using System; using System.Collections.Generic; namespace CUETools.Codecs { unsafe public class LpcSubframeInfo { public LpcSubframeInfo() { autocorr_section_values = new double[lpc.MAX_LPC_SECTIONS, lpc.MAX_LPC_ORDER + 1]; autocorr_section_orders = new int[lpc.MAX_LPC_SECTIONS]; } // public LpcContext[] lpc_ctx; public double[,] autocorr_section_values; public int[] autocorr_section_orders; //public int obits; public void Reset() { for (int sec = 0; sec < autocorr_section_orders.Length; sec++) autocorr_section_orders[sec] = 0; } } unsafe public struct LpcWindowSection { public enum SectionType { Zero, One, Data, Glue }; public int m_start; public int m_end; public SectionType m_type; public int m_id; public LpcWindowSection(int end) { m_id = -1; m_start = 0; m_end = end; m_type = SectionType.Data; } public void setData(int start, int end) { m_id = -1; m_start = start; m_end = end; m_type = SectionType.Data; } public void setOne(int start, int end) { m_id = -1; m_start = start; m_end = end; m_type = SectionType.One; } public void setGlue(int start) { m_id = -1; m_start = start; m_end = start; m_type = SectionType.Glue; } public void setZero(int start, int end) { m_id = -1; m_start = start; m_end = end; m_type = SectionType.Zero; } unsafe public static void Detect(int _windowcount, float* window_segment, int stride, int sz, LpcWindowSection* sections) { int section_id = 0; var boundaries = new List(); var types = new LpcWindowSection.SectionType[_windowcount, lpc.MAX_LPC_SECTIONS * 2]; for (int x = 0; x < sz; x++) { for (int i = 0; i < _windowcount; i++) { float w = window_segment[i * stride + x]; types[i, boundaries.Count] = boundaries.Count >= lpc.MAX_LPC_SECTIONS * 2 - 2 ? LpcWindowSection.SectionType.Data : w == 0.0 ? LpcWindowSection.SectionType.Zero : w == 1.0 ? LpcWindowSection.SectionType.One : LpcWindowSection.SectionType.Data; } bool isBoundary = false; for (int i = 0; i < _windowcount; i++) { isBoundary |= boundaries.Count == 0 || types[i, boundaries.Count - 1] != types[i, boundaries.Count]; } if (isBoundary) boundaries.Add(x); } boundaries.Add(sz); var ones = new int[boundaries.Count - 1]; // Reconstruct segments list. for (int i = 0; i < _windowcount; i++) { int secs = 0; for (int j = 0; j < boundaries.Count - 1; j++) { if (types[i, j] == LpcWindowSection.SectionType.Zero) { if (secs > 0 && sections[i * lpc.MAX_LPC_SECTIONS + secs - 1].m_end == boundaries[j] && sections[i * lpc.MAX_LPC_SECTIONS + secs - 1].m_type == LpcWindowSection.SectionType.Zero) { sections[i * lpc.MAX_LPC_SECTIONS + secs - 1].m_end = boundaries[j + 1]; continue; } sections[i * lpc.MAX_LPC_SECTIONS + secs++].setZero(boundaries[j], boundaries[j + 1]); continue; } if (types[i, j] == LpcWindowSection.SectionType.Data || secs + 1 >= lpc.MAX_LPC_SECTIONS || (boundaries[j + 1] - boundaries[j] < lpc.MAX_LPC_ORDER)) { if (secs > 0 && sections[i * lpc.MAX_LPC_SECTIONS + secs - 1].m_end == boundaries[j] && sections[i * lpc.MAX_LPC_SECTIONS + secs - 1].m_type == LpcWindowSection.SectionType.Data) { sections[i * lpc.MAX_LPC_SECTIONS + secs - 1].m_end = boundaries[j + 1]; continue; } sections[i * lpc.MAX_LPC_SECTIONS + secs++].setData(boundaries[j], boundaries[j + 1]); continue; } if (secs > 0 && sections[i * lpc.MAX_LPC_SECTIONS + secs - 1].m_end == boundaries[j] && sections[i * lpc.MAX_LPC_SECTIONS + secs - 1].m_type == LpcWindowSection.SectionType.One) sections[i * lpc.MAX_LPC_SECTIONS + secs++].setGlue(boundaries[j]); sections[i * lpc.MAX_LPC_SECTIONS + secs++].setOne(boundaries[j], boundaries[j + 1]); ones[j] |= 