; temp0 += d0 * vload4(0, &data[j]); temp1 += d0 * vload4(1, &data[j]); #if MAX_ORDER >= 8 temp2 += d0 * vload4(2, &data[j]); #if MAX_ORDER >= 12 temp3 += d0 * vload4(3, &data[j]); #if MAX_ORDER >= 16 temp4 += d0 * vload4(4, &data[j]); temp5 += d0 * vload4(5, &data[j]); temp6 += d0 * vload4(6, &data[j]); temp7 += d0 * vload4(7, &data[j]); temp8 += d0 * vload4(8, &data[j]); #endif #endif #endif j++; } ac0 += convert_double4(temp0); ac1 += convert_double4(temp1); #if MAX_ORDER >= 8 ac2 += convert_double4(temp2); #if MAX_ORDER >= 12 ac3 += convert_double4(temp3); #if MAX_ORDER >= 16 ac4 += convert_double4(temp4); ac5 += convert_double4(temp5); ac6 += convert_double4(temp6); ac7 += convert_double4(temp7); ac8 += convert_double4(temp8); #endif #endif #endif } } __global float * pout = &output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1)]; STORE_AC4(0, ac) STORE_AC4(1, ac) STORE_AC4(2, ac) STORE_AC4(3, ac) STORE_AC4(4, ac) STORE_AC4(5, ac) STORE_AC4(6, ac) STORE_AC4(7, ac) STORE_AC4(8, ac) } #else // get_num_groups(0) == number of tasks // get_num_groups(1) == number of windows __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clComputeAutocor( __global float *output, __global const int *samples, __global const float *window, __global FLACCLSubframeTask *tasks, const int taskCount // tasks per block ) { __local float data[GROUP_SIZE * 2]; __local FLACCLSubframeData task; const int tid = get_local_id(0); // fetch task data if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(tasks + taskCount * get_group_id(0)))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.blocksize; int windowOffs = get_group_id(1) * bs; // if (tid < GROUP_SIZE / 4) // { //float4 dd = 0.0f; //if (tid * 4 < bs) // dd = vload4(tid, window + windowOffs) * convert_float4(vload4(tid, samples + task.samplesOffs)); //vstore4(dd, tid, &data[0]); // } data[tid] = 0.0f; // This simpler code doesn't work somehow!!! //data[tid] = tid < bs ? samples[task.samplesOffs + tid] * window[windowOffs + tid] : 0.0f; const int THREADS_FOR_ORDERS = MAX_ORDER < 8 ? 8 : MAX_ORDER < 16 ? 16 : MAX_ORDER < 32 ? 32 : 64; float corr = 0.0f; float corr1 = 0.0f; for (int pos = 0; pos < bs; pos += GROUP_SIZE) { // fetch samples float nextData = pos + tid < bs ? samples[task.samplesOffs + pos + tid] * window[windowOffs + pos + tid] : 0.0f; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); int lag = tid & (THREADS_FOR_ORDERS - 1); int tid1 = tid + GROUP_SIZE - lag; #ifdef AMD float4 res = 0.0f; for (int i = 0; i < THREADS_FOR_ORDERS / 4; i++) res += vload4(i, &data[tid1 - lag]) * vload4(i, &data[tid1]); corr += res.x + res.y + res.w + res.z; #else float res = 0.0f; for (int i = 0; i < THREADS_FOR_ORDERS; i++) res += data[tid1 - lag + i] * data[tid1 + i]; corr += res; #endif if ((pos & (GROUP_SIZE * 15)) == 0) { corr1 += corr; corr = 0.0f; } barrier(CLK_LOCAL_MEM_FENCE); data[tid] = nextData; } data[tid] = corr + corr1; barrier(CLK_LOCAL_MEM_FENCE); for (int i = GROUP_SIZE / 2; i >= THREADS_FOR_ORDERS; i >>= 1) { if (tid < i) data[tid] += data[tid + i]; barrier(CLK_LOCAL_MEM_FENCE); } if (tid <= MAX_ORDER) output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1) + tid] = data[tid]; } #endif #ifdef __CPU__ __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clComputeLPC( __global float *pautoc, __global float *lpcs, int windowCount ) { int lpcOffs = (get_group_id(0) + get_group_id(1) * windowCount) * (MAX_ORDER + 1) * 32; int autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1); volatile double ldr[32]; volatile double gen0[32]; volatile double gen1[32]; volatile double err[32]; __global float* autoc = pautoc + autocOffs; for (int i = 0; i < MAX_ORDER; i++) { gen0[i] = gen1[i] = autoc[i + 1]; ldr[i] = 0.0; } // Compute LPC using Schur and Levinson-Durbin recursion double error = autoc[0]; for (int order = 0; order < MAX_ORDER; order++) { // Schur recursion double reff = -gen1[0] / error; //error += gen1[0] * reff; // Equivalent to error *= (1 - reff * reff); error *= (1 - reff * reff); for (int j = 0; j < MAX_ORDER - 1 - order; j++) { gen1[j] = gen1[j + 1] + reff * gen0[j]; gen0[j] = gen1[j + 1] * reff + gen0[j]; } err[order] = error; // Levinson-Durbin recursion ldr[order] = reff; for (int j = 0; j < order / 2; j++) { double tmp = ldr[j]; ldr[j] += reff * ldr[order - 1 - j]; ldr[order - 1 - j] += reff * tmp; } if (0 != (order & 1)) ldr[order / 2] += ldr[order / 2] * reff; // Output coeffs for (int j = 0; j <= order; j++) lpcs[lpcOffs + order * 32 + j] = -ldr[order - j]; } // Output prediction error estimates for (int j = 0; j < MAX_ORDER; j++) lpcs[lpcOffs + MAX_ORDER * 32 + j] = err[j]; } #else __kernel __attribute__((reqd_work_group_size(32, 1, 1))) void clComputeLPC( __global float *autoc, __global float *lpcs, int windowCount ) { __local struct { volatile float ldr[32]; volatile float gen1[32]; volatile float error[32]; volatile float autoc[33]; } shared; const int tid = get_local_id(0);// + get_local_id(1) * 32; int autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1); int lpcOffs = autocOffs * 32; if (get_local_id(0) <= MAX_ORDER) shared.autoc[get_local_id(0)] = autoc[autocOffs + get_local_id(0)]; if (get_local_id(0) + get_local_size(0) <= MAX_ORDER) shared.autoc[get_local_id(0) + get_local_size(0)] = autoc[autocOffs + get_local_id(0) + get_local_size(0)]; barrier(CLK_LOCAL_MEM_FENCE); // Compute LPC using Schur and Levinson-Durbin recursion float gen0 = shared.gen1[get_local_id(0)] = shared.autoc[get_local_id(0)+1]; shared.ldr[get_local_id(0)] = 0.0f; float error = shared.autoc[0]; #ifdef DEBUGPRINT1 int magic = shared.autoc[0] == 177286873088.0f; if (magic && get_local_id(0) <= MAX_ORDER) printf("autoc[%d] == %f\n", get_local_id(0), shared.autoc[get_local_id(0)]); #endif barrier(CLK_LOCAL_MEM_FENCE); for (int order = 0; order < MAX_ORDER; order++) { // Schur recursion float reff = -shared.gen1[0] / error; //error += shared.gen1[0] * reff; // Equivalent