/**
* CUETools.Flake: pure managed FLAC audio encoder
* Copyright (c) 2009 Grigory Chudov
* Based on Flake encoder, http://flake-enc.sourceforge.net/
* Copyright (c) 2006-2009 Justin Ruggles
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define NOINTEROP
using System;
using System.ComponentModel;
using System.Text;
using System.IO;
using System.Collections.Generic;
using System.Security.Cryptography;
#if INTEROP
using System.Runtime.InteropServices;
#endif
using CUETools.Codecs;
namespace CUETools.Codecs.FLAKE
{
public class FlakeWriterSettings : AudioEncoderSettings
{
public FlakeWriterSettings()
: base()
{
}
public override string GetSupportedModes(out string defaultMode)
{
defaultMode = "7";
return this.AllowNonSubset ? "0 1 2 3 4 5 6 7 8 9 10 11" : "0 1 2 3 4 5 6 7 8";
}
public override bool IsValid()
{
return EncoderModeIndex >= 0 &&
(Padding >= 0 && Padding <= 1024 * 1024) &&
(BlockSize == 0 || (BlockSize >= 256 && BlockSize <= Flake.MAX_BLOCKSIZE)) &&
(AllowNonSubset || EncoderModeIndex <= 8);
}
[DefaultValue(false)]
[DisplayName("Verify")]
[SRDescription(typeof(Properties.Resources), "DoVerifyDescription")]
public bool DoVerify { get; set; }
[DefaultValue(true)]
[DisplayName("MD5")]
[SRDescription(typeof(Properties.Resources), "DoMD5Description")]
public bool DoMD5 { get; set; }
[DefaultValue(false)]
[DisplayName("Allow Non-subset")]
[SRDescription(typeof(Properties.Resources), "AllowNonSubsetDescription")]
public bool AllowNonSubset { get; set; }
}
[AudioEncoderClass("cuetools", "flac", true, 4, typeof(FlakeWriterSettings))]
//[AudioEncoderClass("libFlake nonsub", "flac", true, "9 10 11", "9", 3, typeof(FlakeWriterSettings))]
public class FlakeWriter : IAudioDest
{
Stream _IO = null;
string _path;
long _position;
// number of audio channels
// set by user prior to calling flake_encode_init
// valid values are 1 to 8
int channels, ch_code;
// audio sample rate in Hz
// set by user prior to calling flake_encode_init
int sr_code0, sr_code1;
// sample size in bits
// set by user prior to calling flake_encode_init
// only 16-bit is currently supported
int bps_code;
// total stream samples
// set by user prior to calling flake_encode_init
// if 0, stream length is unknown
int sample_count = -1;
FlakeEncodeParams eparams;
// maximum frame size in bytes
// set by flake_encode_init
// this can be used to allocate memory for output
int max_frame_size;
byte[] frame_buffer = null;
int frame_count = 0;
long first_frame_offset = 0;
#if INTEROP
TimeSpan _userProcessorTime;
#endif
// header bytes
// allocated by flake_encode_init and freed by flake_encode_close
byte[] header;
int[] samplesBuffer;
int[] verifyBuffer;
int[] residualBuffer;
float[] windowBuffer;
double[] windowScale;
int samplesInBuffer = 0;
int m_blockSize = 0;
int _totalSize = 0;
int _windowsize = 0, _windowcount = 0;
Crc8 crc8;
MD5 md5;
FlacFrame frame;
FlakeReader verify;
SeekPoint[] seek_table;
int seek_table_offset = -1;
bool inited = false;
public FlakeWriter(string path, Stream IO, FlakeWriterSettings settings)
{
m_settings = settings;
//if (Settings.PCM.BitsPerSample != 16)
// throw new Exception("Bits per sample must be 16.");
//if (Settings.PCM.ChannelCount != 2)
// throw new Exception("ChannelCount must be 2.");
channels = Settings.PCM.ChannelCount;
// flake_validate_params
_path = path;
_IO = IO;
samplesBuffer = new int[Flake.MAX_BLOCKSIZE * (channels == 2 ? 4 : channels)];
residualBuffer = new int[Flake.MAX_BLOCKSIZE * (channels == 2 ? 10 : channels + 1)];
windowBuffer = new float[Flake.MAX_BLOCKSIZE * 2 * lpc.MAX_LPC_WINDOWS];
windowScale = new double[lpc.MAX_LPC_WINDOWS];
var _compressionLevel = Settings.EncoderModeIndex;
eparams.flake_set_defaults(_compressionLevel);
crc8 = new Crc8();
frame = new FlacFrame(channels * 2);
}
public FlakeWriter(string path, FlakeWriterSettings settings)
: this(path, null, settings)
{
}
public int TotalSize
{
get
{
return _totalSize;
}
}
FlakeWriterSettings m_settings;
public AudioEncoderSettings Settings
{
get
{
return m_settings;
}
}
#if INTEROP
[DllImport("kernel32.dll")]
static extern bool GetThreadTimes(IntPtr hThread, out long lpCreationTime, out long lpExitTime, out long lpKernelTime, out long lpUserTime);
[DllImport("kernel32.dll")]
static extern IntPtr GetCurrentThread();
#endif
void DoClose()
{
if (inited)
{
while (samplesInBuffer > 0)
{
m_blockSize = samplesInBuffer;
output_frame();
}
if (_IO.CanSeek)
{
if (sample_count <= 0 && _position != 0)
{
BitWriter bitwriter = new BitWriter(header, 0, 4);
bitwriter.writebits(32, (int)_position);
bitwriter.flush();
_IO.Position = 22;
_IO.Write(header, 0, 4);
}
if (md5 != null)
{
md5.TransformFinalBlock(frame_buffer, 0, 0);
_IO.Position = 26;
_IO.Write(md5.Hash, 0, md5.Hash.Length);
}
if (seek_table != null)
{
_IO.Position = seek_table_offset;
int len = write_seekpoints(header, 0, 0);
_IO.Write(header, 4, len - 4);
}
}
_IO.Close();
inited = false;
}
#if INTEROP
long fake, KernelStart, UserStart;
GetThreadTimes(GetCurrentThread(), out fake, out fake, out KernelStart, out UserStart);
_userProcessorTime = new TimeSpan(UserStart);
#endif
}
public void Close()
{
DoClose();
if (sample_count > 0 && _position != sample_count)
throw new Exception(Properties.Resources.ExceptionSampleCount);
}
public void Delete()
{
if (inited)
{
_IO.Close();
inited = false;
}
if (_path != "")
File.Delete(_path);
}
public long Position
{
get
{
return _position;
}
}
public long FinalSampleCount
{
set { sample_count = (int)value; }
}
public OrderMethod OrderMethod
{
get { return eparams.order_method; }
set { eparams.order_method = value; }
}
public PredictionType PredictionType
{
get { return eparams.prediction_type; }
set { eparams.prediction_type = value; }
}
public StereoMethod StereoMethod
{
get { return eparams.stereo_method; }
set { eparams.stereo_method = value; }
}
public WindowMethod WindowMethod
{
get { return eparams.window_method; }
set { eparams.window_method = value; }
}
public int DevelopmentMode
{
get { return eparams.development_mode; }
set { eparams.development_mode = value; }
}
public int MinPrecisionSearch
{
get { return eparams.lpc_min_precision_search; }
set
{
if (value < 0 || value > eparams.lpc_max_precision_search)
throw new Exception("unsupported MinPrecisionSearch value");
eparams.lpc_min_precision_search = value;
}
}
public int MaxPrecisionSearch
{
get { return eparams.lpc_max_precision_search; }
set
{
if (value < eparams.lpc_min_precision_search || value >= lpc.MAX_LPC_PRECISIONS)
throw new Exception("unsupported MaxPrecisionSearch value");
eparams.lpc_max_precision_search = value;
}
}
public WindowFunction WindowFunction
{
get { return eparams.window_function; }
set { eparams.window_function = value; }
}
public bool DoSeekTable
{
get { return eparams.do_seektable; }
set { eparams.do_seektable = value; }
}
public int VBRMode
{
get { return eparams.variable_block_size; }
set { eparams.variable_block_size = value; }
}
public int MinPredictionOrder
{
get
{
return PredictionType == PredictionType.Fixed ?
MinFixedOrder : MinLPCOrder;
}
set
{
if (PredictionType == PredictionType.Fixed)
MinFixedOrder = value;
else
MinLPCOrder = value;
}
}
public int MaxPredictionOrder
{
get
{
return PredictionType == PredictionType.Fixed ?
