mirror of
https://github.com/claunia/cuetools.net.git
synced 2025-12-16 18:14:25 +00:00
423 lines
12 KiB
C
423 lines
12 KiB
C
// ************************************************
|
|
// ************************************************
|
|
|
|
// Sample program to use reed_solomon.c
|
|
// (c) 2009 Frederic Didier.
|
|
|
|
#include "reed_solomon.h"
|
|
#include "stdio.h"
|
|
#include "stdlib.h"
|
|
#include "time.h"
|
|
|
|
/************************************************/
|
|
/** Random number generator -> 32bits **/
|
|
/** Mersenne twister code **/
|
|
/************************************************/
|
|
|
|
/* A C-program for MT19937: Integer version */
|
|
/* genrand() generates one pseudorandom unsigned integer (32bit) */
|
|
/* which is uniformly distributed among 0 to 2^32-1 for each */
|
|
/* call. sgenrand(seed) set initial values to the working area */
|
|
/* of 624 words. Before genrand(), sgenrand(seed) must be */
|
|
/* called once. (seed is any 32-bit integer except for 0). */
|
|
/* Coded by Takuji Nishimura, considering the suggestions by */
|
|
/* Topher Cooper and Marc Rieffel in July-Aug. 1997. */
|
|
|
|
/* This library is free software; you can redistribute it and/or */
|
|
/* modify it under the terms of the GNU Library General Public */
|
|
/* License as published by the Free Software Foundation; either */
|
|
/* version 2 of the License, or (at your option) any later */
|
|
/* version. */
|
|
/* This library is distributed in the hope that it will be useful, */
|
|
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
|
|
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */
|
|
/* See the GNU Library General Public License for more details. */
|
|
/* You should have received a copy of the GNU Library General */
|
|
/* Public License along with this library; if not, write to the */
|
|
/* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA */
|
|
/* 02111-1307 USA */
|
|
|
|
/* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. */
|
|
/* Any feedback is very welcome. For any question, comments, */
|
|
/* see http://www.math.keio.ac.jp/matumoto/emt.html or email */
|
|
/* matumoto@math.keio.ac.jp */
|
|
|
|
/* Period parameters */
|
|
#define MT_N 624
|
|
#define MT_M 397
|
|
#define MATRIX_A 0x9908b0df /* constant vector a */
|
|
#define UPPER_MASK 0x80000000 /* most significant w-r bits */
|
|
#define LOWER_MASK 0x7fffffff /* least significant r bits */
|
|
|
|
/* Tempering parameters */
|
|
#define TEMPERING_MASK_B 0x9d2c5680
|
|
#define TEMPERING_MASK_C 0xefc60000
|
|
#define TEMPERING_SHIFT_U(y) (y >> 11)
|
|
#define TEMPERING_SHIFT_S(y) (y << 7)
|
|
#define TEMPERING_SHIFT_T(y) (y << 15)
|
|
#define TEMPERING_SHIFT_L(y) (y >> 18)
|
|
|
|
static unsigned long mt[MT_N]; /* the table for the state vector */
|
|
static int mti=MT_N+1; /* mti==MT_N+1 means mt[MT_N] is not initialized */
|
|
|
|
/* initializing the table with a NONZERO seed */
|
|
void sgenrand(unsigned long seed)
|
|
{
|
|
/* setting initial seeds to mt[MT_N] using */
|
|
/* the generator Line 25 of Table 1 in */
|
|
/* [KNUTH 1981, The Art of Computer Programming */
|
|
/* Vol. 2 (2nd Ed.), pp102] */
|
|
mt[0]= seed & 0xffffffff;
|
|
for (mti=1; mti<MT_N; mti++)
|
|
mt[mti] = (69069 * mt[mti-1]) & 0xffffffff;
|
|
}
|
|
|
|
unsigned int genrand()
|
|
{
|
|
unsigned int y;
|
|
static unsigned long mag01[2]={0x0, MATRIX_A};
|
|
/* mag01[x] = x * MATRIX_A for x=0,1 */
|
|
|
|
if (mti >= MT_N) { /* generate MT_N words at one time */
|
|
int kk;
|
|
|
|
if (mti == MT_N+1) /* if sgenrand() has not been called, */
|
|
sgenrand(4357); /* a default initial seed is used */
|
|
|
|
for (kk=0;kk<MT_N-MT_M;kk++) {
|
|
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
|
|
mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y & 0x1];
|
|
}
|
|
for (;kk<MT_N-1;kk++) {
|
|
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
