/** * CUETools.FLACCL: FLAC audio encoder using OpenCL * Copyright (c) 2009 Gregory S. Chudov * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _FLACCL_KERNEL_H_ #define _FLACCL_KERNEL_H_ //#pragma OPENCL EXTENSION cl_amd_fp64 : enable typedef enum { Constant = 0, Verbatim = 1, Fixed = 8, LPC = 32 } SubframeType; typedef struct { int residualOrder; // <= 32 int samplesOffs; int shift; int cbits; int size; int type; int obits; int blocksize; int best_index; int channel; int residualOffs; int wbits; int abits; int porder; int reserved[2]; } FLACCLSubframeData; typedef struct { FLACCLSubframeData data; int coefs[32]; // fixme: should be short? } FLACCLSubframeTask; __kernel void cudaStereoDecorr( __global int *samples, __global short2 *src, int offset ) { int pos = get_global_id(0); if (pos < offset) { short2 s = src[pos]; samples[pos] = s.x; samples[1 * offset + pos] = s.y; samples[2 * offset + pos] = (s.x + s.y) >> 1; samples[3 * offset + pos] = s.x - s.y; } } __kernel void cudaChannelDecorr2( __global int *samples, __global short2 *src, int offset ) { int pos = get_global_id(0); if (pos < offset) { short2 s = src[pos]; samples[pos] = s.x; samples[1 * offset + pos] = s.y; } } //__kernel void cudaChannelDecorr( // int *samples, // short *src, // int offset //) //{ // int pos = get_global_id(0); // if (pos < offset) // samples[get_group_id(1) * offset + pos] = src[pos * get_num_groups(1) + get_group_id(1)]; //} #define __ffs(a) (32 - clz(a & (-a))) //#define __ffs(a) (33 - clz(~a & (a - 1))) __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void cudaFindWastedBits( __global FLACCLSubframeTask *tasks, __global int *samples, int tasksPerChannel ) { __local int abits[GROUP_SIZE]; __local int wbits[GROUP_SIZE]; __local FLACCLSubframeData task; int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0) * tasksPerChannel].data))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int w = 0, a = 0; for (int pos = 0; pos < task.blocksize; pos += GROUP_SIZE) { int smp = pos + tid < task.blocksize ? samples[task.samplesOffs + pos + tid] : 0; w |= smp; a |= smp ^ (smp >> 31); } wbits[tid] = w; abits[tid] = a; barrier(CLK_LOCAL_MEM_FENCE); for (int s = GROUP_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { wbits[tid] |= wbits[tid + s]; abits[tid] |= abits[tid + s]; } barrier(CLK_LOCAL_MEM_FENCE); } w = max(0,__ffs(wbits[0]) - 1); a = 32 - clz(abits[0]) - w; if (tid < tasksPerChannel) tasks[get_group_id(0) * tasksPerChannel + tid].data.wbits = w; if (tid < tasksPerChannel) tasks[get_group_id(0) * tasksPerChannel + tid].data.abits = a; } __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void cudaComputeAutocor( __global float *output, __global const int *samples, __global const float *window, __global FLACCLSubframeTask *tasks, const int windowCount, // windows (log2: 0,1) const int taskCount // tasks per block ) { __local float data[GROUP_SIZE * 2]; __local float product[GROUP_SIZE]; __local FLACCLSubframeData task; const int tid = get_local_id(0); // fetch task data if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(tasks + taskCount * (get_group_id(1) >> windowCount)))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.blocksize; int windowOffs = (get_group_id(1) & ((1 << windowCount)-1)) * bs; data[tid] = tid < bs ? samples[task.samplesOffs + tid] * window[windowOffs + tid] : 0.0f; int tid0 = tid % (GROUP_SIZE >> 2); int tid1 = tid / (GROUP_SIZE >> 2); int lag0 = get_group_id(0) * 4; __local float4 * dptr = ((__local float4 *)&data[0]) + tid0; __local float4 * dptr1 = ((__local float4 *)&data[lag0 + tid1]) + tid0; float prod = 0.0f; for (int pos = 0; pos < bs; pos += GROUP_SIZE) { // fetch