MaxFixedOrder : MaxLPCOrder;
}
set
{
if (PredictionType == PredictionType.Fixed)
MaxFixedOrder = value;
else
MaxLPCOrder = value;
}
}
public int MinLPCOrder
{
get
{
return eparams.min_prediction_order;
}
set
{
if (value < 1)
throw new Exception("invalid MinLPCOrder " + value.ToString());
if (eparams.max_prediction_order < value)
eparams.max_prediction_order = value;
eparams.min_prediction_order = value;
}
}
public int MaxLPCOrder
{
get
{
return eparams.max_prediction_order;
}
set
{
if (value > lpc.MAX_LPC_ORDER)
throw new Exception("invalid MaxLPCOrder " + value.ToString());
if (eparams.min_prediction_order > value)
eparams.min_prediction_order = value;
eparams.max_prediction_order = value;
}
}
public int EstimationDepth
{
get
{
return eparams.estimation_depth;
}
set
{
if (value > 32 || value < 1)
throw new Exception("invalid estimation_depth " + value.ToString());
eparams.estimation_depth = value;
}
}
public int MinFixedOrder
{
get
{
return eparams.min_fixed_order;
}
set
{
if (value < 0 || value > eparams.max_fixed_order)
throw new Exception("invalid MinFixedOrder " + value.ToString());
eparams.min_fixed_order = value;
}
}
public int MaxFixedOrder
{
get
{
return eparams.max_fixed_order;
}
set
{
if (value > 4 || value < eparams.min_fixed_order)
throw new Exception("invalid MaxFixedOrder " + value.ToString());
eparams.max_fixed_order = value;
}
}
public int MinPartitionOrder
{
get { return eparams.min_partition_order; }
set
{
if (value < 0 || value > eparams.max_partition_order)
throw new Exception("invalid MinPartitionOrder " + value.ToString());
eparams.min_partition_order = value;
}
}
public int MaxPartitionOrder
{
get { return eparams.max_partition_order; }
set
{
if (value > 8 || value < eparams.min_partition_order)
throw new Exception("invalid MaxPartitionOrder " + value.ToString());
eparams.max_partition_order = value;
}
}
public TimeSpan UserProcessorTime
{
get
{
#if INTEROP
return _userProcessorTime;
#else
return new TimeSpan(0);
#endif
}
}
unsafe int get_wasted_bits(int* signal, int samples)
{
int i, shift;
int x = 0;
for (i = 0; i < samples && 0 == (x & 1); i++)
x |= signal[i];
if (x == 0)
{
shift = 0;
}
else
{
for (shift = 0; 0 == (x & 1); shift++)
x >>= 1;
}
if (shift > 0)
{
for (i = 0; i < samples; i++)
signal[i] >>= shift;
}
return shift;
}
///
/// Copy channel-interleaved input samples into separate subframes
///
///
///
///
unsafe void copy_samples(int[,] samples, int pos, int block)
{
fixed (int* fsamples = samplesBuffer, src = &samples[pos, 0])
{
if (channels == 2)
{
if (eparams.stereo_method == StereoMethod.Independent)
AudioSamples.Deinterlace(fsamples + samplesInBuffer, fsamples + Flake.MAX_BLOCKSIZE + samplesInBuffer, src, block);
else
{
int* left = fsamples + samplesInBuffer;
int* right = left + Flake.MAX_BLOCKSIZE;
int* leftM = right + Flake.MAX_BLOCKSIZE;
int* rightM = leftM + Flake.MAX_BLOCKSIZE;
for (int i = 0; i < block; i++)
{
int l = src[2 * i];
int r = src[2 * i + 1];
left[i] = l;
right[i] = r;
leftM[i] = (l + r) >> 1;
rightM[i] = l - r;
}
}
}
else
for (int ch = 0; ch < channels; ch++)
{
int* psamples = fsamples + ch * Flake.MAX_BLOCKSIZE + samplesInBuffer;
for (int i = 0; i < block; i++)
psamples[i] = src[i * channels + ch];
}
}
samplesInBuffer += block;
}
//unsafe static void channel_decorrelation(int* leftS, int* rightS, int *leftM, int *rightM, int blocksize)
//{
// for (int i = 0; i < blocksize; i++)
// {
// leftM[i] = (leftS[i] + rightS[i]) >> 1;
// rightM[i] = leftS[i] - rightS[i];
// }
//}
unsafe void encode_residual_verbatim(int* res, int* smp, uint n)
{
AudioSamples.MemCpy(res, smp, (int) n);
}
unsafe static void encode_residual_fixed(int* res, int* smp, int n, int order)
{
int i;
int s0, s1, s2;
switch (order)
{
case 0:
AudioSamples.MemCpy(res, smp, n);
return;
case 1:
*(res++) = s1 = *(smp++);
for (i = n - 1; i > 0; i--)
{
s0 = *(smp++);
*(res++) = s0 - s1;
s1 = s0;
}
return;
case 2:
*(res++) = s2 = *(smp++);
*(res++) = s1 = *(smp++);
for (i = n - 2; i > 0; i--)
{
s0 = *(smp++);
*(res++) = s0 - 2 * s1 + s2;
s2 = s1;
s1 = s0;
}
return;
case 3:
res[0] = smp[0];
res[1] = smp[1];
res[2] = smp[2];
for (i = 3; i < n; i++)
{
res[i] = smp[i] - 3 * smp[i - 1] + 3 * smp[i - 2] - smp[i - 3];
}
return;
case 4:
res[0] = smp[0];
res[1] = smp[1];
res[2] = smp[2];
res[3] = smp[3];
for (i = 4; i < n; i++)
{
res[i] = smp[i] - 4 * smp[i - 1] + 6 * smp[i - 2] - 4 * smp[i - 3] + smp[i - 4];
}
return;
default:
return;
}
}
static unsafe uint calc_optimal_rice_params(int porder, int* parm, ulong* sums, uint n, uint pred_order, ref int method)
{
uint part = (1U << porder);
uint cnt = (n >> porder) - pred_order;
int maxK = method > 0 ? 30 : Flake.MAX_RICE_PARAM;
int k = cnt > 0 ? Math.Min(maxK, BitReader.log2i(sums[0] / cnt)) : 0;
int realMaxK0 = k;
ulong all_bits = cnt * ((uint)k + 1U) + (sums[0] >> k);
parm[0] = k;
cnt = (n >> porder);
for (uint i = 1; i < part; i++)
{
k = Math.Min(maxK, BitReader.log2i(sums[i] / cnt));
realMaxK0 = Math.Max(realMaxK0, k);
all_bits += cnt * ((uint)k + 1U) + (sums[i] >> k);
parm[i] = k;
}
method = realMaxK0 > Flake.MAX_RICE_PARAM ? 1 : 0;
return (uint)all_bits + ((4U + (uint)method) * part);
}
static unsafe void calc_lower_sums(int pmin, int pmax, ulong* sums)
{
for (int i = pmax - 1; i >= pmin; i--)
{
for (int j = 0; j < (1 << i); j++)
{
sums[i * Flake.MAX_PARTITIONS + j] =
sums[(i + 1) * Flake.MAX_PARTITIONS + 2 * j] +
sums[(i + 1) * Flake.MAX_PARTITIONS + 2 * j + 1];
}
}
}
static unsafe void calc_sums(int pmin, int pmax, uint* data, uint n, uint pred_order, ulong* sums)
{
int parts = (1 << pmax);
uint* res = data + pred_order;
uint cnt = (n >> pmax) - pred_order;
ulong sum = 0;
for (uint j = cnt; j > 0; j--)
sum += *(res++);
sums[0] = sum;
cnt = (n >> pmax);
for (int i = 1; i < parts; i++)
{
sum = 0;
for (uint j = cnt; j > 0; j--)
sum += *(res++);
sums[i] = sum;
}
}
///
/// Special case when (n >> pmax) == 18
///
///
///
///
///
///
///
static unsafe void calc_sums18(int pmin, int pmax, uint* data, uint n, uint pred_order, ulong* sums)
{
int parts = (1 << pmax);
uint* res = data + pred_order;
uint cnt = 18 - pred_order;
ulong sum = 0;
for (uint j = cnt; j > 0; j--)
sum += *(res++);
sums[0] = sum;
for (int i = 1; i < parts; i++)
{
sums[i] = 0UL +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++);
}
}
///
/// Special case when (n >> pmax) == 18
///
///
///
///
///
///
///
static unsafe void calc_sums16(int pmin, int pmax, uint* data, uint n, uint pred_order, ulong* sums)
{
int parts = (1 << pmax);
uint* res = data + pred_order;
uint cnt = 16 - pred_order;
ulong sum = 0;
for (uint j = cnt; j > 0; j--)
sum += *(res++);
sums[0] = sum;
for (int i = 1; i < parts; i++)
{
sums[i] = 0UL +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++) +
*(res++) + *(res++) + *(res++) + *(res++);
}
}
static unsafe uint calc_rice_params_sums(RiceContext rc, int pmin, int pmax, ulong* sums, uint n, uint pred_order, int bps)
{
int* parm = stackalloc int[(pmax + 1) * Flake.MAX_PARTITIONS];
//uint* bits = stackalloc uint[Flake.MAX_PARTITION_ORDER];
