using System; using System.Text; using System.IO; using System.Collections.Generic; using System.Collections.Specialized; using System.Security.Cryptography; //using System.Runtime.InteropServices; using CUETools.Codecs; namespace CUETools.Codecs.FLAKE { public class FlakeWriter : IAudioDest { Stream _IO = null; string _path; long _position; // number of audio channels // set by user prior to calling flake_encode_init // valid values are 1 to 8 int channels, ch_code; // audio sample rate in Hz // set by user prior to calling flake_encode_init int sample_rate, sr_code0, sr_code1; // sample size in bits // set by user prior to calling flake_encode_init // only 16-bit is currently supported uint bits_per_sample; int bps_code; // total stream samples // set by user prior to calling flake_encode_init // if 0, stream length is unknown int sample_count; FlakeEncodeParams eparams; // maximum frame size in bytes // set by flake_encode_init // this can be used to allocate memory for output int max_frame_size; byte[] frame_buffer = null; int frame_count = 0; long first_frame_offset = 0; TimeSpan _userProcessorTime; // header bytes // allocated by flake_encode_init and freed by flake_encode_close byte[] header; int[] samplesBuffer; int[] verifyBuffer; int[] residualBuffer; double[] windowBuffer; int samplesInBuffer = 0; int _compressionLevel = 5; int _blocksize = 0; int _totalSize = 0; int _windowsize = 0, _windowcount = 0; Crc8 crc8; Crc16 crc16; MD5 md5; FlakeReader verify; SeekPoint[] seek_table; int seek_table_offset = -1; bool inited = false; public FlakeWriter(string path, int bitsPerSample, int channelCount, int sampleRate, Stream IO) { if (bitsPerSample != 16) throw new Exception("Bits per sample must be 16."); if (channelCount != 2) throw new Exception("ChannelCount must be 2."); channels = channelCount; sample_rate = sampleRate; bits_per_sample = (uint) bitsPerSample; // flake_validate_params _path = path; _IO = IO; samplesBuffer = new int[Flake.MAX_BLOCKSIZE * (channels == 2 ? 4 : channels)]; residualBuffer = new int[Flake.MAX_BLOCKSIZE * (channels == 2 ? 10 : channels + 1)]; windowBuffer = new double[Flake.MAX_BLOCKSIZE * 2 * lpc.MAX_LPC_WINDOWS]; eparams.flake_set_defaults(_compressionLevel); eparams.padding_size = 8192; crc8 = new Crc8(); crc16 = new Crc16(); } public int TotalSize { get { return _totalSize; } } public int PaddingLength { get { return eparams.padding_size; } set { eparams.padding_size = value; } } public int CompressionLevel { get { return _compressionLevel; } set { if (value < 0 || value > 11) throw new Exception("unsupported compression level"); _compressionLevel = value; eparams.flake_set_defaults(_compressionLevel); } } //[DllImport("kernel32.dll")] //static extern bool GetThreadTimes(IntPtr hThread, out long lpCreationTime, out long lpExitTime, out long lpKernelTime, out long lpUserTime); //[DllImport("kernel32.dll")] //static extern IntPtr GetCurrentThread(); void DoClose() { if (inited) { while (samplesInBuffer > 0) { eparams.block_size = samplesInBuffer; output_frame(); } if (_IO.CanSeek) { if (md5 != null) { md5.TransformFinalBlock(frame_buffer, 0, 0); _IO.Position = 26; _IO.Write(md5.Hash, 0, md5.Hash.Length); } if (seek_table != null) { _IO.Position = seek_table_offset; int len = write_seekpoints(header, 0, 0); _IO.Write(header, 4, len - 4); } } _IO.Close(); inited = false; } //long fake, KernelStart, UserStart; //GetThreadTimes(GetCurrentThread(), out fake, out fake, out KernelStart, out UserStart); //_userProcessorTime = new TimeSpan(UserStart); } public void Close() { DoClose(); if (sample_count != 0 && _position != sample_count) throw new Exception("Samples written differs from the expected sample count."); } public void Delete() { if (inited) { _IO.Close(); inited = false; } if (_path != "") File.Delete(_path); } public long Position { get { return _position; } } public long FinalSampleCount { set { sample_count = (int)value; } } public long BlockSize { set { _blocksize = (int)value; } get { return _blocksize == 0 ? eparams.block_size : _blocksize; } } public OrderMethod OrderMethod { get { return eparams.order_method; } set { eparams.order_method = value; } } public PredictionType PredictionType { get { return eparams.prediction_type; } set { eparams.prediction_type = value; } } public StereoMethod StereoMethod { get { return eparams.stereo_method; } set { eparams.stereo_method = value; } } public int MaxPrecisionSearch { get { return eparams.lpc_precision_search; } set { if (value < 0 || value > 1) throw new Exception("unsupported MaxPrecisionSearch value"); eparams.lpc_precision_search = value; } } public WindowFunction WindowFunction { get { return eparams.window_function; } set { eparams.window_function = value; } } public bool DoMD5 { get { return eparams.do_md5; } set { eparams.do_md5 = value; } } public bool DoVerify { get { return eparams.do_verify; } set { eparams.do_verify = value; } } public bool DoSeekTable { get { return eparams.do_seektable; } set { eparams.do_seektable = value; } } public int VBRMode { get { return eparams.variable_block_size; } set { eparams.variable_block_size = value; } } public int MinPredictionOrder { get { return PredictionType == PredictionType.Fixed ? MinFixedOrder : MinLPCOrder; } set { if (PredictionType == PredictionType.Fixed) MinFixedOrder = value; else MinLPCOrder = value; } } public int MaxPredictionOrder { get { return PredictionType == PredictionType.Fixed ? MaxFixedOrder : MaxLPCOrder; } set { if (PredictionType == PredictionType.Fixed) MaxFixedOrder = value; else MaxLPCOrder = value; } } public int MinLPCOrder { get { return eparams.min_prediction_order; } set { if (value < 1 || value > eparams.max_prediction_order) throw new Exception("invalid MinLPCOrder " + value.ToString()); eparams.min_prediction_order = value; } } public int MaxLPCOrder { get { return eparams.max_prediction_order; } set { if (value > 32 || value < eparams.min_prediction_order) throw new Exception("invalid MaxLPCOrder " + value.ToString()); eparams.max_prediction_order = value; } } public int MinFixedOrder { get { return eparams.min_fixed_order; } set { if (value < 0 || value > eparams.max_fixed_order) throw new Exception("invalid MinFixedOrder " + value.ToString()); eparams.min_fixed_order = value; } } public int MaxFixedOrder { get { return eparams.max_fixed_order; } set { if (value > 4 || value < eparams.min_fixed_order) throw new Exception("invalid MaxFixedOrder " + value.ToString()); eparams.max_fixed_order = value; } } public int MinPartitionOrder { get { return eparams.min_partition_order; } set { if (value < 0 || value > eparams.max_partition_order) throw new Exception("invalid MinPartitionOrder " + value.ToString()); eparams.min_partition_order = value; } } public int MaxPartitionOrder { get { return eparams.max_partition_order; } set { if (value > 8 || value < eparams.min_partition_order) throw new Exception("invalid MaxPartitionOrder " + value.ToString()); eparams.max_partition_order = value; } } public TimeSpan UserProcessorTime { get { return _userProcessorTime; } } public int BitsPerSample { get { return 16; } } unsafe uint get_wasted_bits(int* signal, int samples) { int i, shift; int x = 0; for (i = 0; i < samples && 0 == (x & 1); i++) x |= signal[i]; if (x == 0) { shift = 0; } else { for (shift = 0; 0 == (x & 1); shift++) x >>= 1; } if (shift > 0) { for (i = 0; i < samples; i++) signal[i] >>= shift; } return (uint)shift; } unsafe void init_frame(FlacFrame * frame, int bs) { //if (channels == 2) //max_frame_size = int i = 15; if (eparams.variable_block_size == 0) { for (i = 0; i < 15; i++) { if (bs == Flake.flac_blocksizes[i]) { frame->blocksize = Flake.flac_blocksizes[i]; frame->bs_code0 = i; frame->bs_code1 = -1; break; } } } if (i == 15) { frame->blocksize = bs; if (frame->blocksize <= 256) { frame->bs_code0 = 6; frame->bs_code1 = frame->blocksize - 1; } else { frame->bs_code0 = 7; frame->bs_code1 = frame->blocksize - 1; } } } /// Copy channel-interleaved input samples into separate subframes unsafe void copy_samples(int[,] samples, int pos, int block) { fixed (int* fsamples = samplesBuffer, src = &samples[pos, 0]) { if (channels == 2) Flake.deinterlace(fsamples + samplesInBuffer, fsamples + Flake.MAX_BLOCKSIZE + samplesInBuffer, src, block); else for (int ch = 0; ch < channels; ch++) { int* psamples = fsamples + ch * Flake.MAX_BLOCKSIZE + samplesInBuffer; for (int i = 0; i < block; i++) psamples[i] = src[i * channels + ch]; } } samplesInBuffer += block; } static uint rice_encode_count(uint sum, uint n, uint k) { return n*(k+1) + ((sum-(n>>1))>>(int)k); } //static unsafe uint find_optimal_rice_param(uint sum, uint n) //{ // uint* nbits = stackalloc uint[Flake.MAX_RICE_PARAM + 1]; // int k_opt = 0; // nbits[0] = UINT32_MAX; // for (int k = 0; k <= Flake.MAX_RICE_PARAM; k++) // { // nbits[k] = rice_encode_count(sum, n, (uint)k); // if (nbits[k] < nbits[k_opt]) // k_opt = k; // } // return (uint)k_opt; //} static unsafe int find_optimal_rice_param(uint sum, uint n, out uint nbits_best) { int k_opt = 0; uint a = n; uint b = sum - (n >> 1); uint nbits = a + b; for (int k = 1; k <= Flake.MAX_RICE_PARAM; k++) { a += n; b >>= 1; uint nbits_k = a + b; if (nbits_k < nbits) { k_opt = k; nbits = nbits_k; } } nbits_best = nbits; return k_opt; } unsafe uint calc_decorr_score(FlacFrame* frame, int ch) { int* s = frame->subframes[ch].samples; int n = frame->blocksize; ulong sum = 0; for (int i = 2; i < n; i++) sum += (ulong)Math.Abs(s[i] - 2 * s[i - 1] + s[i - 2]); uint nbits; find_optimal_rice_param((uint)(2 * sum), (uint)n, out nbits); return nbits; } unsafe void initialize_subframe(FlacFrame* frame, int ch, int *s, int * r, uint bps, uint w) { if (w > bps) throw new Exception("internal error"); frame->subframes[ch].samples = s; frame->subframes[ch].obits = bps - w; frame->subframes[ch].wbits = w; frame->subframes[ch].best.residual = r; frame->subframes[ch].best.type = SubframeType.Verbatim; frame->subframes[ch].best.size = UINT32_MAX; for (int iWindow = 0; iWindow < 2 * lpc.MAX_LPC_WINDOWS; iWindow++) frame->subframes[ch].done_lpcs[iWindow] = 0; frame->subframes[ch].done_fixed = 0; for (int iWindow = 0; iWindow < lpc.MAX_LPC_WINDOWS; iWindow++) frame->subframes[ch].lpcs_order[iWindow] = 0; } unsafe static void channel_decorrelation(int* leftS, int* rightS, int *leftM, int *rightM, int blocksize) { for (int i = 0; i < blocksize; i++) { leftM[i] = (leftS[i] + rightS[i]) >> 1; rightM[i] = leftS[i] - rightS[i]; } } unsafe void encode_residual_verbatim(int* res, int* smp, uint n) { Flake.memcpy(res, smp, (int) n); } unsafe void encode_residual_fixed(int* res, int* smp, int n, int order) { int i; int s0, s1, s2; switch (order) { case 0: Flake.memcpy(res, smp, n); return; case 1: *(res++) = s1 = *(smp++); for (i = n - 1; i > 0; i--) { s0 = *(smp++); *(res++) = s0 - s1; s1 = s0; } return; case 2: *(res++) = s2 = *(smp++); *(res++) = s1 = *(smp++); for (i = n - 2; i > 0; i--) { s0 = *(smp++); *(res++) = s0 - 2 * s1 + s2; s2 = s1; s1 = s0; } return; case 3: res[0] = smp[0]; res[1] = smp[1]; res[2] = smp[2]; for (i = 3; i < n; i++) { res[i] = smp[i] - 3 * smp[i - 1] + 3 * smp[i - 2] - smp[i - 3]; } return; case 4: res[0] = smp[0]; res[1] = smp[1]; res[2] = smp[2]; res[3] = smp[3]; for (i = 4; i < n; i++) { res[i] = smp[i] - 4 * smp[i - 1] + 6 * smp[i - 2] - 4 * smp[i - 3] + smp[i - 4]; } return; default: return; } } public const uint UINT32_MAX = 0xffffffff; static unsafe uint calc_optimal_rice_params(RiceContext* rc, int porder, uint* sums, uint n, uint pred_order) { uint part = (1U << porder); uint all_bits = 0; rc->rparams[0] = find_optimal_rice_param(sums[0], (n >> porder) - pred_order, out all_bits); uint cnt = (n >> porder); for (uint i = 1; i < part; i++) { uint nbits; rc->rparams[i] = find_optimal_rice_param(sums[i], cnt, out nbits); all_bits += nbits; } all_bits += (4 * part); rc->porder = porder; return all_bits; } static unsafe void calc_sums(int pmin, int pmax, uint* data, uint n, uint pred_order, uint* sums) { // sums for highest level int parts = (1 << pmax); uint* res = data + pred_order; uint cnt = (n >> pmax) - pred_order; uint sum = 0; for (uint j = cnt; j > 0; j--) sum += *(res++); sums[pmax * Flake.MAX_PARTITIONS + 0] = sum; cnt = (n >> pmax); for (int i = 1; i < parts; i++) { sum = 0; for (uint j = cnt; j > 0; j--) sum += *(res++); sums[pmax * Flake.MAX_PARTITIONS + i] = sum; } // sums for lower levels for (int i = pmax - 1; i >= pmin; i--) { parts = (1 << i); for (int j = 0; j < parts; j++) { sums[i * Flake.MAX_PARTITIONS + j] = sums[(i + 1) * Flake.MAX_PARTITIONS + 2 * j] + sums[(i + 1) * Flake.MAX_PARTITIONS + 2 * j + 1]; } } } static unsafe uint calc_rice_params(RiceContext* rc, int pmin, int pmax, int* data, uint n, uint pred_order) { RiceContext tmp_rc; uint* udata = stackalloc uint[(int)n]; uint* sums = stackalloc uint[(pmax + 1) * Flake.MAX_PARTITIONS]; //uint* bits = stackalloc uint[Flake.MAX_PARTITION_ORDER]; //assert(pmin >= 0 && pmin <= Flake.MAX_PARTITION_ORDER); //assert(pmax >= 0 && pmax <= Flake.MAX_PARTITION_ORDER); //assert(pmin <= pmax); for (uint i = 0; i < n; i++) udata[i] = (uint) ((2 * data[i]) ^ (data[i] >> 31)); calc_sums(pmin, pmax, udata, n, pred_order, sums); int opt_porder = pmin; uint opt_bits = UINT32_MAX; for (int i = pmin; i <= pmax; i++) { uint bits = calc_optimal_rice_params(&tmp_rc, i, sums + i * Flake.MAX_PARTITIONS, n, pred_order); if (bits <= opt_bits) { opt_porder = i; opt_bits = bits; *rc = tmp_rc; } } return opt_bits; } static int get_max_p_order(int max_porder, int n, int order) { int porder = Math.Min(max_porder, Flake.log2i(n ^ (n - 1))); if (order > 0) porder = Math.Min(porder, Flake.log2i(n / order)); return porder; } static unsafe uint calc_rice_params_fixed(RiceContext* rc, int pmin, int pmax, int* data, int n, int pred_order, uint bps) { pmin = get_max_p_order(pmin, n, pred_order); pmax = get_max_p_order(pmax, n, pred_order); uint bits = (uint)pred_order * bps + 6; bits += calc_rice_params(rc, pmin, pmax, data, (uint)n, (uint)pred_order); return bits; } static unsafe uint calc_rice_params_lpc(RiceContext* rc, int pmin, int pmax, int* data, int n, int pred_order, uint bps, uint precision) { pmin = get_max_p_order(pmin, n, pred_order); pmax = get_max_p_order(pmax, n, pred_order); uint bits = (uint)pred_order * bps + 4 + 5 + (uint)pred_order * precision + 6; bits += calc_rice_params(rc, pmin, pmax, data, (uint)n, (uint)pred_order); return bits; } unsafe void choose_best_subframe(FlacFrame* frame, int ch) { if (frame->current.size < frame->subframes[ch].best.size) { FlacSubframe tmp = frame->subframes[ch].best; frame->subframes[ch].best = frame->current; frame->current = tmp; } } unsafe void encode_residual_lpc_sub(FlacFrame* frame, double * lpcs, int iWindow, int order, int ch) { // select LPC precision based on block size uint lpc_precision; if (frame->blocksize <= 192) lpc_precision = 7U; else if (frame->blocksize <= 384) lpc_precision = 8U; else if (frame->blocksize <= 576) lpc_precision = 9U; else if (frame->blocksize <= 1152) lpc_precision = 10U; else if (frame->blocksize <= 2304) lpc_precision = 11U; else if (frame->blocksize <= 4608) lpc_precision = 12U; else if (frame->blocksize <= 8192) lpc_precision = 13U; else if (frame->blocksize <= 16384) lpc_precision = 14U; else lpc_precision = 15; for (uint i_precision = 0; i_precision <= eparams.lpc_precision_search && lpc_precision + i_precision < 16; i_precision++) // check if we already calculated with this order, window and precision if ((frame->subframes[ch].done_lpcs[iWindow + i_precision * lpc.MAX_LPC_WINDOWS] & (1U << (order - 1))) == 0) { frame->subframes[ch].done_lpcs[iWindow + i_precision * lpc.MAX_LPC_WINDOWS] |= (1U << (order - 1)); uint cbits = lpc_precision + i_precision; frame->current.type = SubframeType.LPC; frame->current.order = order; frame->current.window = iWindow; lpc.quantize_lpc_coefs(lpcs + (frame->current.order - 1) * lpc.MAX_LPC_ORDER, frame->current.order, cbits, frame->current.coefs, out frame->current.shift); if (frame->current.shift < 0 || frame->current.shift > 15) throw new Exception("negative shift"); ulong csum = 0; for (int i = frame->current.order; i > 0; i--) csum += (ulong)Math.Abs(frame->current.coefs[i - 1]); if ((csum << (int)frame->subframes[ch].obits) >= 1UL << 32) lpc.encode_residual_long(frame->current.residual, frame->subframes[ch].samples, frame->blocksize, frame->current.order, frame->current.coefs, frame->current.shift); else lpc.encode_residual(frame->current.residual, frame->subframes[ch].samples, frame->blocksize, frame->current.order, frame->current.coefs, frame->current.shift); frame->current.size = calc_rice_params_lpc(&frame->current.rc, eparams.min_partition_order, eparams.max_partition_order, frame->current.residual, frame->blocksize, frame->current.order, frame->subframes[ch].obits, cbits); choose_best_subframe(frame, ch); } } unsafe void encode_residual_fixed_sub(FlacFrame* frame, int order, int ch) { if ((frame->subframes[ch].done_fixed & (1U << order)) != 0) return; // already calculated; frame->current.order = order; frame->current.type = SubframeType.Fixed; encode_residual_fixed(frame->current.residual, frame->subframes[ch].samples, frame->blocksize, frame->current.order); frame->current.size = calc_rice_params_fixed(&frame->current.rc, eparams.min_partition_order, eparams.max_partition_order, frame->current.residual, frame->blocksize, frame->current.order, frame->subframes[ch].obits); frame->subframes[ch].done_fixed |= (1U << order); choose_best_subframe(frame, ch); } unsafe void encode_residual(FlacFrame* frame, int ch, PredictionType predict, OrderMethod omethod) { int* smp = frame->subframes[ch].samples; int i, n = frame->blocksize; // CONSTANT for (i = 1; i < n; i++) { if (smp[i] != smp[0]) break; } if (i == n) { frame->subframes[ch].best.type = SubframeType.Constant; frame->subframes[ch].best.residual[0] = smp[0]; frame->subframes[ch].best.size = frame->subframes[ch].obits; return; } // VERBATIM frame->current.type = SubframeType.Verbatim; frame->current.size = frame->subframes[ch].obits * (uint)frame->blocksize; choose_best_subframe(frame, ch); if (n < 5 || predict == PredictionType.None) return; // FIXED if (predict == PredictionType.Fixed || predict == PredictionType.Search || (predict == PredictionType.Estimated && frame->subframes[ch].best.type == SubframeType.Fixed) || n <= eparams.max_prediction_order) { int max_fixed_order = Math.Min(eparams.max_fixed_order, 4); int min_fixed_order = Math.Min(eparams.min_fixed_order, max_fixed_order); for (i = min_fixed_order; i <= max_fixed_order; i++) encode_residual_fixed_sub(frame, i, ch); } // LPC if (n > eparams.max_prediction_order && (predict == PredictionType.Levinson || predict == PredictionType.Search || (predict == PredictionType.Estimated && frame->subframes[ch].best.type == SubframeType.LPC))) { //double* lpcs = stackalloc double[lpc.MAX_LPC_ORDER * lpc.MAX_LPC_ORDER]; int min_order = eparams.min_prediction_order; int max_order = eparams.max_prediction_order; for (int iWindow = 0; iWindow < _windowcount; iWindow++) { if (predict == PredictionType.Estimated && frame->subframes[ch].best.window != iWindow) continue; double* reff = frame->subframes[ch].lpcs_reff + iWindow * lpc.MAX_LPC_ORDER; if (frame->subframes[ch].lpcs_order[iWindow] != max_order) { double* autoc = stackalloc double[lpc.MAX_LPC_ORDER + 1]; lpc.compute_autocorr(smp, (uint)n, (uint)max_order, autoc, frame->window_buffer + iWindow * Flake.MAX_BLOCKSIZE * 2); lpc.compute_schur_reflection(autoc, (uint)max_order, reff); frame->subframes[ch].lpcs_order[iWindow] = max_order; } int est_order = 1; int est_order2 = 1; if (omethod == OrderMethod.Estimate || omethod == OrderMethod.Estimate8 || omethod == OrderMethod.EstSearch) { // Estimate optimal order using reflection coefficients for (int r = max_order - 1; r >= 0; r--) if (Math.Abs(reff[r]) > 0.1) { est_order = r + 1; break; } for (int r = Math.Min(max_order, 8) - 1; r >= 0; r--) if (Math.Abs(reff[r]) > 0.1) { est_order2 = r + 1; break; } } else est_order = max_order; double* lpcs = stackalloc double[lpc.MAX_LPC_ORDER * lpc.MAX_LPC_ORDER]; lpc.compute_lpc_coefs(null, (uint)est_order, reff, lpcs); switch (omethod) { case OrderMethod.Max: // always use maximum order encode_residual_lpc_sub(frame, lpcs, iWindow, max_order, ch); break; case OrderMethod.Estimate: // estimated order encode_residual_lpc_sub(frame, lpcs, iWindow, est_order, ch); break; case OrderMethod.Estimate8: // estimated order encode_residual_lpc_sub(frame, lpcs, iWindow, est_order2, ch); break; //case OrderMethod.EstSearch: // brute-force search starting from estimate //encode_residual_lpc_sub(frame, lpcs, iWindow, est_order, ch); //encode_residual_lpc_sub(frame, lpcs, iWindow, est_order2, ch); //break; case OrderMethod.EstSearch: // brute-force search starting from estimate for (i = est_order; i >= min_order; i--) if (i == est_order || Math.Abs(reff[i - 1]) > 0.10) encode_residual_lpc_sub(frame, lpcs, iWindow, i, ch); break; case OrderMethod.Search: // brute-force optimal order search for (i = max_order; i >= min_order; i--) encode_residual_lpc_sub(frame, lpcs, iWindow, i, ch); break; case OrderMethod.LogFast: // Try max, est, 32,16,8,4,2,1 encode_residual_lpc_sub(frame, lpcs, iWindow, max_order, ch); //encode_residual_lpc_sub(frame, lpcs, est_order, ch); for (i = lpc.MAX_LPC_ORDER; i >= min_order; i >>= 1) if (i < max_order) encode_residual_lpc_sub(frame, lpcs, iWindow, i, ch); break; case OrderMethod.LogSearch: // do LogFast first encode_residual_lpc_sub(frame, lpcs, iWindow, max_order, ch); //encode_residual_lpc_sub(frame, lpcs, est_order, ch); for (i = lpc.MAX_LPC_ORDER; i >= min_order; i >>= 1) if (i < max_order) encode_residual_lpc_sub(frame, lpcs, iWindow, i, ch); // if found a good order, try to search around it if (frame->subframes[ch].best.type == SubframeType.LPC) { // log search (written by Michael Niedermayer for FFmpeg) for (int step = lpc.MAX_LPC_ORDER; step > 0; step >>= 1) { int last = frame->subframes[ch].best.order; if (step <= (last + 1) / 2) for (i = last - step; i <= last + step; i += step) if (i >= min_order && i <= max_order) encode_residual_lpc_sub(frame, lpcs, iWindow, i, ch); } } break; default: throw new Exception("unknown ordermethod"); } } } } unsafe void output_frame_header(FlacFrame* frame, BitWriter bitwriter) { bitwriter.writebits(16, 0xFFF8); bitwriter.writebits(4, frame->bs_code0); bitwriter.writebits(4, sr_code0); if (frame->ch_mode == ChannelMode.NotStereo) bitwriter.writebits(4, ch_code); else bitwriter.writebits(4, (int) frame->ch_mode); bitwriter.writebits(3, bps_code); bitwriter.writebits(1, 0); bitwriter.write_utf8(frame_count); // custom block size if (frame->bs_code1 >= 0) { if (frame->bs_code1 < 256) bitwriter.writebits(8, frame->bs_code1); else bitwriter.writebits(16, frame->bs_code1); } // custom sample rate if (sr_code1 > 0) { if (sr_code1 < 256) bitwriter.writebits(8, sr_code1); else bitwriter.writebits(16, sr_code1); } // CRC-8 of frame header bitwriter.flush(); byte crc = crc8.ComputeChecksum(frame_buffer, 0, bitwriter.Length); bitwriter.writebits(8, crc); } unsafe void output_residual(FlacFrame* frame, BitWriter bitwriter, FlacSubframeInfo* sub) { // rice-encoded block bitwriter.writebits(2, 0); // partition order int porder = sub->best.rc.porder; int psize = frame->blocksize >> porder; //assert(porder >= 0); bitwriter.writebits(4, porder); int res_cnt = psize - sub->best.order; // residual int j = sub->best.order; for (int p = 0; p < (1 << porder); p++) { int k = sub->best.rc.rparams[p]; bitwriter.writebits(4, k); if (p == 1) res_cnt = psize; if (k == 0) for (int i = 0; i < res_cnt && j < frame->blocksize; i++, j++) bitwriter.write_unary_signed(sub->best.residual[j]); else for (int i = 0; i < res_cnt && j < frame->blocksize; i++, j++) bitwriter.write_rice_signed(k, sub->best.residual[j]); } } unsafe void output_subframe_constant(FlacFrame* frame, BitWriter bitwriter, FlacSubframeInfo* sub) { bitwriter.writebits_signed(sub->obits, sub->best.residual[0]); } unsafe void output_subframe_verbatim(FlacFrame* frame, BitWriter bitwriter, FlacSubframeInfo* sub) { int n = frame->blocksize; for (int i = 0; i < n; i++) bitwriter.writebits_signed(sub->obits, sub->samples[i]); // Don't use residual here, because we don't copy samples to residual for verbatim