Files
cuetools.net/CUETools.CLParity/fastdecode/main.c

423 lines
12 KiB
C

// ************************************************
// ************************************************
// Sample program to use reed_solomon.c
// (c) 2009 Frederic Didier.
#include "reed_solomon.h"
#include "stdio.h"
#include "stdlib.h"
#include "time.h"
/************************************************/
/** Random number generator -> 32bits **/
/** Mersenne twister code **/
/************************************************/
/* A C-program for MT19937: Integer version */
/* genrand() generates one pseudorandom unsigned integer (32bit) */
/* which is uniformly distributed among 0 to 2^32-1 for each */
/* call. sgenrand(seed) set initial values to the working area */
/* of 624 words. Before genrand(), sgenrand(seed) must be */
/* called once. (seed is any 32-bit integer except for 0). */
/* Coded by Takuji Nishimura, considering the suggestions by */
/* Topher Cooper and Marc Rieffel in July-Aug. 1997. */
/* This library is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU Library General Public */
/* License as published by the Free Software Foundation; either */
/* version 2 of the License, or (at your option) any later */
/* version. */
/* This library is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */
/* See the GNU Library General Public License for more details. */
/* You should have received a copy of the GNU Library General */
/* Public License along with this library; if not, write to the */
/* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA */
/* 02111-1307 USA */
/* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. */
/* Any feedback is very welcome. For any question, comments, */
/* see http://www.math.keio.ac.jp/matumoto/emt.html or email */
/* matumoto@math.keio.ac.jp */
/* Period parameters */
#define MT_N 624
#define MT_M 397
#define MATRIX_A 0x9908b0df /* constant vector a */
#define UPPER_MASK 0x80000000 /* most significant w-r bits */
#define LOWER_MASK 0x7fffffff /* least significant r bits */
/* Tempering parameters */
#define TEMPERING_MASK_B 0x9d2c5680
#define TEMPERING_MASK_C 0xefc60000
#define TEMPERING_SHIFT_U(y) (y >> 11)
#define TEMPERING_SHIFT_S(y) (y << 7)
#define TEMPERING_SHIFT_T(y) (y << 15)
#define TEMPERING_SHIFT_L(y) (y >> 18)
static unsigned long mt[MT_N]; /* the table for the state vector */
static int mti=MT_N+1; /* mti==MT_N+1 means mt[MT_N] is not initialized */
/* initializing the table with a NONZERO seed */
void sgenrand(unsigned long seed)
{
/* setting initial seeds to mt[MT_N] using */
/* the generator Line 25 of Table 1 in */
/* [KNUTH 1981, The Art of Computer Programming */
/* Vol. 2 (2nd Ed.), pp102] */
mt[0]= seed & 0xffffffff;
for (mti=1; mti<MT_N; mti++)
mt[mti] = (69069 * mt[mti-1]) & 0xffffffff;
}
unsigned int genrand()
{
unsigned int y;
static unsigned long mag01[2]={0x0, MATRIX_A};
/* mag01[x] = x * MATRIX_A for x=0,1 */
if (mti >= MT_N) { /* generate MT_N words at one time */
int kk;
if (mti == MT_N+1) /* if sgenrand() has not been called, */
sgenrand(4357); /* a default initial seed is used */
for (kk=0;kk<MT_N-MT_M;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y & 0x1];
}
for (;kk<MT_N-1;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y & 0x1];
}
y = (mt[MT_N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= TEMPERING_SHIFT_U(y);
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
y ^= TEMPERING_SHIFT_L(y);
return y;
}
double double_genrand() {
return genrand() * (1.0/4294967295.0);
}
// *******************************************************
// The Art of Computer programming - Knuth
// vol 2 - section 3.4.2 page 137
// Algorithm S (Selection sampling technique)
void generate_positions(int N, int K, int *pos)
{
int size=N;
int w=K;
do {
if (double_genrand()*size <= w) {
pos[K-w] = N-size;
w--;
}
size--;
} while (size);
}
//void generate_message(byte *data, int size)
//{
// int *p = (int *)data;
// size >>=2;
// int i;
// for (i=0; i<size; i++) {
// *p++ = genrand();
// }
//}
void generate_message(void *data, int size, int n_field)
{
if (n_field==8 || n_field==16) {
int *p = (int *)data;
int i;
size >>=2;
for (i=0; i<size; i++) {
*p++ = genrand();
}
} else {
unsigned short int *p = (unsigned short int *)data;
int i;
size>>=1;
for (i=0; i<size; i++) {
*p++ = genrand() & ((1<<n_field)-1);
}
}
}
int compare_message(byte *p, byte *q, int size)
{
int *pi = (int *)p;
int *qi = (int *)q;
int res=0;
int i;
size >>=2;
for (i=0; i<size; i++) {
if (pi[i]!=qi[i]) {
res++;
if (res<100) {
printf("%d ",i*4);
}
}
}
return res;
}
// *******************************************************
double get_sec(clock_t diff)
{
return (double)diff / (double)CLOCKS_PER_SEC;
}
double get_rate(clock_t diff, int byte)
{
return (double)(byte)/((double)(1<<20) * get_sec(diff));
}
double get_KB(int byte)
{
return (double)byte/(double)(1<<10);
}
// *******************************************************
int main(int argc, char *argv[])
{
int i,j,n;
clock_t tick;
// get parameters
int n_field,K,N,S,m_size;
char flag[256];
int inc;
int temp=0;
int nb_elt;
int nb_bloc;
int n_walsh=1;
int *positions;
byte *message;
byte *received;
byte *codeword;
byte *dst;
// default ones
m_size = 1<<26;
S = 1<<10;
// help message
if (argc<=5) {
printf("usage: %s flag n_field K N S [message size in MB]\n",argv[0]);
printf("where flag is a combinaison of \n");
printf(" x : Use xor for field multiplication\n");
printf(" l : Use another xor version\n");
printf(" t : Use table for field multiplication\n");
printf(" d : Use direct field multiplication\n");
printf(" q : Quadratic algorithm\n");
printf(" i : Incremental algorithm\n");
printf(" k : Karatsuba algorithm\n");
printf(" s : Quadratic with one table for multiplication\n");
return 0;
}
for (i=0; i<256; i++) flag[i]=0;
i=0;
while (argv[1][i]!=0) {
flag[argv[1][i]]=1;
i++;
}
// read parameters
n_field = atoi(argv[2]);
K = atoi(argv[3]);
N = atoi(argv[4]);
if (argc>5) S = atoi(argv[5]);
if (argc>6) m_size = atoi(argv[6]) << 20;
// modify packet size
// always divisible by [4],
// if xor code used, divisible by [4*n_field]
inc = 4 * n_field;
while (temp < S) temp +=inc;
S = temp;
// number of field elements per packets.