//assert(pmin >= 0 && pmin <= Flake.MAX_PARTITION_ORDER);
//assert(pmax >= 0 && pmax <= Flake.MAX_PARTITION_ORDER);
//assert(pmin <= pmax);
// sums for lower levels
calc_lower_sums(pmin, pmax, sums);
uint opt_bits = AudioSamples.UINT32_MAX;
int opt_porder = pmin;
int opt_method = 0;
for (int i = pmin; i <= pmax; i++)
{
int method = bps > 16 ? 1 : 0;
uint bits = calc_optimal_rice_params(i, parm + i * Flake.MAX_PARTITIONS, sums + i * Flake.MAX_PARTITIONS, n, pred_order, ref method);
if (bits <= opt_bits)
{
opt_bits = bits;
opt_porder = i;
opt_method = method;
}
}
rc.porder = opt_porder;
rc.coding_method = opt_method;
fixed (int* rparms = rc.rparams)
AudioSamples.MemCpy(rparms, parm + opt_porder * Flake.MAX_PARTITIONS, (1 << opt_porder));
return opt_bits;
}
static unsafe uint calc_rice_params(RiceContext rc, int pmin, int pmax, int* data, uint n, uint pred_order, int bps)
{
uint* udata = stackalloc uint[(int)n];
ulong* sums = stackalloc ulong[(pmax + 1) * Flake.MAX_PARTITIONS];
//assert(pmin >= 0 && pmin <= Flake.MAX_PARTITION_ORDER);
//assert(pmax >= 0 && pmax <= Flake.MAX_PARTITION_ORDER);
//assert(pmin <= pmax);
for (uint i = 0; i < n; i++)
udata[i] = (uint) ((data[i] << 1) ^ (data[i] >> 31));
// sums for highest level
if ((n >> pmax) == 18)
calc_sums18(pmin, pmax, udata, n, pred_order, sums + pmax * Flake.MAX_PARTITIONS);
else if ((n >> pmax) == 16)
calc_sums16(pmin, pmax, udata, n, pred_order, sums + pmax * Flake.MAX_PARTITIONS);
else
calc_sums(pmin, pmax, udata, n, pred_order, sums + pmax * Flake.MAX_PARTITIONS);
return calc_rice_params_sums(rc, pmin, pmax, sums, n, pred_order, bps);
}
static int get_max_p_order(int max_porder, int n, int order)
{
int porder = Math.Min(max_porder, BitReader.log2i(n ^ (n - 1)));
if (order > 0)
porder = Math.Min(porder, BitReader.log2i(n / order));
return porder;
}
// private static int[,] best_x = new int[14,8193];
private static int[][] good_x = new int[][] {
new int[] {}, // 0
new int[] { // 1
0x03,0x01,0x00,0x02
},
new int[] {// 2
0x01,0x07,0x06,0x02, 0x03,0x04,0x00,0x05
},
new int[] { // 3
0x0b,0x0f,0x0e,0x0d, 0x03,0x01,0x05,0x02
},
new int[] { //4
0x17,0x09,0x03,0x0a, 0x06,0x1d,0x1f,0x05, 0x1c,0x0d,0x07,0x0c,
},
new int[] { // 5
0x2b,0x3d,0x37,0x07, 0x11,0x15,0x36,0x3f,
},
new int[] { // 6
0x6b,0x15,0x7e,0x31, 0x07,0x1a,0x29,0x26, 0x5d,0x23,0x6f,0x19, 0x56,0x75
},
new int[] { // 7
0xdb,0xef,0xb5,0x47, 0xee,0x63,0x0b,0xfd, 0x31,0xbe,0xed,0x33, 0xff,0xfb,0xd6,0xbb
},
new int[] { // 8
0x1bb,0x1c7,0x069,0x087, 0x1fd,0x16e,0x095,0x1de, 0x066,0x071,0x055,0x09a,
},
new int[] { // 9
0x36b,0x3bd,0x097,0x0c3, 0x0e3,0x0b1,0x107,0x2de, 0x3ef,0x2fb,0x3d5,0x139
},
new int[] { // 10
//0x0e3,0x199,0x383,0x307, 0x1e3,0x01f,0x269,0x0f1, 0x266,0x03f,0x2cd,0x1c3, 0x19a,0x387,0x339,0x259,
0x6eb,0x187,0x77d,0x271, 0x195,0x259,0x5ae,0x169,
},
new int[] { // 11
0xddb,0xf77,0xb6d,0x587, 0x2c3,0x03b,0xef5,0x1e3, 0xdbe,
},
new int[] { // 12
0x1aeb,0x0587,0x0a71,0x1dbd, 0x0559,0x0aa5,0x0a2e,0x0d43, 0x05aa,0x00f3,0x0696,0x03c6,
},
new int[] { // 13
0x35d7,0x2f6f,0x0aa3,0x1569, 0x150f,0x3d79,0x0dc3,0x309f/*?*/,
},
new int[] { // 14
0x75d7,0x5f7b,0x6a8f,0x29a3,
},
new int[] { // 15
0xddd7,0xaaaf,0x55c3,0xf77b,
},
new int[] { // 16
0x1baeb,0x1efaf,0x1d5bf,0x1cff3,
},
new int[] { // 17
0x36dd7,0x3bb7b,0x3df6f,0x2d547,
},
new int[] { // 18
0x75dd7,0x6f77b,0x7aaaf,0x5ddd3,
},
new int[] { // 19
0xdddd7,0xf777b,0xd5547,0xb6ddb,
},
new int[] { // 20
0x1baeeb,0x1efbaf,0x1aaabf,0x17bbeb,
},
new int[] { // 21
0x376dd7,0x3ddf7b,0x2d550f,0x0aaaa3,
},
new int[] { // 22
0x6eddd7,0x77777b,0x5dcd4f,0x5d76f9,
},
new int[] { // 23
0xdeddd7,0xb5b6eb,0x55552b,0x2aaac3,
},
new int[] { // 24
0x1dddbb7,0x1b76eeb,0x17bbf5f,0x1eeaa9f,
},
new int[] { // 25
},
new int[] { // 26
},
new int[] { // 27
},
new int[] { // 28
},
new int[] { // 29
},
new int[] { // 30
},
};
unsafe void postprocess_coefs(FlacFrame frame, FlacSubframe sf, int ch)
{
if (eparams.development_mode < 0)
return;
if (sf.type != SubframeType.LPC || sf.order > 30)
return;
int orig_window = sf.window;
int orig_order = sf.order;
int orig_shift = sf.shift;
int orig_cbits = sf.cbits;
uint orig_size = sf.size;
var orig_coefs = stackalloc int[orig_order];
for (int i = 0; i < orig_order; i++) orig_coefs[i] = sf.coefs[i];
int orig_xx = -1;
int orig_seq = 0;
int maxxx = Math.Min(good_x[orig_order].Length, eparams.development_mode);
var pmax = get_max_p_order(eparams.max_partition_order, frame.blocksize, orig_order);
var pmin = Math.Min(eparams.min_partition_order, pmax);
ulong* sums = stackalloc ulong[(pmax + 1) * Flake.MAX_PARTITIONS];
while (true)
{
var best_coefs = stackalloc int[orig_order];
int best_shift = orig_shift;
int best_cbits = orig_cbits;
uint best_size = orig_size;
int best_xx = -1;
for (int xx = -1; xx < maxxx; xx++)
{
int x = xx;
if (xx < 0)
{
if (orig_xx < 0 || maxxx < 1/*3*/)// || (orig_xx >> orig_order) != 0)
continue;
x = orig_xx;
orig_seq++;
}
else
{
orig_seq = 0;
if (orig_order < good_x.Length && good_x[orig_order] != null)
x = good_x[orig_order][xx];
}
frame.current.type = SubframeType.LPC;
frame.current.order = orig_order;
frame.current.window = orig_window;
frame.current.shift = orig_shift;
frame.current.cbits = orig_cbits;
if (((x >> orig_order) & 1) != 0)
{
frame.current.shift--;
frame.current.cbits--;
if (frame.current.shift < 0 || frame.current.cbits < 2)
continue;
}
ulong csum = 0;
int qmax = (1 << (frame.current.cbits - 1)) - 1;
for (int i = 0; i < frame.current.order; i++)
{
int shift = (x >> orig_order) & 1;
int increment = (x == 1 << orig_order) ? 0 : (((x >> i) & 1) << 1) - 1;
frame.current.coefs[i] = (orig_coefs[i] + (increment << orig_seq)) >> shift;
if (frame.current.coefs[i] < -(qmax + 1)) frame.current.coefs[i] = -(qmax + 1);
if (frame.current.coefs[i] > qmax) frame.current.coefs[i] = qmax;
csum += (ulong)Math.Abs(frame.current.coefs[i]);
}
fixed (int* coefs = frame.current.coefs)
{
if ((csum << frame.subframes[ch].obits) >= 1UL << 32)
lpc.encode_residual_long(frame.current.residual, frame.subframes[ch].samples, frame.blocksize, frame.current.order, coefs, frame.current.shift);
else
lpc.encode_residual(frame.current.residual, frame.subframes[ch].samples, frame.blocksize, frame.current.order, coefs, frame.current.shift);
}
var cur_size = calc_rice_params(frame.current.rc, pmin, pmax, frame.current.residual, (uint)frame.blocksize, (uint)frame.current.order, Settings.PCM.BitsPerSample);
frame.current.size = (uint)(frame.current.order * frame.subframes[ch].obits + 4 + 5 + frame.current.order * frame.current.cbits + 6 + (int)cur_size);
if (frame.current.size < best_size)
{
//var dif = best_size - frame.current.size;
for (int i = 0; i < frame.current.order; i++) best_coefs[i] = frame.current.coefs[i];
best_shift = frame.current.shift;
best_cbits = frame.current.cbits;
best_size = frame.current.size;
best_xx = x;
frame.ChooseBestSubframe(ch);
//if (dif > orig_order * 5)
// break;
}
if (xx < 0 && best_size < orig_size)
break;
}
if (best_size < orig_size)
{
//if (best_xx >= 0) best_x[order, best_xx]++;
//if (orig_size != 0x7FFFFFFF)