frames. } unsafe void output_subframe_fixed(FlacFrame* frame, BitWriter bitwriter, FlacSubframeInfo* sub) { // warm-up samples for (int i = 0; i < sub->best.order; i++) bitwriter.writebits_signed(sub->obits, sub->best.residual[i]); // residual output_residual(frame, bitwriter, sub); } unsafe void output_subframe_lpc(FlacFrame* frame, BitWriter bitwriter, FlacSubframeInfo* sub) { // warm-up samples for (int i = 0; i < sub->best.order; i++) bitwriter.writebits_signed(sub->obits, sub->best.residual[i]); // LPC coefficients int cbits = 1; for (int i = 0; i < sub->best.order; i++) while (cbits < 16 && sub->best.coefs[i] != (sub->best.coefs[i] << (32 - cbits)) >> (32 - cbits)) cbits++; bitwriter.writebits(4, cbits - 1); bitwriter.writebits_signed(5, sub->best.shift); for (int i = 0; i < sub->best.order; i++) bitwriter.writebits_signed(cbits, sub->best.coefs[i]); // residual output_residual(frame, bitwriter, sub); } unsafe void output_subframes(FlacFrame* frame, BitWriter bitwriter) { for (int ch = 0; ch < channels; ch++) { FlacSubframeInfo* sub = frame->subframes + ch; // subframe header int type_code = (int) sub->best.type; if (sub->best.type == SubframeType.Fixed) type_code |= sub->best.order; if (sub->best.type == SubframeType.LPC) type_code |= sub->best.order - 1; bitwriter.writebits(1, 0); bitwriter.writebits(6, type_code); bitwriter.writebits(1, sub->wbits != 0 ? 1 : 0); if (sub->wbits > 0) bitwriter.writebits((int)sub->wbits, 1); // subframe switch (sub->best.type) { case SubframeType.Constant: output_subframe_constant(frame, bitwriter, sub); break; case SubframeType.Verbatim: output_subframe_verbatim(frame, bitwriter, sub); break; case SubframeType.Fixed: output_subframe_fixed(frame, bitwriter, sub); break; case SubframeType.LPC: output_subframe_lpc(frame, bitwriter, sub); break; } } } void output_frame_footer(BitWriter bitwriter) { bitwriter.flush(); ushort crc = crc16.ComputeChecksum(frame_buffer, 0, bitwriter.Length); bitwriter.writebits(16, crc); bitwriter.flush(); } unsafe void window_welch(double* window, int L) { int N = L - 1; double N2 = (double)N / 2.0; for (int n = 0; n <= N; n++) { double k = 1 / N2 - 1.0 - Math.Min(n, N-n); //double k = ((double)n - N2) / N2; window[n] = 1.0 - k * k; } } unsafe void window_rectangle(double* window, int L) { for (int n = 0; n < L; n++) window[n] = 1.0; } unsafe void window_flattop(double* window, int L) { int N = L - 1; for (int n = 0; n < L; n++) window[n] = 1.0 - 1.93 * Math.Cos(2.0 * Math.PI * n / N) + 1.29 * Math.Cos(4.0 * Math.PI * n / N) - 0.388 * Math.Cos(6.0 * Math.PI * n / N) + 0.0322 * Math.Cos(8.0 * Math.PI * n / N); } unsafe void window_tukey(double* window, int L) { window_rectangle(window, L); double p = 0.5; int Np = (int) (p / 2.0 * L) - 1; if (Np > 0) { for (int n = 0; n <= Np; n++) { window[n] = 0.5 - 0.5 * Math.Cos(Math.PI * n / Np); window[L - Np - 1 + n] = 0.5 - 0.5 * Math.Cos(Math.PI * (n + Np) / Np); } } } unsafe void window_hann(double* window, int L) { int N = L - 1; for (int n = 0; n < L; n++) window[n] = 0.5 - 0.5 * Math.Cos(2.0 * Math.PI * n / N); } unsafe void estimate_frame(FlacFrame* frame, bool do_midside) { int subframes = do_midside ? channels * 2 : channels; switch (eparams.stereo_method) { case StereoMethod.Estimate: for (int ch = 0; ch < subframes; ch++) frame->subframes[ch].best.size = (uint)frame->blocksize * 32 + calc_decorr_score(frame, ch); break; case StereoMethod.Evaluate: { int max_prediction_order = eparams.max_prediction_order; int max_fixed_order = eparams.max_fixed_order; int min_fixed_order = eparams.min_fixed_order; int lpc_precision_search = eparams.lpc_precision_search; int max_partition_order = eparams.max_partition_order; OrderMethod omethod = OrderMethod.Estimate8; eparams.min_fixed_order = 2; eparams.max_fixed_order = 2; eparams.lpc_precision_search = 0; if (eparams.max_prediction_order > 12) eparams.max_prediction_order = 8; //if (eparams.max_partition_order > 4) //eparams.max_partition_order = 4; for (int ch = 0; ch < subframes; ch++) encode_residual(frame, ch, eparams.prediction_type, omethod); eparams.min_fixed_order = min_fixed_order; eparams.max_fixed_order = max_fixed_order; eparams.max_prediction_order = max_prediction_order; eparams.lpc_precision_search = lpc_precision_search; eparams.max_partition_order = max_partition_order; break; } case StereoMethod.Search: for (int ch = 0; ch < subframes; ch++) encode_residual(frame, ch, eparams.prediction_type, eparams.order_method); break; } } unsafe uint measure_frame_size(FlacFrame* frame, bool do_midside) { uint total = 48 + 16; // crude estimation of header/footer size; if (do_midside) { uint bitsBest = UINT32_MAX; ChannelMode modeBest = ChannelMode.LeftRight; if (bitsBest > frame->subframes[2].best.size + frame->subframes[3].best.size) { bitsBest = frame->subframes[2].best.size + frame->subframes[3].best.size; modeBest = ChannelMode.MidSide; } if (bitsBest > frame->subframes[3].best.size + frame->subframes[1].best.size) { bitsBest = frame->subframes[3].best.size + frame->subframes[1].best.size; modeBest = ChannelMode.RightSide; } if (bitsBest > frame->subframes[3].best.size + frame->subframes[0].best.size) { bitsBest = frame->subframes[3].best.size + frame->subframes[0].best.size; modeBest = ChannelMode.LeftSide; } if (bitsBest > frame->subframes[0].best.size + frame->subframes[1].best.size) { bitsBest = frame->subframes[0].best.size + frame->subframes[1].best.size; modeBest = ChannelMode.LeftRight; } frame->ch_mode = modeBest; return total + bitsBest; } for (int ch = 0; ch < channels; ch++) total += frame->subframes[ch].best.size; return total; } unsafe void encode_estimated_frame(FlacFrame* frame, bool do_midside) { if (do_midside) switch (frame->ch_mode) { case ChannelMode.MidSide: frame->subframes[0] = frame->subframes[2]; frame->subframes[1] = frame->subframes[3]; break; case ChannelMode.RightSide: frame->subframes[0] = frame->subframes[3]; break; case ChannelMode.LeftSide: frame->subframes[1] = frame->subframes[3]; break; } switch (eparams.stereo_method) { case StereoMethod.Estimate: for (int ch = 0; ch < channels; ch++) { frame->subframes[ch].best.size = UINT32_MAX; encode_residual(frame, ch, eparams.prediction_type, eparams.order_method); } break; case StereoMethod.Evaluate: for (int ch = 0; ch < channels; ch++) encode_residual(frame, ch, PredictionType.Estimated, eparams.order_method); break; case StereoMethod.Search: break; } } unsafe delegate void window_function(double* window, int size); unsafe void calculate_window(double* window, window_function func, WindowFunction flag) { if ((eparams.window_function & flag) == 0 || _windowcount == lpc.MAX_LPC_WINDOWS) return; int sz = _windowsize; double* pos = window + _windowcount * Flake.MAX_BLOCKSIZE * 2; do { func(pos, sz); if ((sz & 1) != 0) break; pos += sz; sz >>= 1; } while (sz >= 32); _windowcount++; } unsafe int encode_frame(out int size) { FlacFrame frame; FlacFrame frame2, frame3; FlacSubframeInfo* sf = stackalloc FlacSubframeInfo[channels * 6]; fixed (int* s = samplesBuffer, r = residualBuffer) fixed (double* window = windowBuffer) { frame.subframes = sf; init_frame(&frame, eparams.block_size); if (frame.blocksize != _windowsize && frame.blocksize > 4) { _windowsize = frame.blocksize; _windowcount = 0; calculate_window(window, window_welch, WindowFunction.Welch); calculate_window(window, window_tukey, WindowFunction.Tukey); calculate_window(window, window_hann, WindowFunction.Hann); calculate_window(window, window_flattop, WindowFunction.Flattop); if (_windowcount == 0) throw new Exception("invalid windowfunction"); } if (channels != 2 || frame.blocksize <= 32 || eparams.stereo_method == StereoMethod.Independent) { frame.window_buffer = window; frame.current.residual = r + channels * Flake.MAX_BLOCKSIZE; frame.ch_mode = channels != 2 ? ChannelMode.NotStereo : ChannelMode.LeftRight; for (int ch = 0; ch < channels; ch++) initialize_subframe(&frame, ch, s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, bits_per_sample, get_wasted_bits(s + ch * Flake.MAX_BLOCKSIZE, frame.blocksize)); for (int ch = 0; ch < channels; ch++) encode_residual(&frame, ch, eparams.prediction_type, eparams.order_method); } else { channel_decorrelation(s, s + Flake.MAX_BLOCKSIZE, s + 2 * Flake.MAX_BLOCKSIZE, s + 3 * Flake.MAX_BLOCKSIZE, frame.blocksize); frame.window_buffer = window; frame.current.residual = r + 4 * Flake.MAX_BLOCKSIZE; for (int ch = 0; ch < 4; ch++) initialize_subframe(&frame, ch, s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, bits_per_sample + (ch == 3 ? 1U : 0U), get_wasted_bits(s + ch * Flake.MAX_BLOCKSIZE, frame.blocksize)); estimate_frame(&frame, true); uint fs = measure_frame_size(&frame, true); if (0 != eparams.variable_block_size) { int tumbler = 1; while ((frame.blocksize & 1) == 0 && frame.blocksize >= 1024) { init_frame(&frame2, frame.blocksize / 2); frame2.window_buffer = frame.window_buffer + frame.blocksize; frame2.current.residual = r + tumbler * 5 * Flake.MAX_BLOCKSIZE; frame2.subframes = sf + tumbler * channels * 2; for (int ch = 0; ch < 4; ch++) initialize_subframe(&frame2, ch, frame.subframes[ch].samples, frame2.current.residual + (ch + 1) * frame2.blocksize, frame.subframes[ch].obits + frame.subframes[ch].wbits, frame.subframes[ch].wbits); estimate_frame(&frame2, true); uint fs2 = measure_frame_size(&frame2, true); uint fs3 = fs2; if (eparams.variable_block_size == 2 || eparams.variable_block_size == 4) { init_frame(&frame3, frame2.blocksize); frame3.window_buffer = frame2.window_buffer; frame3.current.residual = frame2.current.residual + 5 * frame2.blocksize; frame3.subframes = sf + channels * 4; for (int ch = 0; ch < 4; ch++) initialize_subframe(&frame3, ch, frame2.subframes[ch].samples + frame2.blocksize, frame3.current.residual + (ch + 1) * frame3.blocksize, frame.subframes[ch].obits + frame.subframes[ch].wbits, frame.subframes[ch].wbits); estimate_frame(&frame3, true); fs3 = measure_frame_size(&frame3, true); } if (fs2 + fs3 > fs) break; frame = frame2; fs = fs2; if (eparams.variable_block_size <= 2) break; tumbler = 1 - tumbler; } } encode_estimated_frame(&frame, true); } BitWriter bitwriter = new BitWriter(frame_buffer, 0, max_frame_size); output_frame_header(&frame, bitwriter); output_subframes(&frame, bitwriter); output_frame_footer(bitwriter); if (frame_buffer != null) { if (eparams.variable_block_size > 0) frame_count += frame.blocksize; else frame_count++; } size = frame.blocksize; return bitwriter.Length; } } unsafe int output_frame() { if (verify != null) { fixed (int* s = verifyBuffer, r = samplesBuffer) for (int ch = 0; ch < channels; ch++) Flake.memcpy(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, eparams.block_size); } int fs, bs; //if (0 != eparams.variable_block_size && 0 == (eparams.block_size & 7) && eparams.block_size >= 128) // fs = encode_frame_vbs(); //else fs = encode_frame(out bs); if (seek_table != null && _IO.CanSeek) { for (int sp = 0; sp < seek_table.Length; sp++) { if (seek_table[sp].framesize != 0) continue; if (seek_table[sp].number > (ulong)_position + (ulong)bs) break; if (seek_table[sp].number >= (ulong)_position) { seek_table[sp].number = (ulong)_position; seek_table[sp].offset = (ulong)(_IO.Position - first_frame_offset); seek_table[sp].framesize = (uint)bs; } } } _position += bs; _IO.Write(frame_buffer, 0, fs); _totalSize += fs; if (verify != null) { int decoded = verify.DecodeFrame(frame_buffer, 0, fs); if (decoded != fs || verify.Remaining != (ulong)bs) throw new Exception("validation failed!"); fixed (int* s = verifyBuffer, r = verify.Samples) { for (int ch = 0; ch < channels; ch++) if (Flake.memcmp(s + ch * Flake.MAX_BLOCKSIZE, r + ch * Flake.MAX_BLOCKSIZE, bs)) throw new Exception("validation failed!"); } } if (bs < eparams.block_size) { fixed (int* s = samplesBuffer) for (int ch = 0; ch < channels; ch++) Flake.memcpy(s + ch * Flake.MAX_BLOCKSIZE, s + bs + ch * Flake.MAX_BLOCKSIZE, eparams.block_size - bs); } samplesInBuffer -= bs; return bs; } public void Write(int[,] buff, int pos, int sampleCount) { if (!inited) { if (_IO == null) _IO = new FileStream(_path, FileMode.Create, FileAccess.Write, FileShare.Read); int header_size = flake_encode_init(); _IO.Write(header, 0, header_size); if (_IO.CanSeek) first_frame_offset = _IO.Position; inited = true; } int len = sampleCount; while (len > 0) { int block = Math.Min(len, eparams.block_size - samplesInBuffer); copy_samples(buff, pos, block); if (md5 != null) { AudioSamples.FLACSamplesToBytes(buff, pos, frame_buffer, 0, block, channels, (int)bits_per_sample); md5.TransformBlock(frame_buffer, 0, block * channels * ((int)bits_per_sample >> 3), null, 0); } len -= block; pos += block; while (samplesInBuffer >= eparams.block_size) output_frame(); } } public string Path { get { return _path; } } string vendor_string = "Flake#0.1"; int select_blocksize(int samplerate, int time_ms) { int blocksize = Flake.flac_blocksizes[1]; int target = (samplerate * time_ms) / 1000; if (eparams.variable_block_size > 0) { blocksize = 1024; while (target >= blocksize) blocksize <<= 1; return blocksize >> 1; } for (int i = 0; i < Flake.flac_blocksizes.Length; i++) if (target >= Flake.flac_blocksizes[i] && Flake.flac_blocksizes[i] > blocksize) { blocksize = Flake.flac_blocksizes[i]; } return blocksize; } void write_streaminfo(byte[] header, int pos, int last) { Array.Clear(header, pos, 38); BitWriter bitwriter = new BitWriter(header, pos, 38); // metadata header bitwriter.writebits(1, last); bitwriter.writebits(7, (int)MetadataType.FLAC__METADATA_TYPE_STREAMINFO); bitwriter.writebits(24, 34); if (eparams.variable_block_size > 0) bitwriter.writebits(16, 0); else bitwriter.writebits(16, eparams.block_size); bitwriter.writebits(16, eparams.block_size); bitwriter.writebits(24, 0); bitwriter.writebits(24, max_frame_size); bitwriter.writebits(20, sample_rate); bitwriter.writebits(3, channels - 1); bitwriter.writebits(5, bits_per_sample - 1); // total samples if (sample_count > 0) { bitwriter.writebits(4, 0); bitwriter.writebits(32, sample_count); } else { bitwriter.writebits(4, 0); bitwriter.writebits(32, 0); } bitwriter.flush(); } /** * Write vorbis comment metadata block to byte array. * Just writes the vendor string for now. */ int write_vorbis_comment(byte[] comment, int pos, int last) { BitWriter bitwriter = new BitWriter(comment, pos, 4); Encoding enc = new ASCIIEncoding(); int vendor_len = enc.GetBytes(vendor_string, 0, vendor_string.Length, comment, pos + 8); // metadata header bitwriter.writebits(1, last); bitwriter.writebits(7, (int)MetadataType.FLAC__METADATA_TYPE_VORBIS_COMMENT); bitwriter.writebits(24, vendor_len + 8); comment[pos + 4] = (byte)(vendor_len & 0xFF); comment[pos + 5] = (byte)((vendor_len >> 8) & 0xFF); comment[pos + 6] = (byte)((vendor_len >> 16) & 0xFF); comment[pos + 7] = (byte)((vendor_len >> 24) & 0xFF); comment[pos + 8 + vendor_len] = 0; comment[pos + 9 + vendor_len] = 0; comment[pos + 10 + vendor_len] = 0; comment[pos + 11 + vendor_len] = 0; bitwriter.flush(); return vendor_len + 12; } int write_seekpoints(byte[] header, int pos, int last) { seek_table_offset = pos + 4; BitWriter bitwriter = new BitWriter(header, pos, 4 + 18 * seek_table.Length); // metadata header bitwriter.writebits(1, last); bitwriter.writebits(7, (int)MetadataType.FLAC__METADATA_TYPE_SEEKTABLE); bitwriter.writebits(24, 18 * seek_table.Length); for (int i = 0; i < seek_table.Length; i++) { bitwriter.writebits64(Flake.FLAC__STREAM_METADATA_SEEKPOINT_SAMPLE_NUMBER_LEN, seek_table[i].number); bitwriter.writebits64(Flake.FLAC__STREAM_METADATA_SEEKPOINT_STREAM_OFFSET_LEN, seek_table[i].offset); bitwriter.writebits(Flake.FLAC__STREAM_METADATA_SEEKPOINT_FRAME_SAMPLES_LEN, seek_table[i].framesize); } bitwriter.flush(); return 4 + 18 * seek_table.Length; } /** * Write padding metadata block to byte array. */ int write_padding(byte[] padding, int pos, int last, int padlen) { BitWriter bitwriter = new BitWriter(padding, pos, 4); // metadata header bitwriter.writebits(1, last); bitwriter.writebits(7, (int)MetadataType.FLAC__METADATA_TYPE_PADDING); bitwriter.writebits(24, padlen); return padlen + 4; } int write_headers() { int header_size = 0; int last = 0; // stream marker header[0] = 0x66; header[1] = 0x4C; header[2] = 0x61; header[3] = 0x43; header_size += 4; // streaminfo write_streaminfo(header, header_size, last); header_size += 38; // seek table if (_IO.CanSeek && seek_table != null) header_size += write_seekpoints(header, header_size, last); // vorbis comment if (eparams.padding_size == 0) last = 1; header_size += write_vorbis_comment(header, header_size, last); // padding if (eparams.padding_size > 0) { last = 1; header_size += write_padding(header, header_size, last, eparams.padding_size); } return header_size; } int flake_encode_init() { int i, header_len; //if(flake_validate_params(s) < 0) ch_code = channels - 1; // find samplerate in table for (i = 4; i < 12; i++) { if (sample_rate == Flake.flac_samplerates[i]) { sr_code0 = i; break; } } // if not in table, samplerate is non-standard if (i == 12) throw new Exception("non-standard samplerate"); for (i = 1; i < 8; i++) { if (bits_per_sample == Flake.flac_bitdepths[i]) { bps_code = i; break; } } if (i == 8) throw new Exception("non-standard bps"); // FIXME: For now, only 16-bit encoding is supported if (bits_per_sample != 16) throw new Exception("non-standard bps"); if (_blocksize == 0) { if (eparams.block_size == 0) eparams.block_size = select_blocksize(sample_rate, eparams.block_time_ms); _blocksize = eparams.block_size; } else eparams.block_size = _blocksize; // set maximum encoded frame size (if larger, re-encodes in verbatim mode) if (channels == 2) max_frame_size = 16 + ((eparams.block_size * (int)(bits_per_sample + bits_per_sample + 1) + 7) >> 3); else max_frame_size = 16 + ((eparams.block_size * channels * (int)bits_per_sample + 7) >> 3); if (_IO.CanSeek && eparams.do_seektable) { int seek_points_distance = sample_rate * 10; int num_seek_points = 1 + sample_count / seek_points_distance; // 1 seek point per 10 seconds if (sample_count % seek_points_distance == 0) num_seek_points--; seek_table = new SeekPoint[num_seek_points]; for (int sp = 0; sp < num_seek_points; sp++) { seek_table[sp].framesize = 0; seek_table[sp].offset = 0; seek_table[sp].number = (ulong)(sp * seek_points_distance); } } // output header bytes header = new byte[eparams.padding_size + 1024 + (seek_table == null ? 