to error *= (1 - reff * reff); error *= (1 - reff * reff); float gen1; if (get_local_id(0) < MAX_ORDER - 1 - order) { gen1 = shared.gen1[get_local_id(0) + 1] + reff * gen0; gen0 += shared.gen1[get_local_id(0) + 1] * reff; } barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < MAX_ORDER - 1 - order) shared.gen1[get_local_id(0)] = gen1; #ifdef DEBUGPRINT1 if (magic && get_local_id(0) == 0) printf("order == %d, reff == %f, error = %f\n", order, reff, error); if (magic && get_local_id(0) <= MAX_ORDER) printf("gen[%d] == %f, %f\n", get_local_id(0), gen0, gen1); #endif // Store prediction error if (get_local_id(0) == 0) shared.error[order] = error; // Levinson-Durbin recursion float ldr = shared.ldr[get_local_id(0)]; barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < order) shared.ldr[order - 1 - get_local_id(0)] += reff * ldr; if (get_local_id(0) == order) shared.ldr[get_local_id(0)] += reff; barrier(CLK_LOCAL_MEM_FENCE); // Output coeffs if (get_local_id(0) <= order) lpcs[lpcOffs + order * 32 + get_local_id(0)] = -shared.ldr[order - get_local_id(0)]; //if (get_local_id(0) <= order + 1 && fabs(-shared.ldr[0]) > 3000) // printf("coef[%d] == %f, autoc == %f, error == %f\n", get_local_id(0), -shared.ldr[order - get_local_id(0)], shared.autoc[get_local_id(0)], shared.error[get_local_id(0)]); } barrier(CLK_LOCAL_MEM_FENCE); // Output prediction error estimates if (get_local_id(0) < MAX_ORDER) lpcs[lpcOffs + MAX_ORDER * 32 + get_local_id(0)] = shared.error[get_local_id(0)]; } #endif #ifdef __CPU__ __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clQuantizeLPC( __global FLACCLSubframeTask *tasks, __global float*lpcs, int taskCount, // tasks per block int taskCountLPC, // tasks per set of coeffs (<= 32) int minprecision, int precisions ) { int bs = tasks[get_group_id(1) * taskCount].data.blocksize; int abits = tasks[get_group_id(1) * taskCount].data.abits; int lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32; float error[MAX_ORDER]; int best_orders[MAX_ORDER]; // Load prediction error estimates based on Akaike's Criteria for (int tid = 0; tid < MAX_ORDER; tid++) { error[tid] = bs * log(lpcs[lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log(bs); best_orders[tid] = tid; } // Select best orders for (int i = 0; i < MAX_ORDER && i < taskCountLPC; i++) { for (int j = i + 1; j < MAX_ORDER; j++) { if (error[best_orders[j]] < error[best_orders[i]]) { int tmp = best_orders[j]; best_orders[j] = best_orders[i]; best_orders[i] = tmp; } } } // Quantization for (int i = 0; i < taskCountLPC; i ++) { int order = best_orders[i >> precisions]; int tmpi = 0; for (int tid = 0; tid <= order; tid ++) { float lpc = lpcs[lpcOffs + order * 32 + tid]; // get 15 bits of each coeff int c = convert_int_rte(lpc * (1 << 15)); // remove sign bits tmpi |= c ^ (c >> 31); } // choose precision //int cbits = max(3, min(10, 5 + (abits >> 1))); // - convert_int_rte(shared.PE[order - 1]) int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (bs <= 2304) - (bs <= 1152) - (bs <= 576), abits), clz(order) + 1 - abits)); // calculate shift based on precision and number of leading zeroes in coeffs int shift = max(0,min(15, clz(tmpi) - 18 + cbits)); int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i; tmpi = 0; for (int tid = 0; tid <= order; tid ++) { float lpc = lpcs[lpcOffs + order * 32 + tid]; // quantize coeffs with given shift int c = convert_int_rte(clamp(lpc * (1 << shift), -1 << (cbits - 1), 1 << (cbits - 1))); // remove sign bits tmpi |= c ^ (c >> 31); tasks[taskNo].coefs[tid] = c; } // calculate actual number of bits (+1 for sign) cbits = 1 + 32 - clz(tmpi); // output shift, cbits, ro tasks[taskNo].data.shift = shift; tasks[taskNo].data.cbits = cbits; tasks[taskNo].data.residualOrder = order + 1; } } #else __kernel __attribute__((reqd_work_group_size(32, 1, 1))) void clQuantizeLPC( __global FLACCLSubframeTask *tasks, __global float*lpcs, int taskCount, // tasks per block int taskCountLPC, // tasks per set of coeffs (<= 32) int minprecision, int precisions ) { __local struct { FLACCLSubframeData task; volatile int index[64]; volatile float error[64]; volatile int maxcoef[32]; volatile int maxcoef2[32]; } shared; const int tid = get_local_id(0); // fetch task data if (tid < sizeof(shared.task) / sizeof(int)) ((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1) * taskCount))[tid]; barrier(CLK_LOCAL_MEM_FENCE); const int lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32; // Select best orders based on Akaike's Criteria shared.index[tid] = min(MAX_ORDER - 1, tid); shared.error[tid] = shared.task.blocksize * 64 + tid; shared.index[32 + tid] = MAX_ORDER - 1; shared.error[32 + tid] = shared.task.blocksize * 64 + tid + 32; shared.maxcoef[tid] = 0; shared.maxcoef2[tid] = 0; // Load prediction error estimates if (tid < MAX_ORDER) shared.error[tid] = shared.task.blocksize * log(lpcs[lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log((float)shared.task.blocksize); //shared.error[get_local_id(0)] = shared.task.blocksize * log(lpcs[lpcOffs + MAX_ORDER * 32 + get_local_id(0)]) + get_local_id(0) * 0.30f * (shared.task.abits + 1) * log(shared.task.blocksize); barrier(CLK_LOCAL_MEM_FENCE); // Sort using bitonic sort for(int size = 2; size < 64; size <<= 1){ //Bitonic merge int ddd = (tid & (size / 2)) == 0; for(int stride = size / 2; stride > 0; stride >>= 1){ int pos = 2 * tid - (tid & (stride - 1)); float e0 = shared.error[pos]; float e1 = shared.error[pos + stride]; int i0 = shared.index[pos]; int i1 = shared.index[pos + stride]; barrier(CLK_LOCAL_MEM_FENCE); if ((e0 >= e1) == ddd) { shared.error[pos] = e1; shared.error[pos + stride] = e0; shared.index[pos] = i1; shared.index[pos + stride] = i0; } barrier(CLK_LOCAL_MEM_FENCE); } } //ddd == dir for the last bitonic merge step { for(int stride = 32; stride > 0; stride >>= 1){ //barrier(CLK_LOCAL_MEM_FENCE); int pos = 2 * tid - (tid & (stride - 1)); float e0 = shared.error[pos]; float e1 = shared.error[pos + stride]; int i0 = shared.index[pos]; int i1 = shared.index[pos + stride]; barrier(CLK_LOCAL_MEM_FENCE); if (e0 >= e1) { shared.error[pos] = e1; shared.error[pos + stride] = e0; shared.index[pos] = i1; shared.index[pos + stride] = i0; } barrier(CLK_LOCAL_MEM_FENCE); } } //shared.index[tid] = MAX_ORDER - 1; //barrier(CLK_LOCAL_MEM_FENCE); // Quantization for (int i = 0; i < taskCountLPC; i ++) { int order = shared.index[i >> precisions]; float lpc = tid <= order ? lpcs[lpcOffs + order * 32 + tid] : 0.0f; // get 15 bits of each coeff int coef = convert_int_rte(lpc * (1 << 15)); // remove sign bits atom_or(shared.maxcoef + i, coef ^ (coef >> 31)); barrier(CLK_LOCAL_MEM_FENCE); //SUM32(shared.tmpi,tid,|=); // choose precision //int cbits = max(3, min(10, 5 + (shared.task.abits >> 1))); // - convert_int_rte(shared.PE[order - 1]) int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (shared.task.blocksize <= 2304) - (shared.task.blocksize <= 1152) - (shared.task.blocksize <= 576), shared.task.abits), clz(order) + 1 - shared.task.abits)); // calculate shift based on precision and number of leading zeroes in coeffs int shift = max(0,min(15, clz(shared.maxcoef[i]) - 18 + cbits)); //cbits = 13; //shift = 15; //if (shared.task.abits + 32 - clz(order) < shift //int shift = max(0,min(15, (shared.task.abits >> 2) - 14 + clz(shared.tmpi[tid & ~31]) + ((32 - clz(order))>>1))); // quantize coeffs with given shift coef = convert_int_rte(clamp(lpc * (1 << shift), (float)(-1 << (cbits - 1)), (float)(1 << (cbits - 1)))); // error correction //shared.tmp[tid] = (tid != 0) * (shared.arp[tid - 1]*(1 << shared.task.shift) - shared.task.coefs[tid - 1]); //shared.task.coefs[tid] = max(-(1 << (shared.task.cbits - 1)), min((1 << (shared.task.cbits - 1))-1, convert_int_rte((shared.arp[tid]) * (1 << shared.task.shift) + shared.tmp[tid]))); // remove sign bits atom_or(shared.maxcoef2 + i, coef ^ (coef >> 31)); barrier(CLK_LOCAL_MEM_FENCE); // calculate actual number of bits (+1 for sign) cbits = 1 + 32 - clz(shared.maxcoef2[i]); // output shift, cbits and output coeffs int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i; if (tid == 0) tasks[taskNo].data.shift = shift; if (tid == 0) tasks[taskNo].data.cbits = cbits; if (tid == 0) tasks[taskNo].data.residualOrder = order + 1; if (tid <= order) tasks[taskNo].coefs[tid] = coef; } } #endif #ifdef __CPU__ inline int calc_residual(__global int *ptr, int * coefs, int ro) { int sum = 0; for (int i = 0; i < ro; i++) sum += ptr[i] * coefs[i]; return sum; } #define ENCODE_N(cro,action) for (int pos = cro; pos < bs; pos ++) { \ int t = (data[pos] - (calc_residual(data + pos - cro, task.coefs, cro) >> task.data.shift)) >> task.data.wbits; \ action; \ } #define SWITCH_N(action) \ switch (ro) \ { \ case 0: ENCODE_N(0, action) break; \ case 1: ENCODE_N(1, action) break; \ case 2: ENCODE_N(2, action) /*if (task.coefs[0] == -1 && task.coefs[1] == 2) ENCODE_N(2, 2 * ptr[1] - ptr[0], action) else*/ break; \ case 3: ENCODE_N(3, action) break; \ case 4: ENCODE_N(4, action) break; \ case 5: ENCODE_N(5, action) break; \ case 6: ENCODE_N(6, action) break; \ case 7: ENCODE_N(7, action) break; \ case 8: ENCODE_N(8, action) break; \ case 9: ENCODE_N(9, action) break; \ case 10: ENCODE_N(10, action) break; \ case 11: ENCODE_N(11, action) break; \ case 12: ENCODE_N(12, action) break; \ default: ENCODE_N(ro, action) \ } __kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(1, 1, 1))) void clEstimateResidual( __global int*samples, __global int*selectedTasks, __global FLACCLSubframeTask *tasks ) { int selectedTask = selectedTasks[get_group_id(0)]; FLACCLSubframeTask task = tasks[selectedTask]; int ro = task.data.residualOrder; int bs = task.data.blocksize; #define EPO 6 int len[1 << EPO]; // blocksize / 64!!!! __global int *data = &samples[task.data.samplesOffs]; // for (int i = ro; i < 32; i++) //task.coefs[i] = 0; for (int i = 0; i < 1 << EPO; i++) len[i] = 0; SWITCH_N((t = clamp(t, -0x7fffff, 0x7fffff), len[pos >> (12 - EPO)] += (t << 1) ^ (t >> 31))) int total = 0; for (int i = 0; i < 1 << EPO; i++) { int res = min(0x7fffff,len[i]); int k = clamp(clz(1 << (12 - EPO)) - clz(res), 0, 14); // 27 - clz(res) == clz(16) - clz(res) == log2(res / 16) total += (k << (12 - EPO)) + (res >> k); } int partLen = min(0x7ffffff, total) + (bs - ro); int obits = task.data.obits - task.data.wbits; tasks[selectedTask].data.size = min(obits * bs, task.data.type == Fixed ? ro * obits + 6 + (4 * 1/2) + partLen : task.data.type == LPC ? ro * obits + 4 + 5 + ro * task.data.cbits + 6 + (4 * 1/2)/* << porder */ + partLen : task.data.type == Constant ? obits * select(1, bs, partLen != bs - ro) : obits * bs); } #else __kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clEstimateResidual( __global int*samples, __global int*selectedTasks, __global FLACCLSubframeTask *tasks ) { __local float data[GROUP_SIZE * 2 + 32]; __local FLACCLSubframeTask task; __local int psum[64]; __local float fcoef[32]; __local int selectedTask; if (get_local_id(0) == 0) selectedTask = selectedTasks[get_group_id(0)]; barrier(CLK_LOCAL_MEM_FENCE); const int tid = get_local_id(0); if (tid < sizeof(task)/sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[selectedTask]))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int ro = task.data.residualOrder; int bs = task.data.blocksize; if (tid < 32) //fcoef[tid] = select(0.0f, - ((float) task.coefs[tid]) / (1 << task.data.shift), tid < ro); fcoef[tid] = tid < MAX_ORDER && tid + ro - MAX_ORDER >= 0 ? - ((float) task.coefs[tid + ro - MAX_ORDER]) / (1 << task.data.shift) : 0.0f; if (tid < 64) psum[tid] = 0; data[tid] = 0.0f; // need to initialize "extra" data, because NaNs can produce wierd results even when multipled by zero extra coefs if (tid < 32) data[GROUP_SIZE * 2 + tid] = 0.0f; int partOrder = max(1, clz(64) - clz(bs - 1) + 1); barrier(CLK_LOCAL_MEM_FENCE); #ifdef