nb_elt = (S * 8) / n_field;
// compute number of blocs
nb_bloc = m_size / (K*S);
if (nb_bloc==0) nb_bloc=1;
// power of two just greater than N
while ((1<<n_walsh) < N) n_walsh++;
// print parameters
printf("[parameters]\n");
printf("GF 2^%d\n", n_field);
printf("n = %d (n_walsh = %d)\n", N, n_walsh);
printf("k = %d\n", K);
printf("s = %d (bytes per packet)\n", S);
printf("field elements per packet = %d\n", nb_elt);
printf("segment size = %d \n", S/n_field);
printf("unused bits per packet = %d\n", S*8 - nb_elt*n_field);
printf("number of bloc = %d\n", nb_bloc);
printf("bloc size = %f KB\n", get_KB(K*S));
printf("message size = %f KB\n", get_KB(K*S*nb_bloc));
printf("\n");
// code init
fill_table(n_field);
code_init(n_walsh);
// method to perform field multiply and xor
if (flag['x']) use_xor();
if (flag['t']) use_table();
if (flag['d']) use_direct();
if (flag['l']) use_xor2();
// method to encode/decode
if (flag['q']) use_quadratic();
if (flag['i']) use_incremental();
if (flag['k']) use_karatsuba();
if (flag['s']) use_special();
if (process==NULL) {
printf("you should specify a way to multiply in the field\n");
exit(0);
}
if (RS_encode == NULL || RS_decode == NULL) {
printf("you should specify an algorithm for encoding/decoding\n");
exit(0);
}
printf("\n");
// ****************************************
// ****************************************
printf("[initialisation (memory + randomness)]\n");
tick = clock();
// memory for the full message
positions = (int *)malloc(sizeof(int)*K*nb_bloc);
message = (byte *)malloc(sizeof(byte)*S*K*nb_bloc);
received = (byte *)malloc(sizeof(byte)*S*K*nb_bloc);
// memory for encoding/decoding one bloc
codeword = (byte *)malloc(sizeof(byte)*S*N);
fast_init(N,S);
// init random number generator
// sgenrand(time(NULL));
sgenrand(123);
// sgenrand(321);
// Generate the random message
generate_message(message, S*K*nb_bloc, n_field);
// Generate the random positions
for (n=0; n<nb_bloc; n++) {
generate_positions(N, K, positions + n*K);
}
// end of initialisation
tick = clock() - tick;
printf("%f s\n", get_sec(tick));
printf("%f MB/s\n", get_rate(tick, S*K*nb_bloc));
printf("\n");
// ****************************************
// ****************************************
printf("[encoding message]\n");
tick = clock();
encode_init(N, K);
dst=received;
for (n=0; n<nb_bloc; n++)
{
int *pos = positions + n*K;
byte *systematic = message + n*K*S;
RS_encode(N, K, S, systematic, codeword);
// simulate errors...
for (i=0; i<K; i++)
{
byte *src;
if (pos[i]<K) src = systematic + pos[i] * S;
else src = codeword + (pos[i]-K) * S;
memcpy(dst, src, S);
dst += S;
}
}
tick = clock() - tick;
printf("%f s\n", get_sec(tick));
printf("%f MB/s\n", get_rate(tick, S*K*nb_bloc));
printf("%f MB/s\n", get_rate(tick, S*N*nb_bloc));
printf("\n");
// ****************************************
// ****************************************
printf("[decoding]\n");
tick = clock();
double syst=0;
for (n=0; n<nb_bloc; n++)
{
// current bloc
int *pos = positions + n*K;
byte *rec = received + n*S*K;
// stat for systematic packet
for (i=0; i<K; i++) {
if (pos[i]<K) syst++;
}
RS_decode(N, K, S, pos, rec, codeword);
// put result back into received
memcpy(rec, codeword, S*K);
}
tick = clock() - tick;
printf("%f s\n", get_sec(tick));
printf("%f MB/s\n", get_rate(tick, S*K*nb_bloc));
printf("%f percent of systematic packets received\n", syst / (double)(K*nb_bloc));
printf("\n");
// ****************************************
// ****************************************
// verify that we recovered the message correctly
printf("[errors]\n");
printf("%d\n\n", compare_message(message, received, S*K*nb_bloc));
// ****************************************
// ****************************************
// clear code
code_clear();
// end;
return 0;
}