0 : seek_table.Length * 18)]; header_len = write_headers(); // initialize CRC & MD5 if (_IO.CanSeek && eparams.do_md5) md5 = new MD5CryptoServiceProvider(); if (eparams.do_verify) { verify = new FlakeReader(channels, bits_per_sample); verifyBuffer = new int[Flake.MAX_BLOCKSIZE * channels]; } frame_buffer = new byte[max_frame_size]; return header_len; } } struct FlakeEncodeParams { // compression quality // set by user prior to calling flake_encode_init // standard values are 0 to 8 // 0 is lower compression, faster encoding // 8 is higher compression, slower encoding // extended values 9 to 12 are slower and/or use // higher prediction orders public int compression; // prediction order selection method // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 5 // 0 = use maximum order only // 1 = use estimation // 2 = 2-level // 3 = 4-level // 4 = 8-level // 5 = full search // 6 = log search public OrderMethod order_method; // stereo decorrelation method // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 2 // 0 = independent L+R channels // 1 = mid-side encoding public StereoMethod stereo_method; // block size in samples // set by the user prior to calling flake_encode_init // if set to 0, a block size is chosen based on block_time_ms // can also be changed by user before encoding a frame public int block_size; // block time in milliseconds // set by the user prior to calling flake_encode_init // used to calculate block_size based on sample rate // can also be changed by user before encoding a frame public int block_time_ms; // padding size in bytes // set by the user prior to calling flake_encode_init // if set to less than 0, defaults to 4096 public int padding_size; // maximum encoded frame size // this is set by flake_encode_init based on input audio format // it can be used by the user to allocate an output buffer public int max_frame_size; // minimum LPC order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 1 to 32 public int min_prediction_order; // maximum LPC order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 1 to 32 public int max_prediction_order; // minimum fixed prediction order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 4 public int min_fixed_order; // maximum fixed prediction order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 4 public int max_fixed_order; // type of linear prediction // set by user prior to calling flake_encode_init public PredictionType prediction_type; // minimum partition order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 8 public int min_partition_order; // maximum partition order // set by user prior to calling flake_encode_init // if set to less than 0, it is chosen based on compression. // valid values are 0 to 8 public int max_partition_order; // whether to use variable block sizes // set by user prior to calling flake_encode_init // 0 = fixed block size // 1 = variable block size public int variable_block_size; // whether to try various lpc_precisions // 0 - use only one precision // 1 - try two precisions public int lpc_precision_search; public WindowFunction window_function; public bool do_md5; public bool do_verify; public bool do_seektable; public int flake_set_defaults(int lvl) { compression = lvl; if ((lvl < 0 || lvl > 12) && (lvl != 99)) { return -1; } // default to level 5 params window_function = WindowFunction.Flattop | WindowFunction.Tukey; order_method = OrderMethod.Estimate; stereo_method = StereoMethod.Evaluate; block_size = 0; block_time_ms = 105; prediction_type = PredictionType.Search; min_prediction_order = 1; max_prediction_order = 8; min_fixed_order = 2; max_fixed_order = 2; min_partition_order = 0; max_partition_order = 6; variable_block_size = 0; lpc_precision_search = 0; do_md5 = true; do_verify = false; do_seektable = true; // differences from level 5 switch (lvl) { case 0: block_time_ms = 27; prediction_type = PredictionType.Fixed; max_partition_order = 4; break; case 1: prediction_type = PredictionType.Levinson; stereo_method = StereoMethod.Independent; window_function = WindowFunction.Welch; max_partition_order = 4; break; case 2: prediction_type = PredictionType.Search; stereo_method = StereoMethod.Independent; window_function = WindowFunction.Welch; max_prediction_order = 12; max_partition_order = 4; break; case 3: prediction_type = PredictionType.Levinson; stereo_method = StereoMethod.Evaluate; window_function = WindowFunction.Welch; max_partition_order = 4; break; case 4: prediction_type = PredictionType.Levinson; stereo_method = StereoMethod.Evaluate; window_function = WindowFunction.Welch; max_prediction_order = 12; max_partition_order = 4; break; case 5: prediction_type = PredictionType.Search; stereo_method = StereoMethod.Evaluate; window_function = WindowFunction.Welch; max_prediction_order = 12; break; case 6: prediction_type = PredictionType.Levinson; stereo_method = StereoMethod.Evaluate; window_function = WindowFunction.Flattop | WindowFunction.Tukey; max_prediction_order = 12; break; case 7: prediction_type = PredictionType.Search; stereo_method = StereoMethod.Evaluate; window_function = WindowFunction.Flattop | WindowFunction.Tukey; max_prediction_order = 12; min_fixed_order = 0; max_fixed_order = 4; lpc_precision_search = 1; break; case 8: prediction_type = PredictionType.Search; stereo_method = StereoMethod.Evaluate; window_function = WindowFunction.Flattop | WindowFunction.Tukey; order_method = OrderMethod.EstSearch; max_prediction_order = 12; min_fixed_order = 0; max_fixed_order = 4; lpc_precision_search = 1; break; case 9: window_function = WindowFunction.Welch; max_prediction_order = 32; break; case 10: min_fixed_order = 0; max_fixed_order = 4; max_prediction_order = 32; lpc_precision_search = 0; break; case 11: order_method = OrderMethod.EstSearch; min_fixed_order = 0; max_fixed_order = 4; max_prediction_order = 32; //lpc_precision_search = 1; variable_block_size = 4; break; } return 0; } } }