Files
cuetools.net/CUETools.Codecs/LpcContext.cs
2018-02-19 12:31:02 -05:00

394 lines
17 KiB
C#

using System;
using System.Collections.Generic;
namespace CUETools.Codecs
{
unsafe public class LpcSubframeInfo
{
public LpcSubframeInfo()
{
autocorr_section_values = new double[lpc.MAX_LPC_SECTIONS, lpc.MAX_LPC_ORDER + 1];
autocorr_section_orders = new int[lpc.MAX_LPC_SECTIONS];
}
// public LpcContext[] lpc_ctx;
public double[,] autocorr_section_values;
public int[] autocorr_section_orders;
//public int obits;
public void Reset()
{
for (int sec = 0; sec < autocorr_section_orders.Length; sec++)
autocorr_section_orders[sec] = 0;
}
}
unsafe public struct LpcWindowSection
{
public enum SectionType
{
Zero,
One,
OneLarge,
Data,
OneGlue,
Glue
};
public int m_start;
public int m_end;
public SectionType m_type;
public int m_id;
public LpcWindowSection(int end)
{
m_id = -1;
m_start = 0;
m_end = end;
m_type = SectionType.Data;
}
public void setData(int start, int end)
{
m_id = -1;
m_start = start;
m_end = end;
m_type = SectionType.Data;
}
public void setOne(int start, int end)
{
m_id = -1;
m_start = start;
m_end = end;
m_type = SectionType.One;
}
public void setGlue(int start)
{
m_id = -1;
m_start = start;
m_end = start;
m_type = SectionType.Glue;
}
public void setZero(int start, int end)
{
m_id = -1;
m_start = start;
m_end = end;
m_type = SectionType.Zero;
}
unsafe public void compute_autocorr(/*const*/ int* data, float* window, int min_order, int order, int blocksize, double* autoc)
{
if (m_type == SectionType.OneLarge)
lpc.compute_autocorr_windowless_large(data + m_start, m_end - m_start, min_order, order, autoc);
else if (m_type == SectionType.One)
lpc.compute_autocorr_windowless(data + m_start, m_end - m_start, min_order, order, autoc);
else if (m_type == SectionType.Data)
lpc.compute_autocorr(data + m_start, window + m_start, m_end - m_start, min_order, order, autoc);
else if (m_type == SectionType.Glue)
lpc.compute_autocorr_glue(data, window, m_start, m_end, min_order, order, autoc);
else if (m_type == SectionType.OneGlue)
lpc.compute_autocorr_glue(data + m_start, min_order, order, autoc);
}
unsafe public static void Detect(int _windowcount, float* window_segment, int stride, int sz, int bps, LpcWindowSection* sections)
{
int section_id = 0;
var boundaries = new List<int>();
var types = new LpcWindowSection.SectionType[_windowcount, lpc.MAX_LPC_SECTIONS * 2];
var alias = new int[_windowcount, lpc.MAX_LPC_SECTIONS * 2];
var alias_set = new int[_windowcount, lpc.MAX_LPC_SECTIONS * 2];
for (int x = 0; x < sz; x++)
{
for (int i = 0; i < _windowcount; i++)
{
int a = alias[i, boundaries.Count];
float w = window_segment[i * stride + x];
float wa = window_segment[a * stride + x];
if (wa != w)
{
for (int i1 = i; i1 < _windowcount; i1++)
if (alias[i1, boundaries.Count] == a
&& w == window_segment[i1 * stride + x])
alias[i1, boundaries.Count] = i;
}
if (boundaries.Count >= lpc.MAX_LPC_SECTIONS * 2) throw new IndexOutOfRangeException();
types[i, boundaries.Count] =
boundaries.Count >= lpc.MAX_LPC_SECTIONS * 2 - 2 ?
LpcWindowSection.SectionType.Data : w == 0.0 ?
LpcWindowSection.SectionType.Zero : w != 1.0 ?
LpcWindowSection.SectionType.Data : bps * 2 + BitReader.log2i(sz) >= 61 ?
LpcWindowSection.SectionType.OneLarge :
LpcWindowSection.SectionType.One ;
}
bool isBoundary = false;
for (int i = 0; i < _windowcount; i++)
{
isBoundary |= boundaries.Count == 0 ||
types[i, boundaries.Count - 1] != types[i, boundaries.Count];
}
if (isBoundary)
{
for (int i = 0; i < _windowcount; i++)
for (int i1 = 0; i1 < _windowcount; i1++)
if (i != i1 && alias[i, boundaries.Count] == alias[i1, boundaries.Count])
alias_set[i, boundaries.Count] |= 1 << i1;
boundaries.Add(x);
}
}
boundaries.Add(sz);
var secs = new int[_windowcount];
// Reconstruct segments list.
