/** * CUETools.FlaCuda: FLAC audio encoder using CUDA * Copyright (c) 2009 Gregory S. Chudov * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _FLACUDA_KERNEL_H_ #define _FLACUDA_KERNEL_H_ typedef struct { int samplesOffs; int windowOffs; int residualOffs; int blocksize; int reserved[12]; } computeAutocorTaskStruct; typedef enum { Constant = 0, Verbatim = 1, Fixed = 8, LPC = 32 } SubframeType; typedef struct { int residualOrder; // <= 32 int samplesOffs; int shift; int cbits; int size; int type; int obits; int blocksize; int best_index; int channel; int residualOffs; int wbits; int reserved[4]; int coefs[32]; } encodeResidualTaskStruct; extern "C" __global__ void cudaStereoDecorr( int *samples, short2 *src, int offset ) { const int pos = blockIdx.x * blockDim.x + threadIdx.x; if (pos < offset) { short2 s = src[pos]; samples[pos] = s.x; samples[1 * offset + pos] = s.y; samples[2 * offset + pos] = (s.x + s.y) >> 1; samples[3 * offset + pos] = s.x - s.y; } } extern "C" __global__ void cudaChannelDecorr2( int *samples, short2 *src, int offset ) { const int pos = blockIdx.x * blockDim.x + threadIdx.x; if (pos < offset) { short2 s = src[pos]; samples[pos] = s.x; samples[1 * offset + pos] = s.y; } } extern "C" __global__ void cudaChannelDecorr( int *samples, short *src, int offset ) { const int pos = blockIdx.x * blockDim.x + threadIdx.x; if (pos < offset) samples[blockIdx.y * offset + pos] = src[pos * gridDim.y + blockIdx.y]; } extern "C" __global__ void cudaFindWastedBits( encodeResidualTaskStruct *tasks, int *samples, int tasksPerChannel, int blocksize ) { __shared__ struct { volatile int wbits[256]; encodeResidualTaskStruct task; } shared; if (threadIdx.x < 16) ((int*)&shared.task)[threadIdx.x] = ((int*)(&tasks[blockIdx.x * tasksPerChannel]))[threadIdx.x]; shared.wbits[threadIdx.x] = 0; __syncthreads(); for (int pos = 0; pos < blocksize; pos += blockDim.x) shared.wbits[threadIdx.x] |= pos + threadIdx.x < blocksize ? samples[shared.task.samplesOffs + pos + threadIdx.x] : 0; __syncthreads(); if (threadIdx.x < 128) shared.wbits[threadIdx.x] |= shared.wbits[threadIdx.x + 128]; __syncthreads(); if (threadIdx.x < 64) shared.wbits[threadIdx.x] |= shared.wbits[threadIdx.x + 64]; __syncthreads(); if (threadIdx.x < 32) shared.wbits[threadIdx.x] |= shared.wbits[threadIdx.x + 32]; __syncthreads(); shared.wbits[threadIdx.x] |= shared.wbits[threadIdx.x + 16]; shared.wbits[threadIdx.x] |= shared.wbits[threadIdx.x + 8]; shared.wbits[threadIdx.x] |= shared.wbits[threadIdx.x + 4]; shared.wbits[threadIdx.x] |= shared.wbits[threadIdx.x + 2]; shared.wbits[threadIdx.x] |= shared.wbits[threadIdx.x + 1]; if (threadIdx.x < tasksPerChannel) tasks[blockIdx.x * tasksPerChannel + threadIdx.x].wbits = max(0,__ffs(shared.wbits[0]) - 1); } extern "C" __global__ void cudaComputeAutocor( float *output, const int *samples, const float *window, computeAutocorTaskStruct *tasks, int max_order, // should be <= 32 int frameSize, int partSize // should be <= 2*blockDim - max_order ) { __shared__ struct { float data[512]; volatile float product[256]; computeAutocorTaskStruct task; } shared; const int tid = threadIdx.x + (threadIdx.y * 32); // fetch task data if (tid < sizeof(shared.task) / sizeof(int)) ((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid]; __syncthreads(); // fetch samples { const int pos = blockIdx.x * partSize; const int dataLen = min(frameSize - pos, partSize + max_order); shared.data[tid] = tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] * window[shared.task.windowOffs + pos + tid]: 0.0f; shared.data[tid + 256] = tid + 256 < dataLen ? samples[shared.task.samplesOffs + pos + tid + 256] * window[shared.task.windowOffs + pos + tid + 256]: 0.0f; } __syncthreads(); for (int lag = threadIdx.y; lag <= max_order; lag += 8) { const int productLen = min(frameSize - blockIdx.x * partSize - lag, partSize); shared.product[tid] = 0.0; for (int ptr = threadIdx.x; ptr < productLen + threadIdx.x; ptr += 128) shared.product[tid] += ((ptr < productLen) * shared.data[ptr] * shared.data[ptr + lag] + (ptr + 32 < productLen) * shared.data[ptr + 32] * shared.data[ptr + 32 + lag]) + ((ptr + 64 < productLen) * shared.data[ptr + 64] * shared.data[ptr + 64 + lag] + (ptr + 96 < productLen) * shared.data[ptr + 96] * shared.data[ptr + 96 + lag]); // product sum: reduction in shared mem //shared.product[tid] += shared.product[tid + 16]; shared.product[tid] = (shared.product[tid] + shared.product[tid + 16]) + (shared.product[tid + 8] + shared.product[tid + 24]); shared.product[tid] = (shared.product[tid] + shared.product[tid + 4]) + (shared.product[tid + 2] + shared.product[tid + 6]); // return results if (threadIdx.x == 0) output[(blockIdx.x + blockIdx.y * gridDim.x) * (max_order + 1) + lag] = shared.product[tid] + shared.product[tid + 1]; } } extern "C" __global__ void cudaComputeLPC( encodeResidualTaskStruct *output, float*autoc, computeAutocorTaskStruct *tasks, int max_order, // should be <= 32 int partCount // should be <= blockDim? ) { __shared__ struct { computeAutocorTaskStruct task; volatile float ldr[32]; volatile int bits[32]; volatile float autoc[33]; volatile float gen0[32]; volatile float gen1[32]; volatile float parts[128]; //volatile float reff[32]; //int cbits; } shared; const int tid = threadIdx.x; // fetch task data if (tid < sizeof(shared.task) / sizeof(int)) ((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid]; // add up parts for (int order = 0; order <= max_order; order++) { shared.parts[tid] = tid < partCount ? autoc[(blockIdx.y * partCount + tid) * (max_order + 1) + order] : 0; __syncthreads(); if (tid < 64 && blockDim.x > 64) shared.parts[tid] += shared.parts[tid + 64]; __syncthreads(); if (tid < 32) { if (blockDim.x > 32) shared.parts[tid] += shared.parts[tid + 32]; shared.parts[tid] += shared.parts[tid + 16]; shared.parts[tid] += shared.parts[tid + 8]; shared.parts[tid] += shared.parts[tid + 4]; shared.parts[tid] += shared.parts[tid + 2]; shared.parts[tid] += shared.parts[tid + 1]; if (tid == 0) shared.autoc[order] = shared.parts[0]; } } if (tid < 32) { shared.gen0[tid] = shared.autoc[tid+1]; shared.gen1[tid] = shared.autoc[tid+1]; shared.ldr[tid] = 0.0f; float error = shared.autoc[0]; for (int order = 0; order < max_order; order++) { // Schur recursion float reff = -shared.gen1[0] / error; //if (tid == 0) shared.reff[order] = reff; error += __fmul_rz(shared.gen1[0], reff); if (tid < max_order - 1 - order) { float g1 = shared.gen1[tid + 1] + __fmul_rz(reff, shared.gen0[tid]); float g0 = __fmul_rz(shared.gen1[tid + 1], reff) + shared.gen0[tid]; shared.gen1[tid] = g1; shared.gen0[tid] = g0; } // Levinson-Durbin recursion shared.ldr[tid] += (tid < order) * __fmul_rz(reff, shared.ldr[order - 1 - tid]) + (tid == order) * reff; // Quantization int precision = 13 - (order > 8); int taskNo = shared.task.residualOffs + order; shared.bits[tid] = __mul24((33 - __clz(__float2int_rn(fabs(shared.ldr[tid]) * (1 << 15))) - precision), tid <= order); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 16]); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 8]); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 4]); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 2]); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 1]); int sh = max(0,min(15, 15 - shared.bits[0])); // reverse coefs int coef = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(-shared.ldr[order - tid] * (1 << sh)))); if (tid <= order) output[taskNo].coefs[tid] = coef; if (tid == 0) output[taskNo].shift = sh; shared.bits[tid] = 33 - max(__clz(coef),__clz(-1 ^ coef)); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 16]); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 8]); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 4]); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 2]); shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 1]); int cbits = shared.bits[0]; if (tid == 0) output[taskNo].cbits = cbits; } } } #define SUM32(buf,tid) buf[tid] += buf[tid + 16]; buf[tid] += buf[tid + 8]; buf[tid] += buf[tid + 4]; buf[tid] += buf[tid + 2]; buf[tid] += buf[tid + 1]; #define SUM64(buf,tid) if (tid < 32) buf[tid] += buf[tid + 32]; __syncthreads(); if (tid < 32) SUM32(buf,tid) #define SUM128(buf,tid) if (tid < 64) buf[tid] += buf[tid + 64]; __syncthreads(); SUM64(buf,tid) #define SUM256(buf,tid) if (tid < 128) buf[tid] += buf[tid + 128]; __syncthreads(); SUM128(buf,tid) #define SUM512(buf,tid) if (tid < 256) buf[tid] += buf[tid + 256]; __syncthreads(); SUM256(buf,tid) #define FSQR(s) ((s)*(s)) extern "C" __global__ void cudaComputeLPCLattice( encodeResidualTaskStruct *tasks, const int taskCount, // tasks per block const int *samples, const int frameSize, // <= 512 const int max_order // should be <= 32 ) { __shared__ struct { encodeResidualTaskStruct task; volatile float F[512]; volatile float B[512]; volatile float tmp[256]; volatile float arp[32]; volatile float rc[32]; volatile int bits[32]; volatile float PE[33]; volatile float DEN, reff; } shared; // fetch task data if (threadIdx.x < sizeof(shared.task) / sizeof(int)) ((int*)&shared.task)[threadIdx.x] = ((int*)(tasks + taskCount * blockIdx.y))[threadIdx.x]; __syncthreads(); // F = samples; B = samples shared.F[threadIdx.x] = threadIdx.x < frameSize ? samples[shared.task.samplesOffs + threadIdx.x] >> shared.task.wbits : 0.0f; shared.F[threadIdx.x + 256] = threadIdx.x + 256 < frameSize ? samples[shared.task.samplesOffs + threadIdx.x + 256] >> shared.task.wbits : 0.0f; shared.B[threadIdx.x] = shared.F[threadIdx.x]; shared.B[threadIdx.x + 256] = shared.F[threadIdx.x + 256]; __syncthreads(); // DEN = F*F' shared.tmp[threadIdx.x] = FSQR(shared.F[threadIdx.x]) + FSQR(shared.F[threadIdx.x + 256]); __syncthreads(); SUM256(shared.tmp,threadIdx.x); if (threadIdx.x == 0) { shared.DEN = shared.tmp[0]; shared.PE[0] = shared.tmp[0] / frameSize; } __syncthreads(); for (int order = 1; order <= max_order; order++) { // reff = F(order+1:frameSize) * B(1:frameSize-order)' / DEN float f1 = (threadIdx.x + order < frameSize) * shared.F[order + threadIdx.x]; float f2 = (threadIdx.x + 256 + order < frameSize) * shared.F[order + threadIdx.x + 256]; shared.tmp[threadIdx.x] = f1 * shared.B[threadIdx.x] + f2 * shared.B[threadIdx.x + 256]; __syncthreads(); SUM256(shared.tmp, threadIdx.x); if (threadIdx.x == 0) shared.reff = shared.tmp[0] / shared.DEN; __syncthreads(); // arp(order) = rc(order) = reff if (threadIdx.x == 0) shared.arp[order - 1] = shared.rc[order - 1] = shared.reff; // Levinson-Durbin recursion // arp(1:order-1) = arp(1:order-1) - reff * arp(order-1:-1:1) if (threadIdx.x < 32) shared.arp[threadIdx.x] -= (threadIdx.x < order - 1) * __fmul_rz(shared.reff, shared.arp[order - 2 - threadIdx.x]); // F1 = F(order+1:frameSize) - reff * B(1:frameSize-order) // B(1:frameSize-order) = B(1:frameSize-order) - reff * F(order+1:frameSize) // F(order+1:frameSize) = F1 if (threadIdx.x < frameSize - order) { shared.F[order + threadIdx.x] -= shared.reff * shared.B[threadIdx.x]; shared.B[threadIdx.x] -= shared.reff * f1; } if (threadIdx.x + 256 < frameSize - order) { shared.F[order + threadIdx.x + 256] -= shared.reff * shared.B[threadIdx.x + 256]; shared.B[threadIdx.x + 256] -= shared.reff * f2; } __syncthreads(); // DEN = F(order+1:frameSize) * F(order+1:frameSize)' + B(1:frameSize-order) * B(1:frameSize-order)' (BURG) shared.tmp[threadIdx.x] = (threadIdx.x < frameSize - order) * (FSQR(shared.F[threadIdx.x + order]) + FSQR(shared.B[threadIdx.x])) + (threadIdx.x + 256 < frameSize - order) * (FSQR(shared.F[threadIdx.x + 256 + order]) + FSQR(shared.B[threadIdx.x + 256])); __syncthreads(); SUM256(shared.tmp, threadIdx.x); if (threadIdx.x == 0) { shared.DEN = shared.tmp[0] / 2; shared.PE[order] = shared.tmp[0] / 2 / (frameSize - order); } __syncthreads(); // Quantization if (threadIdx.x < 32) { int precision = 10 - (order > 8) - min(2, shared.task.wbits); int taskNo = taskCount * blockIdx.y + order - 1; shared.bits[threadIdx.x] = __mul24((33 - __clz(__float2int_rn(fabs(shared.arp[threadIdx.x]) * (1 << 15))) - precision), threadIdx.x < order); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 16]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 8]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 4]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 2]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 1]); int sh = max(0,min(15, 15 - shared.bits[0])); // reverse coefs int coef = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(shared.arp[order - 1 - threadIdx.x] * (1 << sh)))); if (threadIdx.x < order) tasks[taskNo].coefs[threadIdx.x] = coef; if (threadIdx.x == 0) tasks[taskNo].shift = sh; shared.bits[threadIdx.x] = 33 - max(__clz(coef),__clz(-1 ^ coef)); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 16]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 8]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 4]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 2]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 1]); int cbits = shared.bits[0]; if (threadIdx.x == 0) tasks[taskNo].cbits = cbits; } } } extern "C" __global__ void cudaComputeLPCLattice512( encodeResidualTaskStruct *tasks, const int taskCount, // tasks per block const int *samples, const int frameSize, // <= 512 const int max_order // should be <= 32 ) { __shared__ struct { encodeResidualTaskStruct task; float F[512]; float B[512]; float lpc[32][32]; volatile float tmp[512]; volatile float arp[32]; volatile float rc[32]; volatile int bits[512]; volatile float f, b; } shared; // fetch task data if (threadIdx.x < sizeof(shared.task) / sizeof(int)) ((int*)&shared.task)[threadIdx.x] = ((int*)(tasks + taskCount * blockIdx.y))[threadIdx.x]; __syncthreads(); // F = samples; B = samples shared.F[threadIdx.x] = threadIdx.x < frameSize ? samples[shared.task.samplesOffs + threadIdx.x] >> shared.task.wbits : 0.0f; shared.B[threadIdx.x] = shared.F[threadIdx.x]; __syncthreads(); // DEN = F*F' shared.tmp[threadIdx.x] = FSQR(shared.F[threadIdx.x]); __syncthreads(); SUM512(shared.tmp,threadIdx.x); __syncthreads(); if (threadIdx.x == 0) shared.f = shared.b = shared.tmp[0]; // if (threadIdx.x == 0) //shared.PE[0] = DEN / frameSize; __syncthreads(); for (int order = 1; order <= max_order; order++) { // reff = F(order+1:frameSize) * B(1:frameSize-order)' / DEN shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * shared.F[threadIdx.x + order] * shared.B[threadIdx.x]; __syncthreads(); SUM512(shared.tmp, threadIdx.x); __syncthreads(); //float reff = shared.tmp[0] * rsqrtf(shared.b * shared.f); // Geometric lattice float reff = shared.tmp[0] * 2 / (shared.b + shared.f); // Burg method __syncthreads(); // Levinson-Durbin recursion // arp(order) = rc(order) = reff // arp(1:order-1) = arp(1:order-1) - reff * arp(order-1:-1:1) if (threadIdx.x == 32) shared.arp[order - 1] = shared.rc[order - 1] = reff; if (threadIdx.x < 32) shared.arp[threadIdx.x] -= (threadIdx.x < order - 1) * __fmul_rz(reff, shared.arp[order - 2 - threadIdx.x]); // F1 = F(order+1:frameSize) - reff * B(1:frameSize-order) // B(1:frameSize-order) = B(1:frameSize-order) - reff * F(order+1:frameSize) // F(order+1:frameSize) = F1 if (threadIdx.x < frameSize - order) { float f;// = shared.F[threadIdx.x + order]; shared.F[threadIdx.x + order] = (f = shared.F[threadIdx.x + order]) - reff * shared.B[threadIdx.x]; shared.B[threadIdx.x] -= reff * f; } __syncthreads(); // f = F(order+1:frameSize) * F(order+1:frameSize)' // b = B(1:frameSize-order) * B(1:frameSize-order)' shared.tmp[threadIdx.x] = (threadIdx.x < frameSize - order) * FSQR(shared.F[threadIdx.x + order]); __syncthreads(); SUM512(shared.tmp, threadIdx.x); __syncthreads(); if (threadIdx.x == 0) shared.f = shared.tmp[0]; __syncthreads(); shared.tmp[threadIdx.x] = (threadIdx.x < frameSize - order) * FSQR(shared.B[threadIdx.x]); __syncthreads(); SUM512(shared.tmp, threadIdx.x); __syncthreads(); if (threadIdx.x == 0) shared.b = shared.tmp[0]; __syncthreads(); if (threadIdx.x < 32) shared.lpc[order - 1][threadIdx.x] = shared.arp[threadIdx.x]; //if (threadIdx.x == 0) // shared.PE[order] = (shared.b + shared.f) / 2 / (frameSize - order); __syncthreads(); } for (int order = 1 + (threadIdx.x >> 5); order <= max_order; order += 16) { // Quantization int cn = threadIdx.x & 31; int precision = 10 - (order > 8) - min(2, shared.task.wbits); int taskNo = taskCount * blockIdx.y + order - 1; shared.bits[threadIdx.x] = __mul24((33 - __clz(__float2int_rn(fabs(shared.lpc[order - 1][cn]) * (1 << 15))) - precision), cn < order); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 16]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 8]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 4]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 2]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 1]); int sh = max(0,min(15, 15 - shared.bits[threadIdx.x - cn])); // reverse coefs int coef = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(shared.lpc[order - 1][order - 1 - cn] * (1 << sh)))); if (cn < order) tasks[taskNo].coefs[cn] = coef; if (cn == 0) tasks[taskNo].shift = sh; shared.bits[threadIdx.x] = 33 - max(__clz(coef),__clz(-1 ^ coef)); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 16]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 8]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 4]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 2]); shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 1]); int cbits = shared.bits[threadIdx.x - cn]; if (cn == 0) tasks[taskNo].cbits = cbits; } } // blockDim.x == 32 // blockDim.y == 8 extern "C" __global__ void cudaEstimateResidual( int*output, int*samples, encodeResidualTaskStruct *tasks, int max_order, int frameSize, int partSize // should be blockDim.x * blockDim.y == 256 ) { __shared__ struct { int data[32*9]; volatile int residual[32*8]; encodeResidualTaskStruct task[8]; } shared; const int tid = threadIdx.x + threadIdx.y * blockDim.x; if (threadIdx.x < 16) ((int*)&shared.task[threadIdx.y])[threadIdx.x] = ((int*)(&tasks[blockIdx.y * blockDim.y + threadIdx.y]))[threadIdx.x]; __syncthreads(); const int pos = blockIdx.x * partSize; const int dataLen = min(frameSize - pos, partSize + max_order); // fetch samples shared.data[tid] = tid < dataLen ? samples[shared.task[0].samplesOffs + pos + tid] >> shared.task[0].wbits : 0; if (tid < 32) shared.data[tid + partSize] = tid + partSize < dataLen ? samples[shared.task[0].samplesOffs + pos + tid + partSize] >> shared.task[0].wbits : 0; const int residualLen = max(0,min(frameSize - pos - shared.task[threadIdx.y].residualOrder, partSize)); __syncthreads(); shared.residual[tid] = 0; shared.task[threadIdx.y].coefs[threadIdx.x] = threadIdx.x < max_order ? tasks[blockIdx.y * blockDim.y + threadIdx.y].coefs[threadIdx.x] : 0; for (int i = blockDim.y * (shared.task[threadIdx.y].type == Verbatim); i < blockDim.y; i++) // += 32 { int ptr = threadIdx.x + (i<<5); // compute residual int sum = 0; int c = 0; for (c = 0; c < shared.task[threadIdx.y].residualOrder; c++) sum += __mul24(shared.data[ptr + c], shared.task[threadIdx.y].coefs[c]); sum = shared.data[ptr + c] - (sum >> shared.task[threadIdx.y].shift); shared.residual[tid] += __mul24(ptr < residualLen, min(0x7fffff,(sum << 1) ^ (sum >> 31))); } // enable this line when using blockDim.x == 64 //__syncthreads(); if (threadIdx.x < 32) shared.residual[tid] += shared.residual[tid + 32]; __syncthreads(); shared.residual[tid] += shared.residual[tid + 16]; shared.residual[tid] += shared.residual[tid + 8]; shared.residual[tid] += shared.residual[tid + 4]; shared.residual[tid] += shared.residual[tid + 2]; shared.residual[tid] += shared.residual[tid + 1]; // rice parameter search shared.residual[tid] = (shared.task[threadIdx.y].type != Constant || shared.residual[threadIdx.y * blockDim.x] != 0) * (__mul24(threadIdx.x >= 15, 0x7fffff) + residualLen * (threadIdx.x + 1) + ((shared.residual[threadIdx.y * blockDim.x] - (residualLen >> 1)) >> threadIdx.x)); shared.residual[tid] = min(shared.residual[tid], shared.residual[tid + 8]); shared.residual[tid] = min(shared.residual[tid], shared.residual[tid + 4]); shared.residual[tid] = min(shared.residual[tid], shared.residual[tid + 2]); shared.residual[tid] = min(shared.residual[tid], shared.residual[tid + 1]); if (threadIdx.x == 0) output[(blockIdx.y * blockDim.y + threadIdx.y) * 64 + blockIdx.x] = shared.residual[tid]; } #define