samples float nextData = pos + tid + GROUP_SIZE < bs ? samples[task.samplesOffs + pos + tid + GROUP_SIZE] * window[windowOffs + pos + tid + GROUP_SIZE] : 0.0f; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); prod += dot(*dptr, *dptr1); barrier(CLK_LOCAL_MEM_FENCE); data[tid] = nextData; } product[tid] = prod; barrier(CLK_LOCAL_MEM_FENCE); for (int l = (GROUP_SIZE >> 3); l > 0; l >>= 1) { if (tid0 < l) product[tid] = product[tid] + product[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } if (tid < 4 && tid + lag0 <= MAX_ORDER) output[get_group_id(1) * (MAX_ORDER + 1) + tid + lag0] = product[tid * (GROUP_SIZE >> 2)]; } //#define DEBUGPRINT #ifdef DEBUGPRINT #pragma OPENCL EXTENSION cl_amd_printf : enable #endif __kernel __attribute__((reqd_work_group_size(32, 1, 1))) void cudaComputeLPC( __global FLACCLSubframeTask *tasks, __global float *autoc, __global float *lpcs, int taskCount, // tasks per block int windowCount ) { __local struct { FLACCLSubframeData task; volatile float ldr[32]; volatile float gen1[32]; volatile float error[32]; volatile float autoc[33]; volatile int lpcOffs; volatile int autocOffs; } shared; const int tid = get_local_id(0);// + get_local_id(1) * 32; // fetch task data if (tid < sizeof(shared.task) / sizeof(int)) ((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1)))[tid]; if (tid == 0) { shared.lpcOffs = (get_group_id(0) + get_group_id(1) * windowCount) * (MAX_ORDER + 1) * 32; shared.autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1); } barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) <= MAX_ORDER) shared.autoc[get_local_id(0)] = autoc[shared.autocOffs + get_local_id(0)]; if (get_local_id(0) + get_local_size(0) <= MAX_ORDER) shared.autoc[get_local_id(0) + get_local_size(0)] = autoc[shared.autocOffs + get_local_id(0) + get_local_size(0)]; barrier(CLK_LOCAL_MEM_FENCE); // Compute LPC using Schur and Levinson-Durbin recursion float gen0 = shared.gen1[get_local_id(0)] = shared.autoc[get_local_id(0)+1]; shared.ldr[get_local_id(0)] = 0.0f; float error = shared.autoc[0]; #ifdef DEBUGPRINT int magic = shared.autoc[0] == 177286873088.0f; if (magic && get_local_id(0) <= MAX_ORDER) printf("autoc[%d] == %f\n", get_local_id(0), shared.autoc[get_local_id(0)]); #endif barrier(CLK_LOCAL_MEM_FENCE); for (int order = 0; order < MAX_ORDER; order++) { // Schur recursion float reff = -shared.gen1[0] / error; error += shared.gen1[0] * reff; // Equivalent to error *= (1 - reff * reff); //error *= (1 - reff * reff); float gen1; if (get_local_id(0) < MAX_ORDER - 1 - order) { gen1 = shared.gen1[get_local_id(0) + 1] + reff * gen0; gen0 += shared.gen1[get_local_id(0) + 1] * reff; } barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < MAX_ORDER - 1 - order) shared.gen1[get_local_id(0)] = gen1; #ifdef DEBUGPRINT if (magic && get_local_id(0) == 0) printf("order == %d, reff == %f, error = %f\n", order, reff, error); if (magic && get_local_id(0) <= MAX_ORDER) printf("gen[%d] == %f, %f\n", get_local_id(0), gen0, gen1); #endif // Store prediction error if (get_local_id(0) == 0) shared.error[order] = error; // Levinson-Durbin recursion float ldr = select(0.0f, reff * shared.ldr[order - 1 - get_local_id(0)], get_local_id(0) < order) + select(0.0f, reff, get_local_id(0) == order); barrier(CLK_LOCAL_MEM_FENCE); shared.ldr[get_local_id(0)] += ldr; barrier(CLK_LOCAL_MEM_FENCE); // Output coeffs if (get_local_id(0) <= order) lpcs[shared.lpcOffs + order * 32 + get_local_id(0)] = -shared.ldr[order - get_local_id(0)]; //if (get_local_id(0) <= order + 1 && fabs(-shared.ldr[0]) > 3000) // printf("coef[%d] == %f, autoc == %f, error == %f\n", get_local_id(0), -shared.ldr[order - get_local_id(0)], shared.autoc[get_local_id(0)], shared.error[get_local_id(0)]); } barrier(CLK_LOCAL_MEM_FENCE); // Output prediction error estimates if (get_local_id(0) < MAX_ORDER) lpcs[shared.lpcOffs + MAX_ORDER * 32 + get_local_id(0)] = shared.error[get_local_id(0)]; } __kernel __attribute__((reqd_work_group_size(32, 1, 1))) void cudaQuantizeLPC( __global FLACCLSubframeTask *tasks, __global float*lpcs, int taskCount, // tasks per block int taskCountLPC, // tasks per set of coeffs (<= 32) int minprecision, int precisions ) { __local struct { FLACCLSubframeData task; volatile int tmpi[32]; volatile int index[64]; volatile float error[64]; volatile int lpcOffs; } shared; const int tid = get_local_id(0); // fetch task data if (tid < sizeof(shared.task) / sizeof(int)) ((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1) * taskCount))[tid]; if (tid == 0) shared.lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32; barrier(CLK_LOCAL_MEM_FENCE); // Select best orders based on Akaike's Criteria shared.index[tid] = min(MAX_ORDER - 1, tid); shared.error[tid] = shared.task.blocksize * 64 + tid; shared.index[32 + tid] = MAX_ORDER - 1; shared.error[32 + tid] = shared.task.blocksize * 64 + tid + 32; // Load prediction error estimates if (tid < MAX_ORDER) shared.error[tid] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log(shared.task.blocksize); //shared.error[get_local_id(0)] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + get_local_id(0)]) + get_local_id(0) * 0.30f * (shared.task.abits + 1) * log(shared.task.blocksize); barrier(CLK_LOCAL_MEM_FENCE); // Sort using bitonic sort for(int size = 2; size < 64; size <<= 1){ //Bitonic merge int ddd = (tid & (size / 2)) == 0; for(int stride = size / 2; stride > 0; stride >>= 1){ int pos = 2 * tid - (tid & (stride - 1)); float e0 = shared.error[pos]; float e1 = shared.error[pos + stride]; int i0 = shared.index[pos]; int i1 = shared.index[pos + stride]; barrier(CLK_LOCAL_MEM_FENCE); if ((e0 >= e1) == ddd) { shared.error[pos] = e1; shared.error[pos + stride] = e0; shared.index[pos] = i1; shared.index[pos + stride] = i0; } barrier(CLK_LOCAL_MEM_FENCE); } } //ddd == dir for the last bitonic merge step { for(int stride = 32; stride > 0; stride >>= 1){ //barrier(CLK_LOCAL_MEM_FENCE); int pos = 2 * tid - (tid & (stride - 1)); float e0 = shared.error[pos]; float e1 = shared.error[pos + stride]; int i0 = shared.index[pos]; int i1 = shared.index[pos + stride]; barrier(CLK_LOCAL_MEM_FENCE); if (e0 >= e1) { shared.error[pos] = e1; shared.error[pos + stride] = e0; shared.index[pos] = i1; shared.index[pos + stride] = i0; } barrier(CLK_LOCAL_MEM_FENCE); } } //shared.index[tid] = MAX_ORDER - 1; //barrier(CLK_LOCAL_MEM_FENCE); // Quantization for (int i = 0; i < taskCountLPC; i ++) { int order = shared.index[i >> precisions]; float lpc = tid <= order ? lpcs[shared.lpcOffs + order * 32 + tid] : 0.0f; // get 15 bits of each coeff int coef = convert_int_rte(lpc * (1 << 15)); // remove sign bits shared.tmpi[tid] = coef ^ (coef >> 31); barrier(CLK_LOCAL_MEM_FENCE); // OR reduction for (int l = get_local_size(0) / 2; l > 1; l >>= 1) { if (tid < l) shared.tmpi[tid] |= shared.tmpi[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } //SUM32(shared.tmpi,tid,|=); // choose precision //int cbits = max(3, min(10, 5 + (shared.task.abits >> 1))); // - convert_int_rte(shared.PE[order - 1]) int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (shared.task.blocksize <= 2304) - (shared.task.blocksize <= 1152) - (shared.task.blocksize <= 576), shared.task.abits), clz(order) + 1 - shared.task.abits)); // calculate shift based on precision and number of leading