for (int j = 0; j < boundaries.Count - 1; j++)
{
for (int i = 0; i < _windowcount; i++)
{
LpcWindowSection* window_sections = sections + i * lpc.MAX_LPC_SECTIONS;
// leave room for glue
if (secs[i] >= lpc.MAX_LPC_SECTIONS - 1)
{
throw new IndexOutOfRangeException();
//window_sections[secs[i] - 1].m_type = LpcWindowSection.SectionType.Data;
//window_sections[secs[i] - 1].m_end = boundaries[j + 1];
//continue;
}
window_sections[secs[i]].setData(boundaries[j], boundaries[j + 1]);
window_sections[secs[i]++].m_type = types[i, j];
}
for (int i = 0; i < _windowcount; i++)
{
LpcWindowSection* window_sections = sections + i * lpc.MAX_LPC_SECTIONS;
int sec = secs[i] - 1;
if (sec > 0
&& j > 0 && (alias_set[i, j] == alias_set[i, j - 1] || window_sections[sec].m_type == SectionType.Zero)
&& window_sections[sec].m_start == boundaries[j]
&& window_sections[sec].m_end == boundaries[j + 1]
&& window_sections[sec - 1].m_end == boundaries[j]
&& window_sections[sec - 1].m_type == window_sections[sec].m_type)
{
window_sections[sec - 1].m_end = window_sections[sec].m_end;
secs[i]--;
continue;
}
if (section_id >= lpc.MAX_LPC_SECTIONS) throw new IndexOutOfRangeException();
if (alias_set[i, j] != 0
&& types[i, j] != SectionType.Zero
&& section_id < lpc.MAX_LPC_SECTIONS)
{
for (int i1 = i; i1 < _windowcount; i1++)
if (alias[i1, j] == i && secs[i1] > 0)
sections[i1 * lpc.MAX_LPC_SECTIONS + secs[i1] - 1].m_id = section_id;
section_id++;
}
// TODO: section_id for glue? nontrivial, must be sure next sections are the same size
if (sec > 0
&& (window_sections[sec].m_type == SectionType.One || window_sections[sec].m_type == SectionType.OneLarge)
&& window_sections[sec].m_end - window_sections[sec].m_start >= lpc.MAX_LPC_ORDER
&& (window_sections[sec - 1].m_type == SectionType.One || window_sections[sec - 1].m_type == SectionType.OneLarge)
&& window_sections[sec - 1].m_end - window_sections[sec - 1].m_start >= lpc.MAX_LPC_ORDER)
{
window_sections[sec + 1] = window_sections[sec];
window_sections[sec].m_end = window_sections[sec].m_start;
window_sections[sec].m_type = SectionType.OneGlue;
window_sections[sec].m_id = -1;
secs[i]++;
continue;
}
if (sec > 0
&& window_sections[sec].m_type != SectionType.Zero
&& window_sections[sec - 1].m_type != SectionType.Zero)
{
window_sections[sec + 1] = window_sections[sec];
window_sections[sec].m_end = window_sections[sec].m_start;
window_sections[sec].m_type = SectionType.Glue;
window_sections[sec].m_id = -1;
secs[i]++;
continue;
}
}
}
for (int i = 0; i < _windowcount; i++)
{
for (int s = 0; s < secs[i]; s++)
{
LpcWindowSection* window_sections = sections + i * lpc.MAX_LPC_SECTIONS;
if (window_sections[s].m_type == SectionType.Glue
|| window_sections[s].m_type == SectionType.OneGlue)
{
window_sections[s].m_end = window_sections[s + 1].m_end;
}
}
while (secs[i] < lpc.MAX_LPC_SECTIONS)
{
LpcWindowSection* window_sections = sections + i * lpc.MAX_LPC_SECTIONS;
window_sections[secs[i]++].setZero(sz, sz);
}
}
}
}
/// <summary>
/// Context for LPC coefficients calculation and order estimation
/// </summary>
unsafe public class LpcContext
{
public LpcContext()
{
coefs = new int[lpc.MAX_LPC_ORDER];
reflection_coeffs = new double[lpc.MAX_LPC_ORDER];
prediction_error = new double[lpc.MAX_LPC_ORDER];
autocorr_values = new double[lpc.MAX_LPC_ORDER + 1];
best_orders = new int[lpc.MAX_LPC_ORDER];
done_lpcs = new uint[lpc.MAX_LPC_PRECISIONS];
}
/// <summary>
/// Reset to initial (blank) state
/// </summary>
public void Reset()
{
autocorr_order = 0;
for (int iPrecision = 0; iPrecision < lpc.MAX_LPC_PRECISIONS; iPrecision++)
done_lpcs[iPrecision] = 0;
}
/// <summary>
/// Calculate autocorrelation data and reflection coefficients.
/// Can be used to incrementaly compute coefficients for higher orders,
/// because it caches them.