// System.Console.Write(string.Format(" {0}[{1:x}]", orig_size - best_size, best_xx));
for (int i = 0; i < orig_order; i++) orig_coefs[i] = best_coefs[i];
orig_shift = best_shift;
orig_cbits = best_cbits;
orig_size = best_size;
orig_xx = best_xx;
}
else
{
break;
}
}
//if (orig_size != 0x7FFFFFFF)
// System.Console.WriteLine();
//if (frame_count % 0x400 == 0)
//{
// for (int o = 0; o < best_x.GetLength(0); o++)
// {
// //for (int x = 0; x <= (1 << o); x++)
// // if (best_x[o, x] != 0)
// // System.Console.WriteLine(string.Format("{0:x2}\t{1:x4}\t{2}", o, x, best_x[o, x]));
// var s = new List>();
// for (int x = 0; x < (1 << o); x++)
// if (best_x[o, x] != 0)
// s.Add(new KeyValuePair(x, best_x[o, x]));
// s.Sort((x, y) => y.Value.CompareTo(x.Value));
// foreach (var x in s)
// System.Console.WriteLine(string.Format("{0:x2}\t{1:x4}\t{2}", o, x.Key, x.Value));
// int i = 0;
// foreach (var x in s)
// {
// System.Console.Write(string.Format(o <= 8 ? "0x{0:x2}," : "0x{0:x3},", x.Key));
// if ((++i) % 16 == 0)
// System.Console.WriteLine();
// }
// System.Console.WriteLine();
// }
//}
}
public static void SetCoefs(int order, int[] coefs)
{
good_x[order] = new int[coefs.Length];
for (int i = 0; i < coefs.Length; i++)
good_x[order][i] = coefs[i];
}
unsafe void encode_residual_lpc_sub(FlacFrame frame, float* lpcs, int iWindow, int order, int ch)
{
// select LPC precision based on block size
uint lpc_precision;
if (frame.blocksize <= 192) lpc_precision = 7U;
else if (frame.blocksize <= 384) lpc_precision = 8U;
else if (frame.blocksize <= 576) lpc_precision = 9U;
else if (frame.blocksize <= 1152) lpc_precision = 10U;
else if (frame.blocksize <= 2304) lpc_precision = 11U;
else if (frame.blocksize <= 4608) lpc_precision = 12U;
else if (frame.blocksize <= 8192) lpc_precision = 13U;
else if (frame.blocksize <= 16384) lpc_precision = 14U;
else lpc_precision = 15;
for (int i_precision = eparams.lpc_min_precision_search; i_precision <= eparams.lpc_max_precision_search && lpc_precision + i_precision < 16; i_precision++)
// check if we already calculated with this order, window and precision
if ((frame.subframes[ch].lpc_ctx[iWindow].done_lpcs[i_precision] & (1U << (order - 1))) == 0)
{
frame.subframes[ch].lpc_ctx[iWindow].done_lpcs[i_precision] |= (1U << (order - 1));
uint cbits = lpc_precision + (uint)i_precision;
frame.current.type = SubframeType.LPC;
frame.current.order = order;
frame.current.window = iWindow;
frame.current.cbits = (int)cbits;
fixed (int* coefs = frame.current.coefs)
{
lpc.quantize_lpc_coefs(lpcs + (frame.current.order - 1) * lpc.MAX_LPC_ORDER,
frame.current.order, cbits, coefs, out frame.current.shift, 15, 0);
if (frame.current.shift < 0 || frame.current.shift > 15)
throw new Exception("negative shift");
ulong csum = 0;
for (int i = frame.current.order; i > 0; i--)
csum += (ulong)Math.Abs(coefs[i - 1]);
if ((csum << frame.subframes[ch].obits) >= 1UL << 32)
lpc.encode_residual_long(frame.current.residual, frame.subframes[ch].samples, frame.blocksize, frame.current.order, coefs, frame.current.shift);
else
lpc.encode_residual(frame.current.residual, frame.subframes[ch].samples, frame.blocksize, frame.current.order, coefs, frame.current.shift);
}
int pmax = get_max_p_order(eparams.max_partition_order, frame.blocksize, frame.current.order);
int pmin = Math.Min(eparams.min_partition_order, pmax);
uint best_size = calc_rice_params(frame.current.rc, pmin, pmax, frame.current.residual, (uint)frame.blocksize, (uint)frame.current.order, Settings.PCM.BitsPerSample);
// not working
//for (int o = 1; o <= frame.current.order; o++)
//{
// if (frame.current.coefs[o - 1] > -(1 << frame.current.shift))
// {
// for (int i = o; i < frame.blocksize; i++)
// frame.current.residual[i] += frame.subframes[ch].samples[i - o] >> frame.current.shift;
// frame.current.coefs[o - 1]--;
// uint new_size = calc_rice_params(ref frame.current.rc, pmin, pmax, frame.current.residual, (uint)frame.blocksize, (uint)frame.current.order);
// if (new_size > best_size)
// {
// for (int i = o; i < frame.blocksize; i++)
// frame.current.residual[i] -= frame.subframes[ch].samples[i - o] >> frame.current.shift;
// frame.current.coefs[o - 1]++;
// }
// }
//}
frame.current.size = (uint)(frame.current.order * frame.subframes[ch].obits + 4 + 5 + frame.current.order * (int)cbits + 6 + (int)best_size);
frame.ChooseBestSubframe(ch);
//if (frame.current.size >= frame.subframes[ch].best.size)
// postprocess_coefs(frame, frame.current, ch);
//else
//{
// frame.ChooseBestSubframe(ch);
// postprocess_coefs(frame, frame.subframes[ch].best, ch);
//}
}
}
unsafe void encode_residual_fixed_sub(FlacFrame frame, int order, int ch)
{
if ((frame.subframes[ch].done_fixed & (1U << order)) != 0)
return; // already calculated;
frame.current.order = order;
frame.current.type = SubframeType.Fixed;
encode_residual_fixed(frame.current.residual, frame.subframes[ch].samples, frame.blocksize, frame.current.order);
int pmax = get_max_p_order(eparams.max_partition_order, frame.blocksize, frame.current.order);
int pmin = Math.Min(eparams.min_partition_order, pmax);
frame.current.size = (uint)(frame.current.order * frame.subframes[ch].obits) + 6
+ calc_rice_params(frame.current.rc, pmin, pmax, frame.current.residual, (uint)frame.blocksize, (uint)frame.current.order, Settings.PCM.BitsPerSample);
frame.subframes[ch].done_fixed |= (1U << order);
frame.ChooseBestSubframe(ch);
}
unsafe void encode_residual(FlacFrame frame, int ch, PredictionType predict, OrderMethod omethod, int pass, int best_window)
{
int* smp = frame.subframes[ch].samples;
int i, n = frame.blocksize;
// save best.window, because we can overwrite it later with fixed frame
// CONSTANT
for (i = 1; i < n; i++)
{
if (smp[i] != smp[0]) break;
}
if (i == n)
{
frame.subframes[ch].best.type = SubframeType.Constant;
frame.subframes[ch].best.residual[0] = smp[0];
frame.subframes[ch].best.size = (uint)frame.subframes[ch].obits;
return;
}
// VERBATIM
frame.current.type = SubframeType.Verbatim;
frame.current.size = (uint)(frame.subframes[ch].obits * frame.blocksize);
frame.ChooseBestSubframe(ch);
if (n < 5 || predict == PredictionType.None)
return;
// LPC
if (n > eparams.max_prediction_order &&
(predict == PredictionType.Levinson ||
predict == PredictionType.Search)
//predict == PredictionType.Search ||
//(pass == 2 && frame.subframes[ch].best.type == SubframeType.LPC))
)
{
float* lpcs = stackalloc float[lpc.MAX_LPC_ORDER * lpc.MAX_LPC_ORDER];
int min_order = eparams.min_prediction_order;
int max_order = eparams.max_prediction_order;
for (int iWindow = 0; iWindow < _windowcount; iWindow++)
{
if (best_window != -1 && iWindow != best_window)
continue;
LpcContext lpc_ctx = frame.subframes[ch].lpc_ctx[iWindow];
lpc_ctx.GetReflection(max_order, smp, n, frame.window_buffer + iWindow * Flake.MAX_BLOCKSIZE * 2);
lpc_ctx.ComputeLPC(lpcs);
//int frameSize = n;
//float* F = stackalloc float[frameSize];
//float* B = stackalloc float[frameSize];
//float* PE = stackalloc float[max_order + 1];
//float* arp = stackalloc float[max_order];
//float* rc = stackalloc float[max_order];