zeroes in coeffs int shift = max(0,min(15, clz(shared.tmpi[0] | shared.tmpi[1]) - 18 + cbits)); //cbits = 13; //shift = 15; //if (shared.task.abits + 32 - clz(order) < shift //int shift = max(0,min(15, (shared.task.abits >> 2) - 14 + clz(shared.tmpi[tid & ~31]) + ((32 - clz(order))>>1))); // quantize coeffs with given shift coef = convert_int_rte(clamp(lpc * (1 << shift), -1 << (cbits - 1), 1 << (cbits - 1))); // error correction //shared.tmp[tid] = (tid != 0) * (shared.arp[tid - 1]*(1 << shared.task.shift) - shared.task.coefs[tid - 1]); //shared.task.coefs[tid] = max(-(1 << (shared.task.cbits - 1)), min((1 << (shared.task.cbits - 1))-1, convert_int_rte((shared.arp[tid]) * (1 << shared.task.shift) + shared.tmp[tid]))); // remove sign bits shared.tmpi[tid] = coef ^ (coef >> 31); barrier(CLK_LOCAL_MEM_FENCE); // OR reduction for (int l = get_local_size(0) / 2; l > 1; l >>= 1) { if (tid < l) shared.tmpi[tid] |= shared.tmpi[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } //SUM32(shared.tmpi,tid,|=); // calculate actual number of bits (+1 for sign) cbits = 1 + 32 - clz(shared.tmpi[0] | shared.tmpi[1]); // output shift, cbits and output coeffs int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i; if (tid == 0) tasks[taskNo].data.shift = shift; if (tid == 0) tasks[taskNo].data.cbits = cbits; if (tid == 0) tasks[taskNo].data.residualOrder = order + 1; if (tid <= order) tasks[taskNo].coefs[tid] = coef; } } #define DONT_BEACCURATE __kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void cudaEstimateResidual( __global int*output, __global int*samples, __global FLACCLSubframeTask *tasks ) { __local int data[GROUP_SIZE * 2]; __local FLACCLSubframeTask task; #ifdef BEACCURATE __local int residual[GROUP_SIZE]; __local int len[GROUP_SIZE / 16]; #else __local float residual[GROUP_SIZE]; #endif const int tid = get_local_id(0); if (tid < sizeof(task)/sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid]; barrier(CLK_GLOBAL_MEM_FENCE); int ro = task.data.residualOrder; int bs = task.data.blocksize; if (tid < 32 && tid >= ro) task.coefs[tid] = 0; #ifdef BEACCURATE if (tid < GROUP_SIZE / 16) len[tid] = 0; #else float res = 0.0f; #endif data[tid] = tid < bs ? samples[task.data.samplesOffs + tid] >> task.data.wbits : 0; for (int pos = 0; pos < bs; pos += GROUP_SIZE) { // fetch samples int nextData = pos + tid + GROUP_SIZE < bs ? samples[task.data.samplesOffs + pos + tid + GROUP_SIZE] >> task.data.wbits : 0; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); // compute residual __local int4 * dptr = (__local int4 *)&data[tid]; __local int4 * cptr = (__local int4 *)&task.coefs[0]; int4 sum = dptr[0] * cptr[0] #if MAX_ORDER > 4 + dptr[1] * cptr[1] #if MAX_ORDER > 8 + dptr[2] * cptr[2] #if MAX_ORDER > 12 + dptr[3] * cptr[3] #if MAX_ORDER > 16 + dptr[4] * cptr[4] + dptr[5] * cptr[5] + dptr[6] * cptr[6] + dptr[7] * cptr[7] #endif #endif #endif #endif ; int t = select(0, data[tid + ro] - ((sum.x + sum.y + sum.z + sum.w) >> task.data.shift), pos + tid + ro < bs); #ifdef BEACCURATE residual[tid] = min((t << 1) ^ (t >> 31), 0x7fffff); #else res += fabs(t); #endif barrier(CLK_LOCAL_MEM_FENCE); #ifdef BEACCURATE if (tid < GROUP_SIZE / 16) { __local int4 * chunk = ((__local int4 *)residual) + tid * 4; int4 sum = chunk[0] + chunk[1] + chunk[2] + chunk[3]; int res = sum.x + sum.y + sum.z + sum.w; int k = clamp(clz(16) - clz(res), 0, 14); len[tid] += 16 * k + (res >> k); k = clamp(clz(16) - clz(res), 0, 14); } #endif data[tid] = nextData; } #ifdef BEACCURATE barrier(CLK_LOCAL_MEM_FENCE); for (int l = GROUP_SIZE / 32; l > 0; l >>= 1) { if (tid < l) len[tid] += len[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) output[get_group_id(0)] = len[0] + (bs - ro); #else residual[tid] = res; barrier(CLK_LOCAL_MEM_FENCE); for (int l = GROUP_SIZE / 2; l > 0; l >>= 1) { if (tid < l) residual[tid] += residual[tid + l]; barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) { int residualLen = (bs - ro); float sum = residual[0] * 2;// + residualLen / 2; //int k = clamp(convert_int_rtn(log2((sum + 0.000001f) / (residualLen + 0.000001f))), 0, 14); int k; frexp((sum + 0.000001f) / residualLen, &k); k = clamp(k - 1, 0, 14); output[get_group_id(0)] = residualLen * (k + 1) + convert_int_rtn(min((float)0xffffff, sum / (1 << k))); } #endif } __kernel __attribute__((reqd_work_group_size(32, 1, 1))) void cudaChooseBestMethod( __global FLACCLSubframeTask *tasks, __global int *residual, int taskCount ) { __local struct { volatile int index[32]; volatile int length[32]; } shared; __local FLACCLSubframeData task; const int tid = get_local_id(0); shared.length[tid] = 0x7fffffff; shared.index[tid] = tid; for (int taskNo = 0; taskNo < taskCount; taskNo++) { // fetch task data if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[taskNo + taskCount * get_group_id(1)].data))[tid]; barrier(CLK_LOCAL_MEM_FENCE); if (tid == 0) { // fetch part sum int partLen = residual[taskNo + taskCount * get_group_id(1)]; //// calculate part size //int residualLen = task[get_local_id(1)].data.blocksize - task[get_local_id(1)].data.residualOrder; //residualLen = residualLen * (task[get_local_id(1)].data.type != Constant || psum != 0); //// calculate rice parameter //int k = max(0, min(14, convert_int_rtz(log2((psum + 0.000001f) / (residualLen + 0.000001f) + 0.5f)))); //// calculate part bit length //int partLen = residualLen * (k + 1) + (psum >> k); int obits = task.obits - task.wbits; shared.length[taskNo] = min(obits * task.blocksize, task.type == Fixed ? task.residualOrder * obits + 6 + (4 * 1/2) + partLen : task.type == LPC ? task.residualOrder * obits + 4 + 5 + task.residualOrder * task.cbits + 6 + (4 * 1/2)/* << porder */ + partLen : task.type == Constant ? obits * (1 + task.blocksize * (partLen != 0)) : obits * task.blocksize); } barrier(CLK_LOCAL_MEM_FENCE); } //shared.index[get_local_id(0)] = get_local_id(0); //shared.length[get_local_id(0)] = (get_local_id(0) < taskCount) ? tasks[get_local_id(0) + taskCount * get_group_id(1)].size : 0x7fffffff; if (tid < taskCount) tasks[tid + taskCount * get_group_id(1)].data.size = shared.length[tid]; int l1 = shared.length[tid]; for (int l = 16; l > 0; l >>= 1) { if (tid < l) { int l2 = shared.length[tid + l]; shared.index[tid] = shared.index[tid + select(0, l, l2 < l1)]; shared.length[tid] = l1 = min(l1, l2); } barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) tasks[taskCount * get_group_id(1)].data.best_index = taskCount * get_group_id(1) + shared.index[0]; } __kernel __attribute__((reqd_work_group_size(64, 1, 1))) void cudaCopyBestMethod( __global FLACCLSubframeTask *tasks_out, __global FLACCLSubframeTask *tasks, int count ) { __local int best_index; if (get_local_id(0) == 0) best_index = tasks[count * get_group_id(1)].data.best_index; barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int)) ((__global int*)(tasks_out + get_group_id(1)))[get_local_id(0)] = ((__global int*)(tasks + best_index))[get_local_id(0)]; } __kernel __attribute__((reqd_work_group_size(64, 1, 1))) void cudaCopyBestMethodStereo( __global FLACCLSubframeTask *tasks_out, __global FLACCLSubframeTask *tasks, int count ) { __local struct { int best_index[4]; int best_size[4]; int lr_index[2]; } shared; if (get_local_id(0) < 4) shared.best_index[get_local_id(0)] = tasks[count * (get_group_id(1) * 4 + get_local_id(0))].data.best_index; barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < 4) shared.best_size[get_local_id(0)] = tasks[shared.best_index[get_local_id(0)]].data.size; barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) == 0) { int bitsBest = shared.best_size[2] + shared.best_size[3]; // MidSide shared.lr_index[0] = shared.best_index[2]; shared.lr_index[1] = shared.best_index[3]; if (bitsBest > shared.best_size[3] + shared.best_size[1]) // RightSide { bitsBest = shared.best_size[3] + shared.best_size[1]; shared.lr_index[0] = shared.best_index[3]; shared.lr_index[1] = shared.best_index[1]; } if (bitsBest > shared.best_size[0] + shared.best_size[3]) // LeftSide { bitsBest = shared.best_size[0] + shared.best_size[3]; shared.lr_index[0] = shared.best_index[0]; shared.lr_index[1] = shared.best_index[3]; } if (bitsBest > shared.best_size[0] + shared.best_size[1]) // LeftRight { bitsBest = shared.best_size[0] + shared.best_size[1]; shared.lr_index[0] = shared.best_index[0]; shared.lr_index[1] = shared.best_index[1]; } } barrier(CLK_LOCAL_MEM_FENCE); if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int)) ((__global int*)(tasks_out + 2 * get_group_id(1)))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[0]))[get_local_id(0)]; if (get_local_id(0) == 0) tasks_out[2 * get_group_id(1)].data.residualOffs = tasks[shared.best_index[0]].data.residualOffs; if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int)) ((__global int*)(tasks_out + 2 * get_group_id(1) + 1))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[1]))[get_local_id(0)]; if (get_local_id(0) == 0) tasks_out[2 * get_group_id(1) + 1].data.residualOffs = tasks[shared.best_index[1]].data.residualOffs; } // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void cudaEncodeResidual( __global int *output, __global int *samples, __global FLACCLSubframeTask *tasks ) { __local FLACCLSubframeTask task; __local int data[GROUP_SIZE * 2]; const int tid = get_local_id(0); if (get_local_id(0) < sizeof(task) / sizeof(int)) ((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)]; barrier(CLK_LOCAL_MEM_FENCE); int bs = task.data.blocksize; int ro = task.data.residualOrder; data[tid] = tid < bs ? samples[task.data.samplesOffs + tid] >> task.data.wbits : 0; for (int pos = 0; pos < bs; pos += GROUP_SIZE) { // fetch samples float nextData = pos + tid + GROUP_SIZE < bs ? samples[task.data.samplesOffs + pos + tid + GROUP_SIZE] >> task.data.wbits : 0; data[tid + GROUP_SIZE] = nextData; barrier(CLK_LOCAL_MEM_FENCE); // compute residual int sum = 0; for (int c = 0; c < ro; c++) sum += data[tid + c] * task.coefs[c]; sum = data[tid + ro] - (sum >> task.data.shift); if (pos + tid + ro < bs) output[task.data.residualOffs + pos + tid + ro] = sum; barrier(CLK_LOCAL_MEM_FENCE); data[tid] = nextData; } } // get_group_id(0) == partition index // get_group_id(1) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void cudaCalcPartition( __global int *partition_lengths, __global int *residual, __global FLACCLSubframeTask *tasks, int max_porder, // <= 8 int psize // == task.blocksize >> max_porder? ) { __local int data[GROUP_SIZE]; __local int length[GROUP_SIZE / 16][16]; __local FLACCLSubframeData task; const int tid = get_local_id(0); if (tid < sizeof(task) / sizeof(int)) ((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(1)]))[tid]; barrier(CLK_LOCAL_MEM_FENCE); int k = tid % 16; int x = tid / 16; int sum = 0; for (int pos0 = 0; pos0 < psize; pos0 += GROUP_SIZE) { int offs = get_group_id(0) * psize + pos0 + tid; // fetch residual int s = (offs >= task.residualOrder && pos0 + tid < psize) ? residual[task.residualOffs + offs] : 0; // convert