AMD float4 fc0 = vload4(0, &fcoef[0]); float4 fc1 = vload4(1, &fcoef[0]); #if MAX_ORDER > 8 float4 fc2 = vload4(2, &fcoef[0]); #endif #endif for (int pos = 0; pos < bs; pos += GROUP_SIZE) { // fetch samples int offs = pos + tid; float nextData = offs < bs ? samples[task.data.samplesOffs + offs] >> task.data.wbits : 0.0f; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); // compute residual __local float* dptr = &data[tid + GROUP_SIZE - MAX_ORDER]; float4 sum #ifdef AMD = fc0 * vload4(0, dptr) + fc1 * vload4(1, dptr) #else = vload4(0, &fcoef[0]) * vload4(0, dptr) + vload4(1, &fcoef[0]) * vload4(1, dptr) #endif #if MAX_ORDER > 8 #ifdef AMD + fc2 * vload4(2, dptr) #else + vload4(2, &fcoef[0]) * vload4(2, dptr) #endif #if MAX_ORDER > 12 + vload4(3, &fcoef[0]) * vload4(3, dptr) #if MAX_ORDER > 16 + vload4(4, &fcoef[0]) * vload4(4, dptr) + vload4(5, &fcoef[0]) * vload4(5, dptr) + vload4(6, &fcoef[0]) * vload4(6, dptr) + vload4(7, &fcoef[0]) * vload4(7, dptr) #endif #endif #endif ; int t = convert_int_rte(nextData + sum.x + sum.y + sum.z + sum.w); barrier(CLK_LOCAL_MEM_FENCE); #ifdef AMD data[tid] = nextData; // ensure we're within frame bounds t = select(0, t, offs >= ro && offs < bs); // overflow protection t = iclamp(t, -0x7fffff, 0x7fffff); // convert to unsigned atom_add(&psum[min(63,offs >> partOrder)], (t << 1) ^ (t >> 31)); #else // ensure we're within frame bounds t = select(0, t, offs >= ro && offs < bs); // overflow protection t = iclamp(t, -0x7fffff, 0x7fffff); // convert to unsigned data[tid] = (t << 1) ^ (t >> 31); barrier(CLK_LOCAL_MEM_FENCE); int ps = (1 << partOrder) - 1; for (int l = 1 << (partOrder - 1); l > 0; l >>= 1) { if ((tid & ps) < l) data[tid] += data[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } if ((tid & ps) == 0) psum[min(63,offs >> partOrder)] += data[tid]; data[tid] = nextData; #endif } // calculate rice partition bit length for every (1 << partOrder) samples barrier(CLK_LOCAL_MEM_FENCE); if (tid < 64) { int k = iclamp(clz(1 << partOrder) - clz(psum[tid]), 0, 14); // 27 - clz(res) == clz(16) - clz(res) == log2(res / 16) psum[tid] = (k << partOrder) + (psum[tid] >> k); } barrier(CLK_LOCAL_MEM_FENCE); for (int l = 32; l > 0; l >>= 1) { if (tid < l) psum[tid] += psum[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) { int pl = psum[0] + (bs - ro); int obits = task.data.obits - task.data.wbits; int len = min(obits * task.data.blocksize, task.data.type == Fixed ? task.data.residualOrder * obits + 6 + (4 * 1/2) + pl : task.data.type == LPC ? task.data.residualOrder * obits + 4 + 5 + task.data.residualOrder * task.data.cbits + 6 + (4 * 1/2)/* << porder */ + pl : task.data.type == Constant ? obits * select(1, task.data.blocksize, pl != task.data.blocksize - task.data.residualOrder) : obits * task.data.blocksize); tasks[selectedTask].data.size = len; } } #endif __kernel void clSelectStereoTasks( __global FLACCLSubframeTask *tasks, __global int*selectedTasks, __global int*selectedTasksSecondEstimate, __global int*selectedTasksBestMethod, int taskCount, int selectedCount ) { int best_size[4]; for (int ch = 0; ch < 4; ch++) { int first_no = selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount]; int best_len = tasks[first_no].data.size; for (int i = 1; i < selectedCount; i++) { int task_no = selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount + i]; int task_len = tasks[task_no].data.size; best_len = min(task_len, best_len); } best_size[ch] = best_len; } int bitsBest = best_size[2] + best_size[3]; // MidSide int chMask = 2 | (3 << 2); int bits = best_size[3] + best_size[1]; chMask = select(chMask, 3 | (1 << 2), bits < bitsBest); // RightSide bitsBest = min(bits, bitsBest); bits = best_size[0] + best_size[3]; chMask = select(chMask, 0 | (3 << 2), bits < bitsBest); // LeftSide bitsBest = min(bits, bitsBest); bits = best_size[0] + best_size[1]; chMask = select(chMask, 0 | (1 << 2), bits < bitsBest); // LeftRight bitsBest = min(bits, bitsBest); for (int ich = 0; ich < 2; ich++) { int ch = select(chMask & 3, chMask >> 2, ich > 0); int roffs = tasks[(get_global_id(0) * 4 + ich) * taskCount].data.samplesOffs; int nonSelectedNo = 0; for (int i = 0; i < taskCount; i++) { int no = (get_global_id(0) * 4 + ch) * taskCount + i; selectedTasksBestMethod[(get_global_id(0) * 2 + ich) * taskCount + i] = no; tasks[no].data.residualOffs = roffs; int selectedFound = 0; for(int selectedNo = 0; selectedNo < selectedCount; selectedNo++) selectedFound |= (selectedTasks[(get_global_id(0) * 4 + ch) * selectedCount + selectedNo] == no); if (!selectedFound) selectedTasksSecondEstimate[(get_global_id(0) * 2 + ich) * (taskCount - selectedCount) + nonSelectedNo++] = no; } } } __kernel void clChooseBestMethod( __global FLACCLSubframeTask *tasks_out, __global FLACCLSubframeTask *tasks, __global int*selectedTasks, int taskCount ) { int best_no = selectedTasks[get_global_id(0) * taskCount]; int best_len = tasks[best_no].data.size; for (int i = 1; i < taskCount; i++) { int task_no = selectedTasks[get_global_id(0) * taskCount + i]; int task_len = tasks[task_no].data.size; best_no = select(best_no, task_no, task_len < best_len); best_len = min(best_len, task_len); } tasks_out[get_global_id(0)] = tasks[best_no]; } #ifdef DO_PARTITIONS #ifdef __CPU__ // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clEncodeResidual( __global int *residual, __global int *samples, __global FLACCLSubframeTask *tasks ) { FLACCLSubframeTask task = tasks[get_group_id(0)]; int bs = task.data.blocksize; int ro = task.data.residualOrder; __global int *data = &samples[task.data.samplesOffs]; SWITCH_N(residual[task.data.residualOffs + pos] = t); } #else // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clEncodeResidual( __global int *output, __global int *samples, __global FLACCLSubframeTask *tasks ) { __local FLACCLSubframeTask task; __local int data[GROUP_SIZE * 2 + MAX_ORDER]; const int tid = get_local_id(0); if (get_local_id(0) < sizeof(task) / sizeof(int)) ((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)]; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.data.blocksize; int ro = task.data.residualOrder; if (tid < 32 && tid >= ro) task.coefs[tid] = 0; barrier(CLK_LOCAL_MEM_FENCE); #ifdef AMD int4 cptr0 = vload4(0, &task.coefs[0]); int4 cptr1 = vload4(1, &task.coefs[0]); #if MAX_ORDER > 8 int4 cptr2 = vload4(2, &task.coefs[0]); #endif #endif data[tid] = 0; for (int pos = 0; pos < bs; pos += GROUP_SIZE) { // fetch samples int off = pos + tid; int nextData = off < bs ? samples[task.data.samplesOffs + off] >> task.data.wbits : 0; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); // compute residual __local int* dptr = &data[tid + GROUP_SIZE - ro]; int4 sum #ifdef AMD = cptr0 * vload4(0, dptr) + cptr1 * vload4(1, dptr) #else = vload4(0, &task.coefs[0]) * vload4(0, dptr) + vload4(1, &task.coefs[0]) * vload4(1, dptr) #endif #if MAX_ORDER > 8 #ifdef AMD + cptr2 * vload4(2, dptr) #else + vload4(2, &task.coefs[0]) * vload4(2, dptr) #endif #if MAX_ORDER > 12 + vload4(3, &task.coefs[0]) * vload4(3, dptr) #if MAX_ORDER > 16 + vload4(4, &task.coefs[0]) * vload4(4, dptr) + vload4(5, &task.coefs[0]) * vload4(5, dptr) + vload4(6, &task.coefs[0]) * vload4(6, dptr) + vload4(7, &task.coefs[0]) * vload4(7, dptr) #endif #endif #endif ; if (off >= ro && off < bs) output[task.data.residualOffs + off] = data[tid + GROUP_SIZE] - ((sum.x + sum.y + sum.z + sum.w) >> task.data.shift); barrier(CLK_LOCAL_MEM_FENCE); data[tid] = nextData; } } #endif #ifdef __CPU__ __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clCalcPartition( __global int *partition_lengths, __global int *residual, __global FLACCLSubframeTask *tasks, int max_porder, // <= 8 int psize // == task.blocksize >> max_porder? ) { FLACCLSubframeTask task = tasks[get_group_id(1)]; int bs = task.data.blocksize; int ro = task.data.residualOrder; //int psize = bs >> max_porder; __global int *pl = partition_lengths + (1 << (max_porder + 1)) * get_group_id(1); for (int p = 0; p < (1 << max_porder); p++) pl[p] = 0; for (int pos = ro; pos < bs; pos ++) { int t = residual[task.data.residualOffs + pos]; // overflow protection t = clamp(t, -0x7fffff, 0x7fffff); // convert to unsigned t = (t << 1) ^ (t >> 31); pl[pos / psize] += t; } } #else // get_group_id(0) == partition index / (GROUP_SIZE / 16) // get_group_id(1) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clCalcPartition( __global int *partition_lengths, __global int *residual, __global FLACCLSubframeTask *tasks, int max_porder, // <= 8 int psize // == task.blocksize >> max_porder? ) { __local int pl[(GROUP_SIZE / 8)][15]; __local FLACCLSubframeData task; const int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(1)]))[tid]; if (tid < (GROUP_SIZE / 8)) { for (int k = 0; k <= 14; k++) pl[tid][k] = 0; } barrier(CLK_LOCAL_MEM_FENCE); int start = get_group_id(0) * psize * (GROUP_SIZE / 16); int end = min(start + psize * (GROUP_SIZE / 16), task.blocksize); for (int offs = start + tid; offs < end; offs += GROUP_SIZE) { // fetch residual int s = (offs >= task.residualOrder && offs < end) ? residual[task.residualOffs + offs] : 0; // overflow protection s = iclamp(s, -0x7fffff, 0x7fffff); // convert to unsigned s = (s << 1) ^ (s >> 31); // calc number of unary bits for each residual sample with each rice paramater int part = (offs - start) / psize + (tid & 1) * (GROUP_SIZE / 16); for (int k = 0; k <= 14; k++) atom_add(&pl[part][k], s >> k); //pl[part][k] += s >> k; } barrier(CLK_LOCAL_MEM_FENCE); int part = get_group_id(0) * (GROUP_SIZE / 16) + tid; if (tid < (GROUP_SIZE / 16) && part < (1 << max_porder)) { for (int k = 0; k <= 14; k++) { // output length const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1)); int plen = pl[tid][k] + pl[tid + (GROUP_SIZE / 16)][k]; partition_lengths[pos + part] = min(0x7fffff, plen) + (psize - select(0, task.residualOrder, part == 0)) * (k + 1); // if (get_group_id(1) == 0) //printf("pl[%d][%d] == %d\n", k, part, min(0x7fffff, pl[k][tid]) + (psize - task.residualOrder * (part == 0)) * (k + 1)); } } } #endif #ifdef __CPU__ // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clCalcPartition16( __global int *partition_lengths, __global int *residual, __global int *samples, __global FLACCLSubframeTask *tasks, int max_porder // <= 8 ) { FLACCLSubframeTask task = tasks[get_global_id(0)]; int bs = task.data.blocksize; int ro = task.data.residualOrder; __global int *data = &samples[task.data.samplesOffs]; __global int *pl = partition_lengths + (1 << (max_porder + 1)) * get_global_id(0); for (int p = 0; p < (1 << max_porder); p++) pl[p] = 0; //__global int *rptr = residual + task.data.residualOffs; //SWITCH_N((rptr[pos] = t, pl[pos >> 4] += (t << 1) ^ (t >> 31))); SWITCH_N((residual[task.data.residualOffs + pos] = t, t = clamp(t, -0x7fffff, 0x7fffff), t = (t << 1) ^ (t >> 31), pl[pos >> 4] += t)); } #else // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clCalcPartition16( __global int *partition_lengths, __global int *residual, __global int *samples, __global FLACCLSubframeTask *tasks, int max_porder // <= 8 ) { __local FLACCLSubframeTask task; __local int data[GROUP_SIZE * 2]; __local int res[GROUP_SIZE]; const int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.data.blocksize; int ro = task.data.residualOrder; if (tid >= ro && tid < 32) task.coefs[tid] = 0; int k = tid & 15; int x = tid / 16; barrier(CLK_LOCAL_MEM_FENCE); int4 cptr0 = vload4(0, &task.coefs[0]); data[tid] = 0; for (int pos = 0; pos < bs; pos += GROUP_SIZE) { int offs = pos + tid; // fetch samples int nextData = offs < bs ? samples[task.data.samplesOffs + offs] >> task.data.wbits : 0; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); // compute residual __local int* dptr = &data[tid + GROUP_SIZE - ro]; int4 sum = cptr0 * vload4(0, dptr) #if MAX_ORDER > 4 + vload4(1, &task.coefs[0]) * vload4(1, dptr) #if MAX_ORDER > 8 + vload4(2, &task.coefs[0]) * vload4(2, dptr) #if MAX_ORDER > 12 + vload4(3, &task.coefs[0]) * vload4(3, dptr) #if MAX_ORDER > 16 + vload4(4, &task.coefs[0]) * vload4(4, dptr) + vload4(5, &task.coefs[0]) * vload4(5, dptr) + vload4(6, &task.coefs[0]) * vload4(6, dptr) + vload4(7, &task.coefs[0]) * vload4(7, dptr) #endif #endif #endif #endif ; int s = select(0, nextData - ((sum.x + sum.y + sum.z + sum.w) >> task.data.shift), offs >= ro && offs < bs); // output residual if (offs < bs) residual[task.data.residualOffs + offs] = s; //int s = select(0, residual[task.data.residualOffs + offs], offs >= ro && offs < bs); s = iclamp(s, -0x7fffff, 0x7fffff); // convert to unsigned res[tid] = (s << 1) ^ (s >> 31); // for (int k = 0; k < 15; k++) atom_add(&pl[x][k], s >> k); barrier(CLK_LOCAL_MEM_FENCE); data[tid] = nextData; // calc number of unary bits for each residual sample with each rice paramater __local int * chunk = &res[x << 4]; sum = (vload4(0,chunk) >> k) + (vload4(1,chunk) >> k) + (vload4(2,chunk) >> k) + (vload4(3,chunk) >> k); s = sum.x + sum.y + sum.z + sum.w; const int lpos = (15 << (max_porder + 1)) * get_group_id(0) + (k << (max_porder + 1)) + offs / 16; if (k <= 14 && offs < bs) partition_lengths[lpos] = min(0x7fffff, s) + (16 - select(0, ro, offs < 16)) * (k + 1); // if (task.data.blocksize == 16 && x == 0 && k <= 14) // printf("[%d] = %d = s:%d + %d * (k:%d + 1), ro=%d, offs=%d, lpos=%d\n", k, partition_lengths[lpos], s, (16 - select(0, ro, offs < 16)), k, ro, offs, lpos); } } #endif #ifdef __CPU__ // Sums partition lengths for a certain k == get_group_id(0) // get_group_id(0) == k // get_group_id(1) == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clSumPartition( __global int* partition_lengths, int max_porder ) { if (get_group_id(0) != 0) // ignore k != 0 return; __global int * sums = partition_lengths + (1 << (max_porder + 1)) * get_group_id(1); for (int i = max_porder - 1; i >= 0; i--) { for (int j = 0; j < (1 << i); j++) { sums[(2 << i) + j] = sums[2 * j] + sums[2 * j + 1]; // if (get_group_id(1) == 0) //printf("[%d][%d]: %d + %d == %d\n", i, j, sums[2 * j], sums[2 * j + 1], sums[2 * j] + sums[2 * j + 1]); } sums += 2 << i; } } #else // Sums partition lengths for a certain k == get_group_id(0) // Requires 128 threads // get_group_id(0) == k // get_group_id(1) == task index __kernel __attribute__((reqd_work_group_size(128, 1, 1))) void clSumPartition( __global int* partition_lengths, int max_porder ) { __local int data[256]; // max_porder <= 8, data length <= 1 << 9. const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (get_group_id(0) << (max_porder + 1)); // fetch partition lengths int2 pl = get_local_id(0) * 2 < (1 << max_porder) ? vload2(get_local_id(0),&partition_lengths[pos]) : 0; data[get_local_id(0)] = pl.x + pl.y; barrier(CLK_LOCAL_MEM_FENCE); int in_pos = (get_local_id(0) << 1); int out_pos = (1 << (max_porder - 1)) + get_local_id(0); for (int bs = 1 << (max_porder - 2); bs > 0; bs >>= 1) { if (get_local_id(0) < bs) data[out_pos] = data[in_pos] + data[in_pos + 1]; in_pos += bs << 1; out_pos += bs; barrier(CLK_LOCAL_MEM_FENCE); } if (get_local_id(0) < (1 << max_porder)) partition_lengths[pos + (1 << max_porder) + get_local_id(0)] = data[get_local_id(0)]; if (get_local_size(0) + get_local_id(0) < (1 << max_porder)) partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = data[get_local_size(0) + get_local_id(0)]; } #endif #ifdef __CPU__ // Finds optimal rice parameter for each partition. // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clFindRiceParameter( __global FLACCLSubframeTask *tasks, __global int* rice_parameters, __global int* partition_lengths, int max_porder ) { __global FLACCLSubframeTask* task = tasks + get_group_id(0); const int tid = get_local_id(0); int lim = (2 << max_porder) - 1; //int psize = task->data.blocksize >> max_porder; int bs = task->data.blocksize; int ro = task->data.residualOrder; for (int offs = 0; offs < lim; offs ++) { int pl = partition_lengths[(1 << (max_porder + 1)) * get_group_id(0) + offs]; int porder = 31 - clz(lim - offs); int ps = (bs >> porder) - select(0, ro, offs == lim + 1 - (2 << porder)); //if (ps <= 0) // printf("max_porder == %d, porder == %d, ro == %d\n", max_porder, porder, ro); int k = clamp(31 - clz(pl / max(1, ps)), 0, 14); int plk = ps * (k + 1) + (pl >> k); // output rice parameter rice_parameters[(get_group_id(0) << (max_porder + 2)) + offs] = k; // output length rice_parameters[(get_group_id(0) << (max_porder + 2)) + (1 << (max_porder + 1)) + offs] = plk; } } #else // Finds optimal rice parameter for each partition. // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clFindRiceParameter( __global FLACCLSubframeTask *tasks, __global int* rice_parameters, __global int* partition_lengths, int max_porder ) { for (int offs = get_local_id(0); offs < (2 << max_porder); offs += GROUP_SIZE) { const int pos = (15 << (max_porder + 1)) * get_group_id(0) + offs; int best_l = partition_lengths[pos]; int best_k = 0; for (int k = 1; k <= 14; k++) { int l = partition_lengths[pos + (k << (max_porder + 1))]; best_k = select(best_k, k, l < best_l); best_l = min(best_l, l); } // output rice parameter rice_parameters[(get_group_id(0) << (max_porder + 2)) + offs] = best_k; // output length rice_parameters[(get_group_id(0) << (max_porder + 2)) + (1 << (max_porder + 1)) + offs] = best_l; } } #endif #ifdef __CPU__ // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(1, 1, 1))) void clFindPartitionOrder( __global int *residual, __global int* best_rice_parameters, __global FLACCLSubframeTask *tasks, __global int* rice_parameters, int max_porder ) { __global FLACCLSubframeTask* task = tasks + get_group_id(0); int partlen[9]; for (int p = 0; p < 9; p++) partlen[p] = 0; // fetch partition lengths const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder); int lim = (2 << max_porder) - 1; for (int offs = 0; offs < lim; offs ++) { int len = rice_parameters[pos + offs]; int porder = 31 - clz(lim - offs); partlen[porder] += len; } int best_length = partlen[0] + 4; int best_porder = 0; for (int porder = 1; porder <= max_porder; porder++) { int length = (4 << porder) + partlen[porder]; best_porder = select(best_porder, porder, length < best_length); best_length = min(best_length, length); } best_length = (4 << best_porder) + task->data.blocksize - task->data.residualOrder; int best_psize = task->data.blocksize >> best_porder; int start = task->data.residualOffs + task->data.residualOrder; int fin = task->data.residualOffs + best_psize; for (int p = 0; p < (1 << best_porder); p++) { int k = rice_parameters[pos - (2 << best_porder) + p]; best_length += k * (fin - start); for (int i = start; i < fin; i++) { int t = residual[i]; best_length += ((t << 1) ^ (t >> 31)) >> k; } start = fin; fin += best_psize; } int obits = task->data.obits - task->data.wbits; task->data.porder = best_porder; task->data.headerLen = task->data.type == Constant ? obits : task->data.type == Verbatim ? obits * task->data.blocksize : task->data.type == Fixed ? task->data.residualOrder * obits + 6 : task->data.type == LPC ? task->data.residualOrder * obits + 6 + 4 + 5 + task->data.residualOrder * task->data.cbits : 0; task->data.size = task->data.headerLen + ((task->data.type == Fixed || task->data.type == LPC) ? best_length : 0); if (task->data.size >= obits * task->data.blocksize) { task->data.headerLen = task->data.size = obits * task->data.blocksize; task->data.type = Verbatim; } for (int offs = 0; offs < (1 << best_porder); offs ++) best_rice_parameters[(get_group_id(0) << max_porder) + offs] = rice_parameters[pos - (2 << best_porder) + offs]; } #else // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clFindPartitionOrder( __global int *residual, __global int* best_rice_parameters, __global FLACCLSubframeTask *tasks, __global int* rice_parameters, int max_porder ) { __local int partlen[16]; __local FLACCLSubframeData task; const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder); if (get_local_id(0) < sizeof(task) / sizeof(int)) ((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)]; if (get_local_id(0) < 16) partlen[get_local_id(0)] = 0; barrier(CLK_LOCAL_MEM_FENCE); // fetch partition lengths int lim = (2 << max_porder) - 1; for (int offs = get_local_id(0); offs < lim; offs += GROUP_SIZE) { int len = rice_parameters[pos + offs]; int porder = 31 - clz(lim - offs); atom_add(&partlen[porder], len); } barrier(CLK_LOCAL_MEM_FENCE); int best_length = partlen[0] + 4; int best_porder = 0; for (int porder = 1; porder <= max_porder; porder++) { int length = (4 << porder) + partlen[porder]; best_porder = select(best_porder, porder, length < best_length); best_length = min(best_length, length); } if (get_local_id(0) == 0) { task.porder = best_porder; int obits = task.obits - task.wbits; task.headerLen = task.type == Fixed ? task.residualOrder * obits + 6 : task.type == LPC ? task.residualOrder * obits + 6 + 4 + 5 + task.residualOrder * task.cbits : task.type == Constant ? obits : /* task.type == Verbatim ? */ obits * task.blocksize; task.size = task.headerLen + select(0, best_length, task.type == Fixed || task.type == LPC); if (task.size >= obits * task.blocksize) { task.headerLen = task.size = obits * task.blocksize; task.type = Verbatim; } } barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < sizeof(task) / sizeof(int)) ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)] = ((__local int*)&task)[get_local_id(0)]; for (int offs = get_local_id(0); offs < (1 << best_porder); offs += GROUP_SIZE) best_rice_parameters[(get_group_id(0) << max_porder) + offs] = rice_parameters[pos - (2 << best_porder) + offs]; // FIXME: should be bytes? } #endif #ifdef DO_RICE #ifdef __CPU__ typedef struct BitWriter_t { __global int *buffer; unsigned int bit_buf; int bit_left; int buf_ptr; } BitWriter; inline void writebits(BitWriter *bw, int bits, int v) { uint val = ((uint)v) & ((1 << bits) - 1); if (bits < bw->bit_left) { bw->bit_buf = (bw->bit_buf << bits) | val; bw->bit_left -= bits; } else { // if (bits >= 32) printf("\n\n\n\n-------------------------\n\n\n"); unsigned int bb = (bw->bit_buf << bw->bit_left) | (val >> (bits - bw->bit_left)); bw->buffer[bw->buf_ptr++] = (bb >> 24) | ((bb >> 8) & 0xff00) | ((bb << 8) & 0xff0000) | ((bb << 24) & 0xff000000); bw->bit_left += (32 - bits); bw->bit_buf = val; // bw->bit_buf = val & ((1 << (32 - bw->bit_left)) - 1); } } inline void flush(BitWriter *bw) { if (bw->bit_left < 32) writebits(bw, bw->bit_left, 0); } #endif inline int len_utf8(int n) { int bts = 31 - clz(n); if (bts < 7) return 8; return 8 * ((bts + 4) / 5); } // get_global_id(0) * channels == task index __kernel void clCalcOutputOffsets( __global int *residual, __global int *samples, __global FLACCLSubframeTask *tasks, int channels, int frameCount, int firstFrame ) { int offset = 0; for (int iFrame = 0; iFrame < frameCount; iFrame++) { //printf("len_utf8(%d) == %d\n", firstFrame + iFrame, len_utf8(firstFrame + iFrame)); offset += 15 + 1 + 4 + 4 + 4 + 3 + 1 + len_utf8(firstFrame + iFrame) // + 8-16 // custom block size // + 8-16 // custom sample rate ; int bs = tasks[iFrame * channels].data.blocksize; //public static readonly int[] flac_blocksizes = new int[15] { 0, 192, 576, 1152, 2304, 4608, 0, 0, 256, 512, 1024, 2048, 4096, 8192, 16384 }; if (bs != 4096 && bs != 4608) // TODO: check all other standard sizes offset += select(8, 16, bs >= 256); // assert (offset % 8) == 0 offset += 8; for (int ch = 0; ch < channels; ch++) { __global FLACCLSubframeTask* task = tasks + iFrame * channels + ch; offset += 8 + task->data.wbits; task->data.encodingOffset = offset + task->data.headerLen; offset += task->data.size; } offset = (offset + 7) & ~7; offset += 16; } } // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void clRiceEncoding( __global int *residual, __global int *samples, __global