//for (int j = 0; j < frameSize; j++)
// F[j] = B[j] = smp[j];
//for (int K = 1; K <= max_order; K++)
//{
// // BURG:
// float denominator = 0.0f;
// //float denominator = F[K - 1] * F[K - 1] + B[frameSize - K] * B[frameSize - K];
// for (int j = 0; j < frameSize - K; j++)
// denominator += F[j + K] * F[j + K] + B[j] * B[j];
// denominator /= 2;
// // Estimate error
// PE[K - 1] = denominator / (frameSize - K);
// float reflectionCoeff = 0.0f;
// for (int j = 0; j < frameSize - K; j++)
// reflectionCoeff += F[j + K] * B[j];
// reflectionCoeff /= denominator;
// rc[K - 1] = arp[K - 1] = reflectionCoeff;
// // Levinson-Durbin
// for (int j = 0; j < (K - 1) >> 1; j++)
// {
// float arptmp = arp[j];
// arp[j] -= reflectionCoeff * arp[K - 2 - j];
// arp[K - 2 - j] -= reflectionCoeff * arptmp;
// }
// if (((K - 1) & 1) != 0)
// arp[(K - 1) >> 1] -= reflectionCoeff * arp[(K - 1) >> 1];
// for (int j = 0; j < frameSize - K; j++)
// {
// float f = F[j + K];
// float b = B[j];
// F[j + K] = f - reflectionCoeff * b;
// B[j] = b - reflectionCoeff * f;
// }
// for (int j = 0; j < K; j++)
// lpcs[(K - 1) * lpc.MAX_LPC_ORDER + j] = (float)arp[j];
//}
switch (omethod)
{
case OrderMethod.Akaike:
//lpc_ctx.SortOrdersAkaike(frame.blocksize, eparams.estimation_depth, max_order, 7.1, 0.0);
lpc_ctx.SortOrdersAkaike(frame.blocksize, eparams.estimation_depth, min_order, max_order, 4.5, 0.0);
break;
default:
throw new Exception("unknown order method");
}
for (i = 0; i < eparams.estimation_depth && i < max_order; i++)
encode_residual_lpc_sub(frame, lpcs, iWindow, lpc_ctx.best_orders[i], ch);
}
postprocess_coefs(frame, frame.subframes[ch].best, ch);
}
// FIXED
if (predict == PredictionType.Fixed ||
(predict == PredictionType.Search && pass != 1) ||
//predict == PredictionType.Search ||
//(pass == 2 && frame.subframes[ch].best.type == SubframeType.Fixed) ||
(n > eparams.max_fixed_order && n <= eparams.max_prediction_order))
{
int max_fixed_order = Math.Min(eparams.max_fixed_order, 4);
int min_fixed_order = Math.Min(eparams.min_fixed_order, max_fixed_order);
for (i = min_fixed_order; i <= max_fixed_order; i++)
encode_residual_fixed_sub(frame, i, ch);
}
}
unsafe void output_frame_header(FlacFrame frame, BitWriter bitwriter)
{
bitwriter.writebits(15, 0x7FFC);
bitwriter.writebits(1, eparams.variable_block_size > 0 ? 1 : 0);
bitwriter.writebits(4, frame.bs_code0);
bitwriter.writebits(4, sr_code0);
if (frame.ch_mode == ChannelMode.NotStereo)
bitwriter.writebits(4, ch_code);
else
bitwriter.writebits(4, (int) frame.ch_mode);
bitwriter.writebits(3, bps_code);
bitwriter.writebits(1, 0);
bitwriter.write_utf8(frame_count);
// custom block size
if (frame.bs_code1 >= 0)
{
if (frame.bs_code1 < 256)
bitwriter.writebits(8, frame.bs_code1);
else
bitwriter.writebits(16, frame.bs_code1);
}
// custom sample rate
if (sr_code1 > 0)
{
if (sr_code1 < 256)
bitwriter.writebits(8, sr_code1);
else
bitwriter.writebits(16, sr_code1);
}
// CRC-8 of frame header
bitwriter.flush();
byte crc = crc8.ComputeChecksum(frame_buffer, 0, bitwriter.Length);
bitwriter.writebits(8, crc);
}
unsafe void output_residual(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub)
{
// rice-encoded block
bitwriter.writebits(2, sub.best.rc.coding_method);
// partition order
int porder = sub.best.rc.porder;
int psize = frame.blocksize >> porder;
//assert(porder >= 0);
bitwriter.writebits(4, porder);
int res_cnt = psize - sub.best.order;
int rice_len = 4 + sub.best.rc.coding_method;
// residual
int j = sub.best.order;
fixed (byte* fixbuf = &frame_buffer[0])
for (int p = 0; p < (1 << porder); p++)
{
int k = sub.best.rc.rparams[p];
bitwriter.writebits(rice_len, k);
if (p == 1) res_cnt = psize;
int cnt = Math.Min(res_cnt, frame.blocksize - j);
bitwriter.write_rice_block_signed(fixbuf, k, sub.best.residual + j, cnt);
j += cnt;
}
}
unsafe void
output_subframe_constant(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub)
{
bitwriter.writebits_signed(sub.obits, sub.best.residual[0]);
}
unsafe void
output_subframe_verbatim(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub)
{
int n = frame.blocksize;
for (int i = 0; i < n; i++)
bitwriter.writebits_signed(sub.obits, sub.samples[i]);
// Don't use residual here, because we don't copy samples to residual for verbatim frames.
}
unsafe void
output_subframe_fixed(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub)
{
// warm-up samples
for (int i = 0; i < sub.best.order; i++)
bitwriter.writebits_signed(sub.obits, sub.best.residual[i]);
// residual
output_residual(frame, bitwriter, sub);
}
unsafe void
output_subframe_lpc(FlacFrame frame, BitWriter bitwriter, FlacSubframeInfo sub)
{
// warm-up samples
for (int i = 0; i < sub.best.order; i++)
bitwriter.writebits_signed(sub.obits, sub.best.residual[i]);
// LPC coefficients
int cbits = 1;
for (int i = 0; i < sub.best.order; i++)
while (cbits < 16 && sub.best.coefs[i] != (sub.best.coefs[i] << (32 - cbits)) >> (32 - cbits))
cbits++;
bitwriter.writebits(4, cbits - 1);
bitwriter.writebits_signed(5, sub.best.shift);
for (int i = 0; i < sub.best.order; i++)
bitwriter.writebits_signed(cbits, sub.best.coefs[i]);
// residual
output_residual(frame, bitwriter, sub);
}
unsafe void output_subframes(FlacFrame frame, BitWriter bitwriter)
{
for (int ch = 0; ch < channels; ch++)
{
FlacSubframeInfo sub = frame.subframes[ch];
// subframe header
int type_code = (int) sub.best.type;
if (sub.best.type == SubframeType.Fixed)
type_code |= sub.best.order;
if (sub.best.type == SubframeType.LPC)
type_code |= sub.best.order - 1;
bitwriter.writebits(1, 0);
bitwriter.writebits(6, type_code);
bitwriter.writebits(1, sub.wbits != 0 ? 1 : 0);
if (sub.wbits > 0)
bitwriter.writebits((int)sub.wbits, 1);
// subframe
switch (sub.best.type)
{
case SubframeType.Constant:
output_subframe_constant(frame, bitwriter, sub);
break;
case SubframeType.Verbatim:
output_subframe_verbatim(frame, bitwriter, sub);
break;
case SubframeType.Fixed:
output_subframe_fixed(frame, bitwriter, sub);
break;
case SubframeType.LPC:
output_subframe_lpc(frame, bitwriter, sub);
break;
}
}
}
void output_frame_footer(BitWriter bitwriter)
{
bitwriter.flush();
ushort crc = bitwriter.get_crc16();
bitwriter.writebits(16, crc);
bitwriter.flush();
}
unsafe void encode_residual_pass1(FlacFrame frame, int ch, int best_window)
{
int max_prediction_order = eparams.max_prediction_order;
int max_fixed_order = eparams.max_fixed_order;
int min_fixed_order = eparams.min_fixed_order;
int lpc_min_precision_search = eparams.lpc_min_precision_search;
int lpc_max_precision_search = eparams.lpc_max_precision_search;
int max_partition_order = eparams.max_partition_order;
int estimation_depth = eparams.estimation_depth;
var development_mode = eparams.development_mode;
eparams.min_fixed_order = 2;
eparams.max_fixed_order = 2;
eparams.lpc_min_precision_search = eparams.lpc_max_precision_search;
eparams.max_prediction_order = Math.Min(eparams.max_prediction_order, Math.Max(eparams.min_prediction_order, 8));
eparams.estimation_depth = 1;
eparams.development_mode = Math.Min(eparams.development_mode, -1);