|
|
mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y & 0x1];
|
|
}
|
|
y = (mt[MT_N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
|
|
mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y & 0x1];
|
|
|
|
mti = 0;
|
|
}
|
|
|
|
y = mt[mti++];
|
|
y ^= TEMPERING_SHIFT_U(y);
|
|
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
|
|
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
|
|
y ^= TEMPERING_SHIFT_L(y);
|
|
|
|
return y;
|
|
}
|
|
|
|
double double_genrand() {
|
|
return genrand() * (1.0/4294967295.0);
|
|
}
|
|
|
|
// *******************************************************
|
|
|
|
// The Art of Computer programming - Knuth
|
|
// vol 2 - section 3.4.2 page 137
|
|
// Algorithm S (Selection sampling technique)
|
|
|
|
void generate_positions(int N, int K, int *pos)
|
|
{
|
|
int size=N;
|
|
int w=K;
|
|
do {
|
|
if (double_genrand()*size <= w) {
|
|
pos[K-w] = N-size;
|
|
w--;
|
|
}
|
|
size--;
|
|
} while (size);
|
|
}
|
|
|
|
//void generate_message(byte *data, int size)
|
|
//{
|
|
// int *p = (int *)data;
|
|
// size >>=2;
|
|
// int i;
|
|
// for (i=0; i<size; i++) {
|
|
// *p++ = genrand();
|
|
// }
|
|
//}
|
|
|
|
void generate_message(void *data, int size, int n_field)
|
|
{
|
|
if (n_field==8 || n_field==16) {
|
|
int *p = (int *)data;
|
|
int i;
|
|
size >>=2;
|
|
for (i=0; i<size; i++) {
|
|
*p++ = genrand();
|
|
}
|
|
} else {
|
|
unsigned short int *p = (unsigned short int *)data;
|
|
int i;
|
|
size>>=1;
|
|
for (i=0; i<size; i++) {
|
|
*p++ = genrand() & ((1<<n_field)-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
int compare_message(byte *p, byte *q, int size)
|
|
{
|
|
int *pi = (int *)p;
|
|
int *qi = (int *)q;
|
|
int res=0;
|
|
int i;
|
|
size >>=2;
|
|
for (i=0; i<size; i++) {
|
|
if (pi[i]!=qi[i]) {
|
|
res++;
|
|
if (res<100) {
|
|
printf("%d ",i*4);
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// *******************************************************
|
|
|
|
double get_sec(clock_t diff)
|
|
{
|
|
return (double)diff / (double)CLOCKS_PER_SEC;
|
|
}
|
|
|
|
double get_rate(clock_t diff, int byte)
|
|
{
|
|
return (double)(byte)/((double)(1<<20) * get_sec(diff));
|
|
}
|
|
|
|
double get_KB(int byte)
|
|
{
|
|
return (double)byte/(double)(1<<10);
|
|
}
|
|
|
|
// *******************************************************
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int i,j,n;
|
|
clock_t tick;
|
|
|
|
// get parameters
|
|
int n_field,K,N,S,m_size;
|
|
char flag[256];
|
|
int inc;
|
|
int temp=0;
|
|
int nb_elt;
|
|
int nb_bloc;
|
|
int n_walsh=1;
|
|
int *positions;
|
|
byte *message;
|
|
byte *received;
|
|
byte *codeword;
|
|
byte *dst;
|
|
|
|
// default ones
|
|
m_size = 1<<26;
|
|
S = 1<<10;
|
|
|
|
// help message
|
|
if (argc<=5) {
|
|
printf("usage: %s flag n_field K N S [message size in MB]\n",argv[0]);
|
|
printf("where flag is a combinaison of \n");
|
|
printf(" x : Use xor for field multiplication\n");
|
|
printf(" l : Use another xor version\n");
|
|
printf(" t : Use table for field multiplication\n");
|
|
printf(" d : Use direct field multiplication\n");
|
|
printf(" q : Quadratic algorithm\n");
|
|
printf(" i : Incremental algorithm\n");
|
|
printf(" k : Karatsuba algorithm\n");
|
|
printf(" s : Quadratic with one table for multiplication\n");
|
|
return 0;
|
|
}
|
|
|
|
for (i=0; i<256; i++) flag[i]=0;
|
|
i=0;
|
|
while (argv[1][i]!=0) {
|
|
flag[argv[1][i]]=1;
|
|
i++;
|
|
}
|
|
|
|
// read parameters
|
|
n_field = atoi(argv[2]);
|
|
K = atoi(argv[3]);
|
|
N = atoi(argv[4]);
|
|
if (argc>5) S = atoi(argv[5]);
|
|
if (argc>6) m_size = atoi(argv[6]) << 20;
|
|
|
|
// modify packet size
|
|
// always divisible by [4],
|
|
// if xor code used, divisible by [4*n_field]
|
|
inc = 4 * n_field;
|
|
while (temp < S) temp +=inc;
|
|
S = temp;
|
|
|
|
// number of field elements per packets.