int* best_rice_parameters, __global FLACCLSubframeTask *tasks, __global int* output, int max_porder ) { #ifdef __CPU__ __global FLACCLSubframeTask* task = tasks + get_group_id(0); if (task->data.type == Fixed || task->data.type == LPC) { int ro = task->data.residualOrder; int bs = task->data.blocksize; int porder = task->data.porder; int psize = bs >> porder; BitWriter bw; bw.buffer = output; bw.buf_ptr = task->data.encodingOffset / 32; bw.bit_left = 32 - (task->data.encodingOffset & 31); bw.bit_buf = 0; //if (get_group_id(0) == 0) printf("%d\n", offs); int res_cnt = psize - ro; // residual int j = ro; __global int * kptr = &best_rice_parameters[get_group_id(0) << max_porder]; for (int p = 0; p < (1 << porder); p++) { int k = kptr[p]; writebits(&bw, 4, k); //if (get_group_id(0) == 0) printf("[%x] ", k); //if (get_group_id(0) == 0) printf("(%x) ", bw.bit_buf); if (p == 1) res_cnt = psize; int cnt = min(res_cnt, bs - j); for (int i = 0; i < cnt; i++) { int v = residual[task->data.residualOffs + j + i]; v = (v << 1) ^ (v >> 31); // write quotient in unary int q = (v >> k) + 1; int bits = k + q; while (bits > 31) { int b = min(bits - 31, 31); if (b < bw.bit_left) { bw.bit_buf <<= b; bw.bit_left -= b; } else { unsigned int bb = bw.bit_buf << bw.bit_left; bw.bit_buf = 0; bw.bit_left += (32 - b); bw.buffer[bw.buf_ptr++] = (bb >> 24) | ((bb >> 8) & 0xff00) | ((bb << 8) & 0xff0000) | ((bb << 24) & 0xff000000); } bits -= b; } unsigned int val = (unsigned int)((v & ((1 << k) - 1)) | (1 << k)); if (bits < bw.bit_left) { bw.bit_buf = (bw.bit_buf << bits) | val; bw.bit_left -= bits; } else { unsigned int bb = (bw.bit_buf << bw.bit_left) | (val >> (bits - bw.bit_left)); bw.bit_buf = val; bw.bit_left += (32 - bits); bw.buffer[bw.buf_ptr++] = (bb >> 24) | ((bb >> 8) & 0xff00) | ((bb << 8) & 0xff0000) | ((bb << 24) & 0xff000000); } ////if (get_group_id(0) == 0) printf("%x ", v); //writebits(&bw, (v >> k) + 1, 1); ////if (get_group_id(0) == 0) printf("(%x) ", bw.bit_buf); //writebits(&bw, k, v); ////if (get_group_id(0) == 0) printf("(%x) ", bw.bit_buf); } j += cnt; } //if (bw.buf_ptr * 32 + 32 - bw.bit_left != task->data.encodingOffset - task->data.headerLen + task->data.size) // printf("bit length mismatch: encodingOffset == %d, headerLen == %d, size == %d, so should be %d, but is %d\n", // task->data.encodingOffset, task->data.headerLen, task->data.size, // task->data.encodingOffset - task->data.headerLen + task->data.size, // bw.buf_ptr * 32 + 32 - bw.bit_left // ); //if (get_group_id(0) == 0) printf("\n"); flush(&bw); } #else __local FLACCLSubframeData task; __local int riceparams[256]; __local int mypos[GROUP_SIZE]; __local unsigned int data[GROUP_SIZE]; __local int start; int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid]; barrier(CLK_LOCAL_MEM_FENCE); for (int offs = tid; offs < (1 << task.porder); offs += GROUP_SIZE) riceparams[offs] = best_rice_parameters[(get_group_id(0) << max_porder) + offs]; if (tid == 0) start = task.encodingOffset; data[tid] = 0; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.blocksize; int partlen = bs >> task.porder; for (int pos = 0; pos < bs; pos += GROUP_SIZE) { int offs = pos + tid; int v = offs < bs ? residual[task.residualOffs + offs] : 0; int k = offs < bs ? riceparams[offs / partlen] : 0; int pstart = offs == task.residualOrder || (offs % partlen) == 0; v = (v << 1) ^ (v >> 31); int mylen = select(0, (v >> k) + 1 + k + select(0, 4, pstart), offs >= task.residualOrder && offs < bs); mypos[tid] = mylen; barrier(CLK_LOCAL_MEM_FENCE); // Inclusive scan(+) for (int offset = 1; offset < GROUP_SIZE; offset <<= 1) { int t = tid >= offset ? mypos[tid - offset] : 0; barrier(CLK_LOCAL_MEM_FENCE); mypos[tid] += t; barrier(CLK_LOCAL_MEM_FENCE); } // make it exclusive //if ((get_global_id(0) == 64 || get_global_id(0) == 63) && pos == 0) // printf("v=%x,k=%d,mylen=%d,mypos=%d,pstart=%d,partlen=%d,start=%d\n", v, k, mylen, mypos[tid-1], pstart, partlen, start); //barrier(CLK_LOCAL_MEM_FENCE); mypos[tid] += start; int start32 = start / 32; barrier(CLK_LOCAL_MEM_FENCE); //if ((get_global_id(0) == 64 || get_global_id(0) == 63) && pos == 0) // printf("v=%x,k=%d,mylen=%d,mypos=%d,pstart=%d,partlen=%d\n", v, k, mylen, mypos[tid], pstart, partlen); if (pstart && mylen) { int kpos = mypos[tid] - mylen; int kpos0 = (kpos >> 5) - start32; int kpos1 = kpos & 31; unsigned int kval = k << 28; unsigned int kval0 = kval >> kpos1; unsigned int kval1 = select(0, kval << (32 - kpos1), kpos1); atom_or(&data[kpos0], kval0); atom_or(&data[kpos0 + 1], kval1); } int qpos = mypos[tid] - k - 1; int qpos0 = (qpos >> 5) - start32; int qpos1 = qpos & 31; unsigned int qval = select(0, (1U << 31) | (v << (31 - k)), mylen); unsigned int qval0 = qval >> qpos1; unsigned int qval1= select(0, qval << (32 - qpos1), qpos1); atom_or(&data[qpos0], qval0); atom_or(&data[qpos0 + 1], qval1); if (tid == GROUP_SIZE - 1) start = mypos[tid]; //if (get_group_id(0) == 0 && pos == 0) // printf("[%d] == %d\n", tid, mypos[tid]); //if (get_group_id(0) == 0 && pos == 0) // printf("%d == %d\n", (((qpos % 32) / 8) * 16 + 7 - qpos % 32), (((qpos << 1) & 48) + 7 - qpos & 31)); barrier(CLK_LOCAL_MEM_FENCE); unsigned int bb = data[tid]; if ((start32 + tid) * 32 <= start) output[start32 + tid] = (bb >> 24) | ((bb >> 8) & 0xff00) | ((bb << 8) & 0xff0000) | ((bb << 24) & 0xff000000); //if (get_group_id(0) == 0 && pos == 0 && bb != 0) // printf("[%08x] == %08X\n", 0x2dc8 + (tid + start32) * 4, data[tid]); int remainder = data[start / 32 - start32]; barrier(CLK_LOCAL_MEM_FENCE); data[tid] = select(0, remainder, tid == 0); //if (start / 32 - start32 > GROUP_SIZE) // printf("buffer overflow: %d > %d\n", start / 32 - start32, GROUP_SIZE); } // if (tid == 0 && start != task.encodingOffset - task.headerLen + task.size) //printf("size mismatch: %d != %d\n", start, task.encodingOffset - task.headerLen + task.size); #endif } #endif /* DO_RICE */ #endif /* DO_PARTITIONS */ #endif