encode_residual(frame, ch, eparams.prediction_type, OrderMethod.Akaike, 1, best_window);
eparams.min_fixed_order = min_fixed_order;
eparams.max_fixed_order = max_fixed_order;
eparams.max_prediction_order = max_prediction_order;
eparams.lpc_min_precision_search = lpc_min_precision_search;
eparams.lpc_max_precision_search = lpc_max_precision_search;
eparams.max_partition_order = max_partition_order;
eparams.estimation_depth = estimation_depth;
eparams.development_mode = development_mode;
}
unsafe void encode_residual_pass2(FlacFrame frame, int ch)
{
encode_residual(frame, ch, eparams.prediction_type, eparams.order_method, 2, estimate_best_window(frame, ch));
}
unsafe int estimate_best_window(FlacFrame frame, int ch)
{
if (_windowcount == 1)
return 0;
switch (eparams.window_method)
{
case WindowMethod.Estimate:
{
int best_window = -1;
double best_error = 0;
int order = 2;
for (int i = 0; i < _windowcount; i++)
{
frame.subframes[ch].lpc_ctx[i].GetReflection(order, frame.subframes[ch].samples, frame.blocksize, frame.window_buffer + i * Flake.MAX_BLOCKSIZE * 2);
double err = frame.subframes[ch].lpc_ctx[i].prediction_error[order - 1] / frame.subframes[ch].lpc_ctx[i].autocorr_values[0];
//double err = frame.subframes[ch].lpc_ctx[i].autocorr_values[0] / frame.subframes[ch].lpc_ctx[i].autocorr_values[2];
if (best_window == -1 || best_error > err)
{
best_window = i;
best_error = err;
}
}
return best_window;
}
case WindowMethod.Evaluate:
encode_residual_pass1(frame, ch, -1);
return frame.subframes[ch].best.type == SubframeType.LPC ? frame.subframes[ch].best.window : -1;
case WindowMethod.Search:
return -1;
}
return -1;
}
unsafe void estimate_frame(FlacFrame frame, bool do_midside)
{
int subframes = do_midside ? channels * 2 : channels;
switch (eparams.stereo_method)
{
case StereoMethod.Estimate:
for (int ch = 0; ch < subframes; ch++)
{
LpcContext lpc_ctx = frame.subframes[ch].lpc_ctx[0];
lpc_ctx.GetReflection(4, frame.subframes[ch].samples, frame.blocksize, frame.window_buffer);
lpc_ctx.SortOrdersAkaike(frame.blocksize, 1, 1, 4, 4.5, 0.0);
frame.subframes[ch].best.size = (uint)Math.Max(0, lpc_ctx.Akaike(frame.blocksize, lpc_ctx.best_orders[0], 4.5, 0.0) + 7.1 * frame.subframes[ch].obits * eparams.max_prediction_order);
}
break;
case StereoMethod.Evaluate:
for (int ch = 0; ch < subframes; ch++)
encode_residual_pass1(frame, ch, 0);
break;
case StereoMethod.Search:
for (int ch = 0; ch < subframes; ch++)
encode_residual_pass2(frame, ch);
break;
}
}
unsafe uint measure_frame_size(FlacFrame frame, bool do_midside)
{
// crude estimation of header/footer size
uint total = (uint)(32 + ((BitReader.log2i(frame_count) + 4) / 5) * 8 + (eparams.variable_block_size != 0 ? 16 : 0) + 16);
if (do_midside)
{
uint bitsBest = AudioSamples.UINT32_MAX;
ChannelMode modeBest = ChannelMode.LeftRight;
if (bitsBest > frame.subframes[2].best.size + frame.subframes[3].best.size)
{
bitsBest = frame.subframes[2].best.size + frame.subframes[3].best.size;
modeBest = ChannelMode.MidSide;
}
if (bitsBest > frame.subframes[3].best.size + frame.subframes[1].best.size)
{
bitsBest = frame.subframes[3].best.size + frame.subframes[1].best.size;
modeBest = ChannelMode.RightSide;
}
if (bitsBest > frame.subframes[3].best.size + frame.subframes[0].best.size)
{
bitsBest = frame.subframes[3].best.size + frame.subframes[0].best.size;
modeBest = ChannelMode.LeftSide;
}
if (bitsBest > frame.subframes[0].best.size + frame.subframes[1].best.size)
{
bitsBest = frame.subframes[0].best.size + frame.subframes[1].best.size;
modeBest = ChannelMode.LeftRight;
}
frame.ch_mode = modeBest;
return total + bitsBest;
}
for (int ch = 0; ch < channels; ch++)
total += frame.subframes[ch].best.size;
return total;
}
unsafe void encode_estimated_frame(FlacFrame frame)
{
switch (eparams.stereo_method)
{
case StereoMethod.Estimate:
for (int ch = 0; ch < channels; ch++)
{
frame.subframes[ch].best.size = AudioSamples.UINT32_MAX;
encode_residual_pass2(frame, ch);
}
break;
case StereoMethod.Evaluate:
for (int ch = 0; ch < channels; ch++)
encode_residual_pass2(frame, ch);
break;
case StereoMethod.Search:
break;
}
}
unsafe delegate void window_function(float* window, int size);
unsafe void calculate_window(float* window, window_function func, WindowFunction flag)
{
if ((eparams.window_function & flag) == 0 || _windowcount == lpc.MAX_LPC_WINDOWS)
return;
int sz = _windowsize;
float* pos1 = window + _windowcount * Flake.MAX_BLOCKSIZE * 2;
float* pos = pos1;
do
{
func(pos, sz);
if ((sz & 1) != 0)
break;
pos += sz;
sz >>= 1;
} while (sz >= 32);
double scale = 0.0;
for (int i = 0; i < _windowsize; i++)
scale += pos1[i] * pos1[i];
windowScale[_windowcount] = scale;
_windowcount++;
}
unsafe int encode_frame(out int size)
{
fixed (int* s = samplesBuffer, r = residualBuffer)
fixed (float* window = windowBuffer)
{
frame.InitSize(m_blockSize, eparams.variable_block_size != 0);
if (frame.blocksize != _windowsize && frame.blocksize > 4)
{
_windowsize = frame.blocksize;
_windowcount = 0;
calculate_window(window, lpc.window_welch, WindowFunction.Welch);
calculate_window(window, lpc.window_tukey, WindowFunction.Tukey);
calculate_window(window, lpc.window_flattop, WindowFunction.Flattop);
calculate_window(window, lpc.window_hann, WindowFunction.Hann);
calculate_window(window, lpc.window_bartlett, WindowFunction.Bartlett);
if (_windowcount == 0)
throw new Exception("invalid windowfunction");
}
if (channels != 2 || frame.blocksize <= 32 || eparams.stereo_method == StereoMethod.Independent)
{
frame.window_buffer = window;
frame.current.residual = r + channels * Flake.MAX_BLOCKSIZE;
frame.ch_mode = channels != 2 ? ChannelMode.NotStereo : ChannelMode.LeftRight;
for (int ch = 0; ch < channels; ch++)
frame.subframes[ch].Init(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE,
Settings.PCM.BitsPerSample, get_wasted_bits(s + ch * Flake.MAX_BLOCKSIZE, frame.blocksize));
for (int ch = 0; ch < channels; ch++)
encode_residual_pass2(frame, ch);
}
else
{
//channel_decorrelation(s, s + Flake.MAX_BLOCKSIZE, s + 2 * Flake.MAX_BLOCKSIZE, s + 3 * Flake.MAX_BLOCKSIZE, frame.blocksize);
frame.window_buffer = window;
frame.current.residual = r + 4 * Flake.MAX_BLOCKSIZE;
for (int ch = 0; ch < 4; ch++)
frame.subframes[ch].Init(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE,
Settings.PCM.BitsPerSample + (ch == 3 ? 1 : 0), get_wasted_bits(s + ch * Flake.MAX_BLOCKSIZE, frame.blocksize));
//for (int ch = 0; ch < 4; ch++)
// for (int iWindow = 0; iWindow < _windowcount; iWindow++)
// frame.subframes[ch].lpc_ctx[iWindow].GetReflection(32, frame.subframes[ch].samples, frame.blocksize, frame.window_buffer + iWindow * Flake.MAX_BLOCKSIZE * 2);
estimate_frame(frame, true);
uint fs = measure_frame_size(frame, true);
if (0 != eparams.variable_block_size)
{
FlacFrame frame2 = new FlacFrame(channels * 2);
FlacFrame frame3 = new FlacFrame(channels * 2);
int tumbler = 1;
while ((frame.blocksize & 1) == 0 && frame.blocksize >= 1024)
{
frame2.InitSize(frame.blocksize / 2, true);
frame2.window_buffer = frame.window_buffer + frame.blocksize;