1 << i; } while (secs < lpc.MAX_LPC_SECTIONS) sections[i * lpc.MAX_LPC_SECTIONS + secs++].setZero(sz, sz); } for (int j = 0; j < boundaries.Count - 1; j++) { if (j > 0 && ones[j - 1] == ones[j]) { for (int i = 0; i < _windowcount; i++) { for (int sec = 0; sec < lpc.MAX_LPC_SECTIONS; sec++) if (sections[i * lpc.MAX_LPC_SECTIONS + sec].m_type == LpcWindowSection.SectionType.Glue && sections[i * lpc.MAX_LPC_SECTIONS + sec].m_start == boundaries[j]) { sections[i * lpc.MAX_LPC_SECTIONS + sec - 1].m_end = sections[i * lpc.MAX_LPC_SECTIONS + sec + 1].m_end; for (int sec1 = sec; sec1 + 2 < lpc.MAX_LPC_SECTIONS; sec1++) sections[i * lpc.MAX_LPC_SECTIONS + sec1] = sections[i * lpc.MAX_LPC_SECTIONS + sec1 + 2]; } } continue; } if ((ones[j] & (ones[j] - 1)) != 0 && section_id < lpc.MAX_LPC_SECTIONS) { for (int i = 0; i < _windowcount; i++) for (int sec = 0; sec < lpc.MAX_LPC_SECTIONS; sec++) if (sections[i * lpc.MAX_LPC_SECTIONS + sec].m_type == LpcWindowSection.SectionType.One && sections[i * lpc.MAX_LPC_SECTIONS + sec].m_start == boundaries[j]) { sections[i * lpc.MAX_LPC_SECTIONS + sec].m_id = section_id; } section_id++; } } } } /// /// Context for LPC coefficients calculation and order estimation /// unsafe public class LpcContext { public LpcContext() { coefs = new int[lpc.MAX_LPC_ORDER]; reflection_coeffs = new double[lpc.MAX_LPC_ORDER]; prediction_error = new double[lpc.MAX_LPC_ORDER]; autocorr_values = new double[lpc.MAX_LPC_ORDER + 1]; best_orders = new int[lpc.MAX_LPC_ORDER]; done_lpcs = new uint[lpc.MAX_LPC_PRECISIONS]; } /// /// Reset to initial (blank) state /// public void Reset() { autocorr_order = 0; for (int iPrecision = 0; iPrecision < lpc.MAX_LPC_PRECISIONS; iPrecision++) done_lpcs[iPrecision] = 0; } /// /// Calculate autocorrelation data and reflection coefficients. /// Can be used to incrementaly compute coefficients for higher orders, /// because it caches them. /// /// Maximum order /// Samples pointer /// Block size /// Window function public void GetReflection(LpcSubframeInfo subframe, int order, int* samples, float* window, LpcWindowSection* sections, bool large) { if (autocorr_order > order) return; fixed (double* reff = reflection_coeffs, autoc = autocorr_values, err = prediction_error) { for (int i = autocorr_order; i <= order; i++) autoc[i] = 0; int prev = 0; for (int section = 0; section < lpc.MAX_LPC_SECTIONS; section++) { if (sections[section].m_type == LpcWindowSection.SectionType.Zero) { prev = 0; continue; } if (sections[section].m_type == LpcWindowSection.SectionType.Data) { int next = section + 1 < lpc.MAX_LPC_SECTIONS && sections[section + 1].m_type == LpcWindowSection.SectionType.One ? 1 : 0; lpc.compute_autocorr(samples + sections[section].m_start, window + sections[section].m_start, sections[section].m_end - sections[section].m_start, autocorr_order, order, autoc, prev, next); } else if (sections[section].m_type == LpcWindowSection.SectionType.Glue) lpc.compute_autocorr_glue(samples + sections[section].m_start, autocorr_order, order, autoc); else if (sections[section].m_type == LpcWindowSection.SectionType.One) { if (sections[section].m_id >= 0) { if (subframe.autocorr_section_orders[sections[section].m_id] <= order) { fixed (double* autocsec = &subframe.autocorr_section_values[sections[section].m_id, 0]) { for (int i = subframe.autocorr_section_orders[sections[section].m_id]; i <= order; i++) autocsec[i] = 0; if (large) lpc.compute_autocorr_windowless_large(samples + sections[section].m_start, sections[section].m_end - sections[section].m_start, subframe.autocorr_section_orders[sections[section].m_id], order, autocsec); else lpc.compute_autocorr_windowless(samples + sections[section].m_start, sections[section].m_end - sections[section].m_start, subframe.autocorr_section_orders[sections[section].m_id], order, autocsec); } subframe.autocorr_section_orders[sections[section].m_id] = order + 1; } for (int i = autocorr_order; i <= order; i++) autoc[i] += subframe.autocorr_section_values[sections[section].m_id, i]; } else { if (large) lpc.compute_autocorr_windowless_large(samples + sections[section].m_start, sections[section].m_end - sections[section].m_start, autocorr_order, order, autoc); else lpc.compute_autocorr_windowless(samples + sections[section].m_start, sections[section].m_end - sections[section].m_start, autocorr_order, order, autoc); } prev = 1; } } lpc.compute_schur_reflection(autoc, (uint)order, reff, err); autocorr_order = order + 1; } } #if XXX public void GetReflection1(int order, int* samples, int blocksize, float* window) { if (autocorr_order > order) return; fixed (double* reff = reflection_coeffs, autoc = autocorr_values, err = prediction_error) { lpc.compute_autocorr(samples, blocksize, 0, order + 1, autoc, window); for (int i = 1; i <= order; i++) autoc[i] = autoc[i + 1]; lpc.compute_schur_reflection(autoc, (uint)order, reff, err); autocorr_order = order + 1; } } public void ComputeReflection(int order, float* autocorr) { fixed (double* reff = reflection_coeffs, autoc = autocorr_values, err = prediction_error) { for (int i = 0; i <= order; i++) autoc[i] = autocorr[i]; lpc.compute_schur_reflection(autoc, (uint)order, reff, err); autocorr_order = order + 1; } } public void ComputeReflection(int order, double* autocorr) { fixed (double* reff = reflection_coeffs, autoc = autocorr_values, err = prediction_error) { for (int i = 0; i <= order; i++) autoc[i] = autocorr[i]; lpc.compute_schur_reflection(autoc, (uint)order, reff, err); autocorr_order = order + 1; } } #endif public double Akaike(int blocksize, int order, double alpha, double beta) { //return (blocksize - order) * (Math.Log(prediction_error[order - 1]) - Math.Log(1.0)) + Math.Log(blocksize) * order * (alpha + beta * order); //return blocksize * (Math.Log(prediction_error[order - 1]) - Math.Log(autocorr_values[0]) / 2) + Math.Log(blocksize) * order * (alpha + beta * order); return blocksize * (Math.Log(prediction_error[order - 1])) + Math.Log(blocksize) * order * (alpha + beta * order); } /// /// Sorts orders based on Akaike's criteria /// /// Frame size public void SortOrdersAkaike(int blocksize, int count, int min_order, int max_order, double alpha, double beta) { for (int i = min_order; i <= max_order; i++) best_orders[i - min_order] = i; int lim = max_order - min_order + 1; for (int i = 0; i < lim && i < count; i++) { for (int j = i + 1; j < lim; j++) { if (Akaike(blocksize, best_orders[j], alpha, beta) < Akaike(blocksize, best_orders[i], alpha, beta)) { int tmp = best_orders[j]; best_orders[j] = best_orders[i]; best_orders[i] = tmp; } } } } /// /// Produces LPC coefficients from autocorrelation data. /// /// LPC coefficients buffer (for all orders) public void ComputeLPC(float* lpcs) { fixed (double* reff = reflection_coeffs) lpc.compute_lpc_coefs((uint)autocorr_order - 1, reff, lpcs); } public double[] autocorr_values; double[] reflection_coeffs; public double[] prediction_error; public int[] best_orders; public int[] coefs; int autocorr_order; public int shift; public double[] Reflection { get { return reflection_coeffs; } } public uint[] done_lpcs; } }