/// </summary>
/// <param name="order">Maximum order</param>
/// <param name="samples">Samples pointer</param>
/// <param name="blocksize">Block size</param>
/// <param name="window">Window function</param>
public void GetReflection(LpcSubframeInfo subframe, int order, int blocksize, int* samples, float* window, LpcWindowSection* sections)
{
if (autocorr_order > order)
return;
fixed (double* reff = reflection_coeffs, autoc = autocorr_values, err = prediction_error)
{
for (int i = autocorr_order; i <= order; i++) autoc[i] = 0;
for (int section = 0; section < lpc.MAX_LPC_SECTIONS; section++)
{
if (sections[section].m_type == LpcWindowSection.SectionType.Zero)
{
continue;
}
if (sections[section].m_id >= 0)
{
if (subframe.autocorr_section_orders[sections[section].m_id] <= order)
{
fixed (double* autocsec = &subframe.autocorr_section_values[sections[section].m_id, 0])
{
int min_order = subframe.autocorr_section_orders[sections[section].m_id];
for (int i = min_order; i <= order; i++) autocsec[i] = 0;
sections[section].compute_autocorr(samples, window, min_order, order, blocksize, autocsec);
}
subframe.autocorr_section_orders[sections[section].m_id] = order + 1;
}
for (int i = autocorr_order; i <= order; i++)
autoc[i] += subframe.autocorr_section_values[sections[section].m_id, i];
}
else
{
sections[section].compute_autocorr(samples, window, autocorr_order, order, blocksize, autoc);
}
}
lpc.compute_schur_reflection(autoc, (uint)order, reff, err);
autocorr_order = order + 1;
}
}
#if XXX
public void GetReflection1(int order, int* samples, int blocksize, float* window)
{
if (autocorr_order > order)
return;
fixed (double* reff = reflection_coeffs, autoc = autocorr_values, err = prediction_error)
{
lpc.compute_autocorr(samples, blocksize, 0, order + 1, autoc, window);
for (int i = 1; i <= order; i++)
autoc[i] = autoc[i + 1];
lpc.compute_schur_reflection(autoc, (uint)order, reff, err);
autocorr_order = order + 1;
}
}
public void ComputeReflection(int order, float* autocorr)
{
fixed (double* reff = reflection_coeffs, autoc = autocorr_values, err = prediction_error)
{
for (int i = 0; i <= order; i++)
autoc[i] = autocorr[i];
lpc.compute_schur_reflection(autoc, (uint)order, reff, err);
autocorr_order = order + 1;
}
}
public void ComputeReflection(int order, double* autocorr)
{
fixed (double* reff = reflection_coeffs, autoc = autocorr_values, err = prediction_error)
{
for (int i = 0; i <= order; i++)
autoc[i] = autocorr[i];
lpc.compute_schur_reflection(autoc, (uint)order, reff, err);
autocorr_order = order + 1;
}
}
#endif
public double Akaike(int blocksize, int order, double alpha, double beta)
{
//return (blocksize - order) * (Math.Log(prediction_error[order - 1]) - Math.Log(1.0)) + Math.Log(blocksize) * order * (alpha + beta * order);
//return blocksize * (Math.Log(prediction_error[order - 1]) - Math.Log(autocorr_values[0]) / 2) + Math.Log(blocksize) * order * (alpha + beta * order);
return blocksize * (Math.Log(prediction_error[order - 1])) + Math.Log(blocksize) * order * (alpha + beta * order);
}
/// <summary>
/// Sorts orders based on Akaike's criteria
/// </summary>
/// <param name="blocksize">Frame size</param>
public void SortOrdersAkaike(int blocksize, int count, int min_order, int max_order, double alpha, double beta)
{
for (int i = min_order; i <= max_order; i++)
best_orders[i - min_order] = i;
int lim = max_order - min_order + 1;
for (int i = 0; i < lim && i < count; i++)
{
for (int j = i + 1; j < lim; j++)
{
if (Akaike(blocksize, best_orders[j], alpha, beta) < Akaike(blocksize, best_orders[i], alpha, beta))
{
int tmp = best_orders[j];
best_orders[j] = best_orders[i];
best_orders[i] = tmp;
}
}
}
}
/// <summary>
/// Produces LPC coefficients from autocorrelation data.
/// </summary>
/// <param name="lpcs">LPC coefficients buffer (for all orders)</param>
public void ComputeLPC(float* lpcs)
{
fixed (double* reff = reflection_coeffs)
lpc.compute_lpc_coefs((uint)autocorr_order - 1, reff, lpcs);
}
public double[] autocorr_values;
double[] reflection_coeffs;
public double[] prediction_error;
public int[] best_orders;
public int[] coefs;
int autocorr_order;
public int shift;
public double[] Reflection
{
get
{
return reflection_coeffs;
}
}
public uint[] done_lpcs;
}
}