frame2.current.residual = r + tumbler * 5 * Flake.MAX_BLOCKSIZE;
for (int ch = 0; ch < 4; ch++)
frame2.subframes[ch].Init(frame.subframes[ch].samples, frame2.current.residual + (ch + 1) * frame2.blocksize,
frame.subframes[ch].obits + frame.subframes[ch].wbits, frame.subframes[ch].wbits);
estimate_frame(frame2, true);
uint fs2 = measure_frame_size(frame2, true);
uint fs3 = fs2;
if (eparams.variable_block_size == 2 || eparams.variable_block_size == 4)
{
frame3.InitSize(frame2.blocksize, true);
frame3.window_buffer = frame2.window_buffer;
frame3.current.residual = frame2.current.residual + 5 * frame2.blocksize;
for (int ch = 0; ch < 4; ch++)
frame3.subframes[ch].Init(frame2.subframes[ch].samples + frame2.blocksize, frame3.current.residual + (ch + 1) * frame3.blocksize,
frame.subframes[ch].obits + frame.subframes[ch].wbits, frame.subframes[ch].wbits);
estimate_frame(frame3, true);
fs3 = measure_frame_size(frame3, true);
}
if (fs2 + fs3 > fs)
break;
FlacFrame tmp = frame;
frame = frame2;
frame2 = tmp;
fs = fs2;
if (eparams.variable_block_size <= 2)
break;
tumbler = 1 - tumbler;
}
}
frame.ChooseSubframes();
encode_estimated_frame(frame);
}
BitWriter bitwriter = new BitWriter(frame_buffer, 0, max_frame_size);
output_frame_header(frame, bitwriter);
output_subframes(frame, bitwriter);
output_frame_footer(bitwriter);
if (bitwriter.Length >= max_frame_size)
throw new Exception("buffer overflow");
if (frame_buffer != null)
{
if (eparams.variable_block_size > 0)
frame_count += frame.blocksize;
else
frame_count++;
}
size = frame.blocksize;
return bitwriter.Length;
}
}
unsafe int output_frame()
{
if (verify != null)
{
fixed (int* s = verifyBuffer, r = samplesBuffer)
for (int ch = 0; ch < channels; ch++)
AudioSamples.MemCpy(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, m_blockSize);
}
int fs, bs;
//if (0 != eparams.variable_block_size && 0 == (m_blockSize & 7) && m_blockSize >= 128)
// fs = encode_frame_vbs();
//else
fs = encode_frame(out bs);
if (seek_table != null && _IO.CanSeek)
{
for (int sp = 0; sp < seek_table.Length; sp++)
{
if (seek_table[sp].framesize != 0)
continue;
if (seek_table[sp].number > _position + bs)
break;
if (seek_table[sp].number >= _position)
{
seek_table[sp].number = _position;
seek_table[sp].offset = _IO.Position - first_frame_offset;
seek_table[sp].framesize = bs;
}
}
}
_position += bs;
_IO.Write(frame_buffer, 0, fs);
_totalSize += fs;
if (verify != null)
{
int decoded = verify.DecodeFrame(frame_buffer, 0, fs);
if (decoded != fs || verify.Remaining != bs)
throw new Exception(Properties.Resources.ExceptionValidationFailed);
fixed (int* s = verifyBuffer, r = verify.Samples)
{
for (int ch = 0; ch < channels; ch++)
if (AudioSamples.MemCmp(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, bs))
throw new Exception(Properties.Resources.ExceptionValidationFailed);
}
}
if (bs < m_blockSize)
{
for (int ch = 0; ch < (channels == 2 ? 4 : channels); ch++)
Buffer.BlockCopy(samplesBuffer, (bs + ch * Flake.MAX_BLOCKSIZE) * sizeof(int), samplesBuffer, ch * Flake.MAX_BLOCKSIZE * sizeof(int), (m_blockSize - bs) * sizeof(int));
//fixed (int* s = samplesBuffer)
// for (int ch = 0; ch < channels; ch++)
// AudioSamples.MemCpy(s + ch * Flake.MAX_BLOCKSIZE, s + bs + ch * Flake.MAX_BLOCKSIZE, m_blockSize - bs);
}
samplesInBuffer -= bs;
return bs;
}
public void Write(AudioBuffer buff)
{
if (!inited)
{
if (_IO == null)
_IO = new FileStream(_path, FileMode.Create, FileAccess.Write, FileShare.Read);
if (!m_settings.IsValid())
throw new Exception("unsupported encoder settings");
inited = true;
int header_size = flake_encode_init();
_IO.Write(header, 0, header_size);
if (_IO.CanSeek)
first_frame_offset = _IO.Position;
}
buff.Prepare(this);
int pos = 0;
while (pos < buff.Length)
{
int block = Math.Min(buff.Length - pos, m_blockSize - samplesInBuffer);
copy_samples(buff.Samples, pos, block);
pos += block;
while (samplesInBuffer >= m_blockSize)
output_frame();
}
if (md5 != null)
md5.TransformBlock(buff.Bytes, 0, buff.ByteLength, null, 0);
}
public string Path { get { return _path; } }
string vendor_string = "Flake#0.1";
int select_blocksize(int samplerate, int time_ms)
{
int blocksize = Flake.flac_blocksizes[1];
int target = (samplerate * time_ms) / 1000;
if (eparams.variable_block_size > 0)
{
blocksize = 1024;
while (target >= blocksize)
blocksize <<= 1;
return blocksize >> 1;
}
for (int i = 0; i < Flake.flac_blocksizes.Length; i++)
if (target >= Flake.flac_blocksizes[i] && Flake.flac_blocksizes[i] > blocksize)
{
blocksize = Flake.flac_blocksizes[i];
}
return blocksize;
}
void write_streaminfo(byte[] header, int pos, int last)
{
Array.Clear(header, pos, 38);
BitWriter bitwriter = new BitWriter(header, pos, 38);
// metadata header
bitwriter.writebits(1, last);
bitwriter.writebits(7, (int)MetadataType.StreamInfo);
bitwriter.writebits(24, 34);
if (eparams.variable_block_size > 0)
bitwriter.writebits(16, 0);
else
bitwriter.writebits(16, m_blockSize);
bitwriter.writebits(16, m_blockSize);
bitwriter.writebits(24, 0);
bitwriter.writebits(24, max_frame_size);
bitwriter.writebits(20, Settings.PCM.SampleRate);
bitwriter.writebits(3, channels - 1);
bitwriter.writebits(5, Settings.PCM.BitsPerSample - 1);
// total samples
if (sample_count > 0)
{
bitwriter.writebits(4, 0);
bitwriter.writebits(32, sample_count);
}
else
{
bitwriter.writebits(4, 0);
bitwriter.writebits(32, 0);
}
bitwriter.flush();
}
/**
* Write vorbis comment metadata block to byte array.
* Just writes the vendor string for now.
*/
int write_vorbis_comment(byte[] comment, int pos, int last)
{
BitWriter bitwriter = new BitWriter(comment, pos, 4);
Encoding enc = new ASCIIEncoding();
int vendor_len = enc.GetBytes(vendor_string, 0, vendor_string.Length, comment, pos + 8);
// metadata header
bitwriter.writebits(1, last);
bitwriter.writebits(7, (int)MetadataType.VorbisComment);
bitwriter.writebits(24, vendor_len + 8);
comment[pos + 4] = (byte)(vendor_len & 0xFF);
comment[pos + 5] = (byte)((vendor_len >> 8) & 0xFF);
comment[pos + 6] = (byte)((vendor_len >> 16) & 0xFF);
comment[pos + 7] = (byte)((vendor_len >> 24) & 0xFF);
comment[pos + 8 + vendor_len] = 0;
comment[pos + 9 + vendor_len] = 0;
comment[pos + 10 + vendor_len] = 0;
comment[pos + 11 + vendor_len] = 0;
bitwriter.flush();
return vendor_len + 12;
}
int write_seekpoints(byte[] header, int pos, int last)
{
seek_table_offset = pos + 4;
BitWriter bitwriter = new BitWriter(header, pos, 4 + 18 * seek_table.Length);
// metadata header
bitwriter.writebits(1, last);
bitwriter.writebits(7, (int)MetadataType.Seektable);
bitwriter.writebits(24, 18 * seek_table.Length);
for (int i = 0; i < seek_table.Length; i++)
{
bitwriter.writebits(Flake.FLAC__STREAM_METADATA_SEEKPOINT_SAMPLE_NUMBER_LEN, (ulong)seek_table[i].number);
bitwriter.writebits(Flake.FLAC__STREAM_METADATA_SEEKPOINT_STREAM_OFFSET_LEN, (ulong)seek_table[i].offset);
bitwriter.writebits(Flake.FLAC__STREAM_METADATA_SEEKPOINT_FRAME_SAMPLES_LEN, seek_table[i].framesize);
}
bitwriter.flush();
return 4 + 18 * seek_table.Length;
}
/**
* Write padding metadata block to byte array.
