// ************************************************ // ************************************************ // Sample program to use reed_solomon.c // (c) 2009 Frederic Didier. #include "reed_solomon.h" #include "stdio.h" #include "stdlib.h" #include "time.h" /************************************************/ /** Random number generator -> 32bits **/ /** Mersenne twister code **/ /************************************************/ /* A C-program for MT19937: Integer version */ /* genrand() generates one pseudorandom unsigned integer (32bit) */ /* which is uniformly distributed among 0 to 2^32-1 for each */ /* call. sgenrand(seed) set initial values to the working area */ /* of 624 words. Before genrand(), sgenrand(seed) must be */ /* called once. (seed is any 32-bit integer except for 0). */ /* Coded by Takuji Nishimura, considering the suggestions by */ /* Topher Cooper and Marc Rieffel in July-Aug. 1997. */ /* This library is free software; you can redistribute it and/or */ /* modify it under the terms of the GNU Library General Public */ /* License as published by the Free Software Foundation; either */ /* version 2 of the License, or (at your option) any later */ /* version. */ /* This library is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */ /* See the GNU Library General Public License for more details. */ /* You should have received a copy of the GNU Library General */ /* Public License along with this library; if not, write to the */ /* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA */ /* 02111-1307 USA */ /* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. */ /* Any feedback is very welcome. For any question, comments, */ /* see http://www.math.keio.ac.jp/matumoto/emt.html or email */ /* matumoto@math.keio.ac.jp */ /* Period parameters */ #define MT_N 624 #define MT_M 397 #define MATRIX_A 0x9908b0df /* constant vector a */ #define UPPER_MASK 0x80000000 /* most significant w-r bits */ #define LOWER_MASK 0x7fffffff /* least significant r bits */ /* Tempering parameters */ #define TEMPERING_MASK_B 0x9d2c5680 #define TEMPERING_MASK_C 0xefc60000 #define TEMPERING_SHIFT_U(y) (y >> 11) #define TEMPERING_SHIFT_S(y) (y << 7) #define TEMPERING_SHIFT_T(y) (y << 15) #define TEMPERING_SHIFT_L(y) (y >> 18) static unsigned long mt[MT_N]; /* the table for the state vector */ static int mti=MT_N+1; /* mti==MT_N+1 means mt[MT_N] is not initialized */ /* initializing the table with a NONZERO seed */ void sgenrand(unsigned long seed) { /* setting initial seeds to mt[MT_N] using */ /* the generator Line 25 of Table 1 in */ /* [KNUTH 1981, The Art of Computer Programming */ /* Vol. 2 (2nd Ed.), pp102] */ mt[0]= seed & 0xffffffff; for (mti=1; mti= MT_N) { /* generate MT_N words at one time */ int kk; if (mti == MT_N+1) /* if sgenrand() has not been called, */ sgenrand(4357); /* a default initial seed is used */ for (kk=0;kk> 1) ^ mag01[y & 0x1]; } for (;kk> 1) ^ mag01[y & 0x1]; } y = (mt[MT_N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= TEMPERING_SHIFT_U(y); y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B; y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C; y ^= TEMPERING_SHIFT_L(y); return y; } double double_genrand() { return genrand() * (1.0/4294967295.0); } // ******************************************************* // The Art of Computer programming - Knuth // vol 2 - section 3.4.2 page 137 // Algorithm S (Selection sampling technique) void generate_positions(int N, int K, int *pos) { int size=N; int w=K; do { if (double_genrand()*size <= w) { pos[K-w] = N-size; w--; } size--; } while (size); } //void generate_message(byte *data, int size) //{ // int *p = (int *)data; // size >>=2; // int i; // for (i=0; i>=2; for (i=0; i>=1; for (i=0; i>=2; for (i=0; i5) S = atoi(argv[5]); if (argc>6) m_size = atoi(argv[6]) << 20; // modify packet size // always divisible by [4], // if xor code used, divisible by [4*n_field] inc = 4 * n_field; while (temp < S) temp +=inc; S = temp; // number of field elements per packets. nb_elt = (S * 8) / n_field; // compute number of blocs nb_bloc = m_size / (K*S); if (nb_bloc==0) nb_bloc=1; // power of two just greater than N while ((1<