|
|
nb_elt = (S * 8) / n_field;
|
|
|
|
// compute number of blocs
|
|
nb_bloc = m_size / (K*S);
|
|
if (nb_bloc==0) nb_bloc=1;
|
|
|
|
// power of two just greater than N
|
|
while ((1<<n_walsh) < N) n_walsh++;
|
|
|
|
// print parameters
|
|
printf("[parameters]\n");
|
|
printf("GF 2^%d\n", n_field);
|
|
printf("n = %d (n_walsh = %d)\n", N, n_walsh);
|
|
printf("k = %d\n", K);
|
|
printf("s = %d (bytes per packet)\n", S);
|
|
|
|
printf("field elements per packet = %d\n", nb_elt);
|
|
printf("segment size = %d \n", S/n_field);
|
|
printf("unused bits per packet = %d\n", S*8 - nb_elt*n_field);
|
|
printf("number of bloc = %d\n", nb_bloc);
|
|
printf("bloc size = %f KB\n", get_KB(K*S));
|
|
printf("message size = %f KB\n", get_KB(K*S*nb_bloc));
|
|
printf("\n");
|
|
|
|
// code init
|
|
fill_table(n_field);
|
|
code_init(n_walsh);
|
|
|
|
// method to perform field multiply and xor
|
|
if (flag['x']) use_xor();
|
|
if (flag['t']) use_table();
|
|
if (flag['d']) use_direct();
|
|
if (flag['l']) use_xor2();
|
|
|
|
// method to encode/decode
|
|
if (flag['q']) use_quadratic();
|
|
if (flag['i']) use_incremental();
|
|
if (flag['k']) use_karatsuba();
|
|
if (flag['s']) use_special();
|
|
|
|
if (process==NULL) {
|
|
printf("you should specify a way to multiply in the field\n");
|
|
exit(0);
|
|
}
|
|
|
|
if (RS_encode == NULL || RS_decode == NULL) {
|
|
printf("you should specify an algorithm for encoding/decoding\n");
|
|
exit(0);
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
// ****************************************
|
|
// ****************************************
|
|
printf("[initialisation (memory + randomness)]\n");
|
|
tick = clock();
|
|
|
|
// memory for the full message
|
|
positions = (int *)malloc(sizeof(int)*K*nb_bloc);
|
|
message = (byte *)malloc(sizeof(byte)*S*K*nb_bloc);
|
|
received = (byte *)malloc(sizeof(byte)*S*K*nb_bloc);
|
|
|
|
// memory for encoding/decoding one bloc
|
|
codeword = (byte *)malloc(sizeof(byte)*S*N);
|
|
fast_init(N,S);
|
|
|
|
// init random number generator
|
|
// sgenrand(time(NULL));
|
|
sgenrand(123);
|
|
// sgenrand(321);
|
|
|
|
// Generate the random message
|
|
generate_message(message, S*K*nb_bloc, n_field);
|
|
|
|
// Generate the random positions
|
|
for (n=0; n<nb_bloc; n++) {
|
|
generate_positions(N, K, positions + n*K);
|
|
}
|
|
|
|
// end of initialisation
|
|
tick = clock() - tick;
|
|
printf("%f s\n", get_sec(tick));
|
|
printf("%f MB/s\n", get_rate(tick, S*K*nb_bloc));
|
|
printf("\n");
|
|
|
|
// ****************************************
|
|
// ****************************************
|
|
printf("[encoding message]\n");
|
|
tick = clock();
|
|
|
|
encode_init(N, K);
|
|
|
|
dst=received;
|
|
for (n=0; n<nb_bloc; n++)
|
|
{
|
|
int *pos = positions + n*K;
|
|
byte *systematic = message + n*K*S;
|
|
|
|
RS_encode(N, K, S, systematic, codeword);
|
|
|
|
// simulate errors...
|
|
for (i=0; i<K; i++)
|
|
{
|
|
byte *src;
|
|
if (pos[i]<K) src = systematic + pos[i] * S;
|
|
else src = codeword + (pos[i]-K) * S;
|
|
|
|
memcpy(dst, src, S);
|
|
dst += S;
|
|
}
|
|
}
|
|
|
|
tick = clock() - tick;
|
|
printf("%f s\n", get_sec(tick));
|
|
printf("%f MB/s\n", get_rate(tick, S*K*nb_bloc));
|
|
printf("%f MB/s\n", get_rate(tick, S*N*nb_bloc));
|
|
printf("\n");
|
|
|
|
// ****************************************
|
|
// ****************************************
|
|
printf("[decoding]\n");
|
|
tick = clock();
|
|
|
|
double syst=0;
|
|
for (n=0; n<nb_bloc; n++)
|
|
{
|
|
// current bloc
|
|
int *pos = positions + n*K;
|
|
byte *rec = received + n*S*K;
|
|
|
|
// stat for systematic packet
|
|
for (i=0; i<K; i++) {
|
|
if (pos[i]<K) syst++;
|
|
}
|
|
|
|
RS_decode(N, K, S, pos, rec, codeword);
|
|
|
|
// put result back into received
|
|
memcpy(rec, codeword, S*K);
|
|
}
|
|
|
|
tick = clock() - tick;
|
|
printf("%f s\n", get_sec(tick));
|
|
printf("%f MB/s\n", get_rate(tick, S*K*nb_bloc));
|
|
printf("%f percent of systematic packets received\n", syst / (double)(K*nb_bloc));
|
|
printf("\n");
|
|
|
|
// ****************************************
|
|
// ****************************************
|
|
|
|
// verify that we recovered the message correctly
|
|
printf("[errors]\n");
|
|
printf("%d\n\n", compare_message(message, received, S*K*nb_bloc));
|
|
|
|
// ****************************************
|
|
// ****************************************
|
|
|
|
// clear code
|
|
code_clear();
|
|
|
|
// end;
|
|
return 0;
|
|
}
|
|
|