*/
int
write_padding(byte[] padding, int pos, int last, int padlen)
{
BitWriter bitwriter = new BitWriter(padding, pos, 4);
// metadata header
bitwriter.writebits(1, last);
bitwriter.writebits(7, (int)MetadataType.Padding);
bitwriter.writebits(24, padlen);
bitwriter.flush();
return padlen + 4;
}
int write_headers()
{
int header_size = 0;
int last = 0;
// stream marker
header[0] = 0x66;
header[1] = 0x4C;
header[2] = 0x61;
header[3] = 0x43;
header_size += 4;
// streaminfo
write_streaminfo(header, header_size, last);
header_size += 38;
// seek table
if (_IO.CanSeek && seek_table != null)
header_size += write_seekpoints(header, header_size, last);
// vorbis comment
if (m_settings.Padding == 0) last = 1;
header_size += write_vorbis_comment(header, header_size, last);
// padding
if (m_settings.Padding > 0)
{
last = 1;
header_size += write_padding(header, header_size, last, m_settings.Padding);
}
return header_size;
}
int flake_encode_init()
{
int i, header_len;
//if(flake_validate_params(s) < 0)
ch_code = channels - 1;
// find samplerate in table
for (i = 1; i < 12; i++)
{
if (Settings.PCM.SampleRate == Flake.flac_samplerates[i])
{
sr_code0 = i;
break;
}
}
// if not in table, samplerate is non-standard
if (i == 12)
throw new Exception("non-standard samplerate");
for (i = 1; i < 8; i++)
{
if (Settings.PCM.BitsPerSample == Flake.flac_bitdepths[i])
{
bps_code = i;
break;
}
}
if (i == 8)
throw new Exception("non-standard bps");
m_blockSize = m_settings.BlockSize != 0 ? m_settings.BlockSize :
select_blocksize(Settings.PCM.SampleRate, eparams.block_time_ms);
// set maximum encoded frame size (if larger, re-encodes in verbatim mode)
if (channels == 2)
max_frame_size = 16 + ((m_blockSize * (Settings.PCM.BitsPerSample + Settings.PCM.BitsPerSample + 1) + 7) >> 3);
else
max_frame_size = 16 + ((m_blockSize * channels * Settings.PCM.BitsPerSample + 7) >> 3);
if (_IO.CanSeek && eparams.do_seektable && sample_count > 0)
{
int seek_points_distance = Settings.PCM.SampleRate * 10;
int num_seek_points = 1 + sample_count / seek_points_distance; // 1 seek point per 10 seconds
if (sample_count % seek_points_distance == 0)
num_seek_points--;
seek_table = new SeekPoint[num_seek_points];
for (int sp = 0; sp < num_seek_points; sp++)
{
seek_table[sp].framesize = 0;
seek_table[sp].offset = 0;
seek_table[sp].number = sp * seek_points_distance;
}
}
// output header bytes
header = new byte[m_settings.Padding + 1024 + (seek_table == null ? 0 : seek_table.Length * 18)];
header_len = write_headers();
// initialize CRC & MD5
if (_IO.CanSeek && m_settings.DoMD5)
md5 = new MD5CryptoServiceProvider();
if (m_settings.DoVerify)
{
verify = new FlakeReader(Settings.PCM);
verifyBuffer = new int[Flake.MAX_BLOCKSIZE * channels];
}
frame_buffer = new byte[max_frame_size];
return header_len;
}
}
struct FlakeEncodeParams
{
// compression quality
// set by user prior to calling flake_encode_init
// standard values are 0 to 8
// 0 is lower compression, faster encoding
// 8 is higher compression, slower encoding
// extended values 9 to 12 are slower and/or use
// higher prediction orders
public int compression;
// prediction order selection method
// set by user prior to calling flake_encode_init
// if set to less than 0, it is chosen based on compression.
// valid values are 0 to 5
// 0 = use maximum order only
// 1 = use estimation
// 2 = 2-level
// 3 = 4-level
// 4 = 8-level
// 5 = full search
// 6 = log search
public OrderMethod order_method;
// stereo decorrelation method
// set by user prior to calling flake_encode_init
// if set to less than 0, it is chosen based on compression.
// valid values are 0 to 2
// 0 = independent L+R channels
// 1 = mid-side encoding
public StereoMethod stereo_method;
public WindowMethod window_method;
// block time in milliseconds
// set by the user prior to calling flake_encode_init
// used to calculate block_size based on sample rate
// can also be changed by user before encoding a frame
public int block_time_ms;
// minimum LPC order
// set by user prior to calling flake_encode_init
// if set to less than 0, it is chosen based on compression.
// valid values are 1 to 32
public int min_prediction_order;
// maximum LPC order
// set by user prior to calling flake_encode_init
// if set to less than 0, it is chosen based on compression.
// valid values are 1 to 32
public int max_prediction_order;
// Number of LPC orders to try (for estimate mode)
// set by user prior to calling flake_encode_init
// if set to less than 0, it is chosen based on compression.
// valid values are 1 to 32
public int estimation_depth;
// minimum fixed prediction order
// set by user prior to calling flake_encode_init
// if set to less than 0, it is chosen based on compression.
// valid values are 0 to 4
public int min_fixed_order;
// maximum fixed prediction order
// set by user prior to calling flake_encode_init
// if set to less than 0, it is chosen based on compression.
// valid values are 0 to 4
public int max_fixed_order;
// type of linear prediction
// set by user prior to calling flake_encode_init
public PredictionType prediction_type;
// minimum partition order
// set by user prior to calling flake_encode_init
// if set to less than 0, it is chosen based on compression.
// valid values are 0 to 8
public int min_partition_order;
// maximum partition order
// set by user prior to calling flake_encode_init
// if set to less than 0, it is chosen based on compression.
// valid values are 0 to 8
public int max_partition_order;
// whether to use variable block sizes
// set by user prior to calling flake_encode_init
// 0 = fixed block size
// 1 = variable block size
public int variable_block_size;
// whether to try various lpc_precisions
// 0 - use only one precision
// 1 - try two precisions
public int lpc_max_precision_search;
public int lpc_min_precision_search;
public WindowFunction window_function;
public bool do_seektable;
public int development_mode;
public int flake_set_defaults(int lvl)
{
compression = lvl;
if ((lvl < 0 || lvl > 12) && (lvl != 99))
{
return -1;
}
// default to level 5 params
window_function = WindowFunction.Flattop | WindowFunction.Tukey;
order_method = OrderMethod.Akaike;
stereo_method = StereoMethod.Evaluate;
window_method = WindowMethod.Evaluate;
block_time_ms = 105;
prediction_type = PredictionType.Search;
min_prediction_order = 1;
max_prediction_order = 12;
estimation_depth = 1;
min_fixed_order = 2;
max_fixed_order = 2;
min_partition_order = 0;
max_partition_order = 8;
variable_block_size = 0;
lpc_min_precision_search = 1;
lpc_max_precision_search = 1;
do_seektable = true;
development_mode = -1;
// differences from level 7
switch (lvl)
{
case 0:
block_time_ms = 53;
prediction_type = PredictionType.Fixed;
stereo_method = StereoMethod.Independent;
max_partition_order = 6;
break;
case 1:
prediction_type = PredictionType.Levinson;
stereo_method = StereoMethod.Independent;
window_function = WindowFunction.Bartlett;
max_prediction_order = 8;
max_partition_order = 6;
break;
case 2:
stereo_method = StereoMethod.Independent;
window_function = WindowFunction.Bartlett;
max_partition_order = 6;
break;
case 3:
stereo_method = StereoMethod.Estimate;
window_function = WindowFunction.Bartlett;
max_prediction_order = 8;
break;
case 4:
stereo_method = StereoMethod.Estimate;
window_function = WindowFunction.Bartlett;
break;
case 5:
stereo_method = StereoMethod.Estimate;
window_method = WindowMethod.Estimate;
break;
case 6:
stereo_method = StereoMethod.Estimate;
break;
case 7:
break;
case 8:
estimation_depth = 2;
min_fixed_order = 0;
lpc_min_precision_search = 0;
break;
case 9:
window_function = WindowFunction.Bartlett;
max_prediction_order = 32;
break;
case 10:
min_fixed_order = 0;
max_fixed_order = 4;
max_prediction_order = 32;
//lpc_max_precision_search = 2;
break;
case 11:
min_fixed_order = 0;
max_fixed_order = 4;
max_prediction_order = 32;
estimation_depth = 5;
//lpc_max_precision_search = 2;
variable_block_size = 4;
break;
}
return 0;
}
}
}