to unsigned data[tid] = min(0x7fffff, (s << 1) ^ (s >> 31)); barrier(CLK_LOCAL_MEM_FENCE); // calc number of unary bits for each residual sample with each rice paramater for (int pos = 0; pos < psize && pos < GROUP_SIZE; pos += GROUP_SIZE / 16) sum += data[pos + x] >> k; barrier(CLK_LOCAL_MEM_FENCE); } length[x][k] = min(0x7fffff, sum); barrier(CLK_LOCAL_MEM_FENCE); if (x == 0) { for (int i = 1; i < GROUP_SIZE / 16; i++) length[0][k] += length[i][k]; // output length const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1)); if (k <= 14) partition_lengths[pos + get_group_id(0)] = min(0x7fffff,length[0][k]) + (psize - task.residualOrder * (get_group_id(0) == 0)) * (k + 1); } } // Sums partition lengths for a certain k == get_group_id(0) // Requires 128 threads // get_group_id(0) == k // get_group_id(1) == task index __kernel __attribute__((reqd_work_group_size(128, 1, 1))) void cudaSumPartition( __global int* partition_lengths, int max_porder ) { __local int data[512]; // max_porder <= 8, data length <= 1 << 9. const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (get_group_id(0) << (max_porder + 1)); // fetch partition lengths data[get_local_id(0)] = get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_id(0)] : 0; data[get_local_size(0) + get_local_id(0)] = get_local_size(0) + get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_size(0) + get_local_id(0)] : 0; barrier(CLK_LOCAL_MEM_FENCE); int in_pos = (get_local_id(0) << 1); int out_pos = (1 << max_porder) + get_local_id(0); for (int bs = 1 << (max_porder - 1); bs > 0; bs >>= 1) { if (get_local_id(0) < bs) data[out_pos] = data[in_pos] + data[in_pos + 1]; in_pos += bs << 1; out_pos += bs; barrier(CLK_LOCAL_MEM_FENCE); } if (get_local_id(0) < (1 << max_porder)) partition_lengths[pos + (1 << max_porder) + get_local_id(0)] = data[(1 << max_porder) + get_local_id(0)]; if (get_local_size(0) + get_local_id(0) < (1 << max_porder)) partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = data[(1 << max_porder) + get_local_size(0) + get_local_id(0)]; } // Finds optimal rice parameter for several partitions at a time. // get_group_id(0) == chunk index (chunk size is GROUP_SIZE / 8, so total task size is 8 * (2 << max_porder)) // get_group_id(1) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void cudaFindRiceParameter( __global int* rice_parameters, __global int* partition_lengths, int max_porder ) { __local struct { volatile int length[GROUP_SIZE]; volatile int index[GROUP_SIZE]; } shared; const int tid = get_local_id(0); const int ws = GROUP_SIZE / 8; const int parts = min(ws, 2 << max_porder); const int p = tid % ws; const int k = tid / ws; // 0..7 const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1)); // read length for 32 partitions int l1 = (p < parts) ? partition_lengths[pos + get_group_id(0) * ws + p] : 0xffffff; int l2 = (k + 8 <= 14 && p < parts) ? partition_lengths[pos + (8 << (max_porder + 1)) + get_group_id(0) * ws + p] : 0xffffff; // find best rice parameter shared.index[tid] = k + ((l2 < l1) << 3); shared.length[tid] = l1 = min(l1, l2); barrier(CLK_LOCAL_MEM_FENCE); //#pragma unroll 3 for (int lsh = GROUP_SIZE / 2; lsh >= ws; lsh >>= 1) { if (tid < lsh) { l2 = shared.length[tid + lsh]; shared.index[tid] = shared.index[tid + (l2 < l1) * lsh]; shared.length[tid] = l1 = min(l1, l2); } barrier(CLK_LOCAL_MEM_FENCE); } if (tid < parts) { // output rice parameter rice_parameters[(get_group_id(1) << (max_porder + 2)) + get_group_id(0) * parts + tid] = shared.index[tid]; // output length rice_parameters[(get_group_id(1) << (max_porder + 2)) + (1 << (max_porder + 1)) + get_group_id(0) * parts + tid] = shared.length[tid]; } } // get_group_id(0) == task index __kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) void cudaFindPartitionOrder( __global int* best_rice_parameters, __global FLACCLSubframeTask *tasks, __global int* rice_parameters, int max_porder ) { __local struct { int length[32]; int index[32]; } shared; __local int partlen[GROUP_SIZE]; __local FLACCLSubframeData task; const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder); if (get_local_id(0) < sizeof(task) / sizeof(int)) ((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)]; // fetch partition lengths barrier(CLK_LOCAL_MEM_FENCE); for (int porder = max_porder; porder >= 0; porder--) { int len = 0; for (int offs = 0; offs < (1 << porder); offs += GROUP_SIZE) len += offs + get_local_id(0) < (1 << porder) ? rice_parameters[pos + (2 << max_porder) - (2 << porder) + offs + get_local_id(0)] : 0; partlen[get_local_id(0)] = len; barrier(CLK_LOCAL_MEM_FENCE); for (int l = min(GROUP_SIZE, 1 << porder) / 2; l > 0; l >>= 1) { if (get_local_id(0) < l) partlen[get_local_id(0)] += partlen[get_local_id(0) + l]; barrier(CLK_LOCAL_MEM_FENCE); } if (get_local_id(0) == 0) shared.length[porder] = partlen[0] + (4 << porder); barrier(CLK_LOCAL_MEM_FENCE); } if (get_local_id(0) < 32 && get_local_id(0) > max_porder) shared.length[get_local_id(0)] = 0xfffffff; if (get_local_id(0) < 32) shared.index[get_local_id(0)] = get_local_id(0); barrier(CLK_LOCAL_MEM_FENCE); //atom_min(shared.index[get_local_id(0)],); int l1 = get_local_id(0) <= max_porder ? shared.length[get_local_id(0)] : 0xfffffff; for (int l = 8; l > 0; l >>= 1) { if (get_local_id(0) < l) { int l2 = shared.length[get_local_id(0) + l]; shared.index[get_local_id(0)] = shared.index[get_local_id(0) + select(0, l, l2 < l1)]; shared.length[get_local_id(0)] = l1 = min(l1, l2); } barrier(CLK_LOCAL_MEM_FENCE); } if (get_local_id(0) == 0) tasks[get_group_id(0)].data.porder = shared.index[0]; if (get_local_id(0) == 0) { int obits = task.obits - task.wbits; tasks[get_group_id(0)].data.size = task.type == Fixed ? task.residualOrder * obits + 6 + l1 : task.type == LPC ? task.residualOrder * obits + 6 + l1 + 4 + 5 + task.residualOrder * task.cbits : task.type == Constant ? obits : obits * task.blocksize; } barrier(CLK_LOCAL_MEM_FENCE); int porder = shared.index[0]; for (int offs = 0; offs < (1 << porder); offs += GROUP_SIZE) if (offs + get_local_id(0) < (1 << porder)) best_rice_parameters[(get_group_id(0) << max_porder) + offs + get_local_id(0)] = rice_parameters[pos - (2 << porder) + offs + get_local_id(0)]; // FIXME: should be bytes? // if (get_local_id(0) < (1 << porder)) //shared.tmp[get_local_id(0)] = rice_parameters[pos - (2 << porder) + get_local_id(0)]; // barrier(CLK_LOCAL_MEM_FENCE); // if (get_local_id(0) < max(1, (1 << porder) >> 2)) // { //char4 ch; //ch.x = shared.tmp[(get_local_id(0) << 2)]; //ch.y = shared.tmp[(get_local_id(0) << 2) + 1]; //ch.z = shared.tmp[(get_local_id(0) << 2) + 2]; //ch.w = shared.tmp[(get_local_id(0) << 2) + 3]; //shared.ch[get_local_id(0)] = ch // } // barrier(CLK_LOCAL_MEM_FENCE); // if (get_local_id(0) < max(1, (1 << porder) >> 2)) //best_rice_parameters[(get_group_id(1) << max_porder) + get_local_id(0)] = shared.ch[get_local_id(0)]; } //#endif // //#if 0 // if (get_local_id(0) < order) // { // for (int i = 0; i < order; i++) // if (get_local_id(0) >= i) // sum[get_local_id(0) - i] += coefs[get_local_id(0)] * sample[order - i - 1]; // fot (int i = order; i < blocksize; i++) // { // if (!get_local_id(0)) sample[order + i] = s = residual[order + i] + (sum[order + i] >> shift); // sum[get_local_id(0) + i + 1] += coefs[get_local_id(0)] * s; // } // } //#endif #endif