BEST_INDEX(a,b) ((a) + ((b) - (a)) * (shared.length[b] < shared.length[a])) extern "C" __global__ void cudaChooseBestMethod( encodeResidualTaskStruct *tasks, int *residual, int partCount, // <= blockDim.y (256) int taskCount ) { __shared__ struct { volatile int index[128]; volatile int partLen[512]; int length[256]; volatile encodeResidualTaskStruct task[16]; } shared; const int tid = threadIdx.x + threadIdx.y * 32; if (tid < 256) shared.length[tid] = 0x7fffffff; for (int task = 0; task < taskCount; task += blockDim.y) if (task + threadIdx.y < taskCount) { // fetch task data ((int*)&shared.task[threadIdx.y])[threadIdx.x] = ((int*)(tasks + task + threadIdx.y + taskCount * blockIdx.y))[threadIdx.x]; int sum = 0; for (int pos = 0; pos < partCount; pos += blockDim.x) sum += (pos + threadIdx.x < partCount ? residual[pos + threadIdx.x + 64 * (task + threadIdx.y + taskCount * blockIdx.y)] : 0); shared.partLen[tid] = sum; // length sum: reduction in shared mem shared.partLen[tid] += shared.partLen[tid + 16]; shared.partLen[tid] += shared.partLen[tid + 8]; shared.partLen[tid] += shared.partLen[tid + 4]; shared.partLen[tid] += shared.partLen[tid + 2]; shared.partLen[tid] += shared.partLen[tid + 1]; // return sum if (threadIdx.x == 0) { int obits = shared.task[threadIdx.y].obits - shared.task[threadIdx.y].wbits; shared.length[task + threadIdx.y] = min(obits * shared.task[threadIdx.y].blocksize, shared.task[threadIdx.y].type == Fixed ? shared.task[threadIdx.y].residualOrder * obits + 6 + shared.partLen[threadIdx.y * 32] : shared.task[threadIdx.y].type == LPC ? shared.task[threadIdx.y].residualOrder * obits + 4 + 5 + shared.task[threadIdx.y].residualOrder * shared.task[threadIdx.y].cbits + 6 + (4 * partCount/2)/* << porder */ + shared.partLen[threadIdx.y * 32] : shared.task[threadIdx.y].type == Constant ? obits * (1 + shared.task[threadIdx.y].blocksize * (shared.partLen[threadIdx.y * 32] != 0)) : obits * shared.task[threadIdx.y].blocksize); } } //shared.index[threadIdx.x] = threadIdx.x; //shared.length[threadIdx.x] = (threadIdx.x < taskCount) ? tasks[threadIdx.x + taskCount * blockIdx.y].size : 0x7fffffff; __syncthreads(); //if (tid < 128) shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 128]); __syncthreads(); if (tid < 128) shared.index[tid] = BEST_INDEX(tid, tid + 128); __syncthreads(); if (tid < 64) shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 64]); __syncthreads(); if (tid < 32) { shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 32]); shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 16]); shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 8]); shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 4]); shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 2]); shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 1]); } __syncthreads(); // if (threadIdx.x < sizeof(encodeResidualTaskStruct)/sizeof(int)) //((int*)(tasks_out + blockIdx.y))[threadIdx.x] = ((int*)(tasks + taskCount * blockIdx.y + shared.index[0]))[threadIdx.x]; if (tid == 0) tasks[taskCount * blockIdx.y].best_index = taskCount * blockIdx.y + shared.index[0]; if (tid < taskCount) tasks[tid + taskCount * blockIdx.y].size = shared.length[tid]; } extern "C" __global__ void cudaCopyBestMethod( encodeResidualTaskStruct *tasks_out, encodeResidualTaskStruct *tasks, int count ) { __shared__ struct { int best_index; } shared; if (threadIdx.x == 0) shared.best_index = tasks[count * blockIdx.y].best_index; __syncthreads(); if (threadIdx.x < sizeof(encodeResidualTaskStruct)/sizeof(int)) ((int*)(tasks_out + blockIdx.y))[threadIdx.x] = ((int*)(tasks + shared.best_index))[threadIdx.x]; } extern "C" __global__ void cudaCopyBestMethodStereo( encodeResidualTaskStruct *tasks_out, encodeResidualTaskStruct *tasks, int count ) { __shared__ struct { int best_index[4]; int best_size[4]; int lr_index[2]; } shared; if (threadIdx.x < 4) shared.best_index[threadIdx.x] = tasks[count * (blockIdx.y * 4 + threadIdx.x)].best_index; if (threadIdx.x < 4) shared.best_size[threadIdx.x] = tasks[shared.best_index[threadIdx.x]].size; __syncthreads(); if (threadIdx.x == 0) { int bitsBest = 0x7fffffff; if (bitsBest > shared.best_size[2] + shared.best_size[3]) // MidSide { bitsBest = shared.best_size[2] + shared.best_size[3]; shared.lr_index[0] = shared.best_index[2]; shared.lr_index[1] = shared.best_index[3]; } if (bitsBest > shared.best_size[3] + shared.best_size[1]) // RightSide { bitsBest = shared.best_size[3] + shared.best_size[1]; shared.lr_index[0] = shared.best_index[3]; shared.lr_index[1] = shared.best_index[1]; } if (bitsBest > shared.best_size[0] + shared.best_size[3]) // LeftSide { bitsBest = shared.best_size[0] + shared.best_size[3]; shared.lr_index[0] = shared.best_index[0]; shared.lr_index[1] = shared.best_index[3]; } if (bitsBest > shared.best_size[0] + shared.best_size[1]) // LeftRight { bitsBest = shared.best_size[0] + shared.best_size[1]; shared.lr_index[0] = shared.best_index[0]; shared.lr_index[1] = shared.best_index[1]; } } __syncthreads(); if (threadIdx.x < sizeof(encodeResidualTaskStruct)/sizeof(int)) ((int*)(tasks_out + 2 * blockIdx.y))[threadIdx.x] = ((int*)(tasks + shared.lr_index[0]))[threadIdx.x]; if (threadIdx.x == 0) tasks_out[2 * blockIdx.y].residualOffs = tasks[shared.best_index[0]].residualOffs; if (threadIdx.x < sizeof(encodeResidualTaskStruct)/sizeof(int)) ((int*)(tasks_out + 2 * blockIdx.y + 1))[threadIdx.x] = ((int*)(tasks + shared.lr_index[1]))[threadIdx.x]; if (threadIdx.x == 0) tasks_out[2 * blockIdx.y + 1].residualOffs = tasks[shared.best_index[1]].residualOffs; } extern "C" __global__ void cudaEncodeResidual( int*output, int*samples, encodeResidualTaskStruct *tasks ) { __shared__ struct { int data[256 + 32]; encodeResidualTaskStruct task; } shared; const int tid = threadIdx.x; if (threadIdx.x < sizeof(shared.task) / sizeof(int)) ((int*)&shared.task)[threadIdx.x] = ((int*)(&tasks[blockIdx.y]))[threadIdx.x]; __syncthreads(); const int partSize = blockDim.x; const int pos = blockIdx.x * partSize; const int dataLen = min(shared.task.blocksize - pos, partSize + shared.task.residualOrder); // fetch samples shared.data[tid] = tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] >> shared.task.wbits : 0; if (tid < 32) shared.data[tid + partSize] = tid + partSize < dataLen ? samples[shared.task.samplesOffs + pos + tid + partSize] >> shared.task.wbits : 0; const int residualLen = max(0,min(shared.task.blocksize - pos - shared.task.residualOrder, partSize)); __syncthreads(); // compute residual int sum = 0; for (int c = 0; c < shared.task.residualOrder; c++) sum += __mul24(shared.data[tid + c], shared.task.coefs[c]); if (tid < residualLen) output[shared.task.residualOffs + pos + tid] = shared.data[tid + shared.task.residualOrder] - (sum >> shared.task.shift); } #endif