Files
cuetools.net/CUETools.CLParity/fastdecode/speed.c

303 lines
8.8 KiB
C

// ************************************************
// ************************************************
// Sample program to use reed_solomon.c
// (c) 2009 Frederic Didier.
#include "reed_solomon.h"
#include "stdio.h"
#include "stdlib.h"
#include "time.h"
/************************************************/
/** Random number generator -> 32bits **/
/** Mersenne twister code **/
/************************************************/
/* A C-program for MT19937: Integer version */
/* genrand() generates one pseudorandom unsigned integer (32bit) */
/* which is uniformly distributed among 0 to 2^32-1 for each */
/* call. sgenrand(seed) set initial values to the working area */
/* of 624 words. Before genrand(), sgenrand(seed) must be */
/* called once. (seed is any 32-bit integer except for 0). */
/* Coded by Takuji Nishimura, considering the suggestions by */
/* Topher Cooper and Marc Rieffel in July-Aug. 1997. */
/* This library is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU Library General Public */
/* License as published by the Free Software Foundation; either */
/* version 2 of the License, or (at your option) any later */
/* version. */
/* This library is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */
/* See the GNU Library General Public License for more details. */
/* You should have received a copy of the GNU Library General */
/* Public License along with this library; if not, write to the */
/* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA */
/* 02111-1307 USA */
/* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. */
/* Any feedback is very welcome. For any question, comments, */
/* see http://www.math.keio.ac.jp/matumoto/emt.html or email */
/* matumoto@math.keio.ac.jp */
/* Period parameters */
#define MT_N 624
#define MT_M 397
#define MATRIX_A 0x9908b0df /* constant vector a */
#define UPPER_MASK 0x80000000 /* most significant w-r bits */
#define LOWER_MASK 0x7fffffff /* least significant r bits */
/* Tempering parameters */
#define TEMPERING_MASK_B 0x9d2c5680
#define TEMPERING_MASK_C 0xefc60000
#define TEMPERING_SHIFT_U(y) (y >> 11)
#define TEMPERING_SHIFT_S(y) (y << 7)
#define TEMPERING_SHIFT_T(y) (y << 15)
#define TEMPERING_SHIFT_L(y) (y >> 18)
static unsigned long mt[MT_N]; /* the table for the state vector */
static int mti=MT_N+1; /* mti==MT_N+1 means mt[MT_N] is not initialized */
/* initializing the table with a NONZERO seed */
void sgenrand(unsigned long seed)
{
/* setting initial seeds to mt[MT_N] using */
/* the generator Line 25 of Table 1 in */
/* [KNUTH 1981, The Art of Computer Programming */
/* Vol. 2 (2nd Ed.), pp102] */
mt[0]= seed & 0xffffffff;
for (mti=1; mti<MT_N; mti++)
mt[mti] = (69069 * mt[mti-1]) & 0xffffffff;
}
unsigned int genrand()
{
unsigned int y;
static unsigned long mag01[2]={0x0, MATRIX_A};
/* mag01[x] = x * MATRIX_A for x=0,1 */
if (mti >= MT_N) { /* generate MT_N words at one time */
int kk;
if (mti == MT_N+1) /* if sgenrand() has not been called, */
sgenrand(4357); /* a default initial seed is used */
for (kk=0;kk<MT_N-MT_M;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y & 0x1];
}
for (;kk<MT_N-1;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y & 0x1];
}
y = (mt[MT_N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= TEMPERING_SHIFT_U(y);
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
y ^= TEMPERING_SHIFT_L(y);
return y;
}
double double_genrand() {
return genrand() * (1.0/4294967295.0);
}
// *******************************************************
void generate_message(void *data, int size, int n_field)
{
if (n_field==8 || n_field==16) {
int *p = (int *)data;
size >>=2;
int i;
for (i=0; i<size; i++) {
*p++ = genrand();
}
} else {
unsigned short int *p = (unsigned short int *)data;
size>>=1;
int i;
for (i=0; i<size; i++) {
*p++ = genrand() & ((1<<n_field)-1);
}
}
}
int compare_message(void *p, void *q, int size)
{
int *pi = p;
int *qi = q;
size >>=2;
int res=0;
int i;
for (i=0; i<size; i++) {
if (pi[i]!=qi[i]) res++;
}
return res;
}
// *******************************************************
double get_sec(clock_t diff)
{
return (double)diff / (double)CLOCKS_PER_SEC;
}
double get_rate(clock_t diff, long long byte)
{
return (double)(byte)/((double)(1<<20) * get_sec(diff));
}
double get_KB(long long byte)
{
return (double)byte/(double)(1<<10);
}
// *******************************************************
int main(int argc, char *argv[])
{
int i,j,b;
clock_t tick;
// get parameters
long long S;
int n_field,nb_bloc,nb_time;
// default ones
S = 1<<10;
nb_bloc = 1<<14;
nb_time = 100;
// help message
if (argc<=1) {
printf("usage: %s n_field [S in Byte] [nb bloc] [nb time]\n", argv[0]);
return 0;
}
// read parameters
n_field = atoi(argv[1]);
if (argc>2) S = atoi(argv[2])*n_field*4;
if (argc>3) nb_bloc = atoi(argv[3]);
if (argc>4) nb_time = atoi(argv[4]);
// print parameters
printf("[parameters]\n");
printf("GF 2^%d\n", n_field);
printf("packet size = %d Byte\n", S);
printf("number of packets = %d (%f KB)\n", nb_bloc, get_KB(nb_bloc * S));
printf("number of time = %d\n", nb_time);
printf("\n");
// ****************************************
// ****************************************
printf("[initialisation (memory + randomness)]\n");
tick = clock();
// init field
fill_table(n_field);
// this is the memory for the packet and their positions
void *source;
void *destination;
int *coeff;
source = malloc(S*nb_bloc);
destination = malloc(S*nb_bloc);
coeff = malloc(nb_bloc*sizeof(int));
// init random number generator
// sgenrand(time(NULL));
sgenrand(123);
// Generate the random message
generate_message(source, S*nb_bloc, n_field);
for (i=0; i<nb_bloc; i++)
coeff[i]= genrand() & ((1<<n_field)-1);
// end of initialisation
tick = clock() - tick;
printf("%f s\n", get_sec(tick));
printf("%f MB/s\n", get_rate(tick, S*nb_bloc));
printf("\n");
// ****************************************
// ****************************************
printf("[builtin memcpy]\n");
tick = clock();
for (j=0; j<nb_time; j++)
for (i=0; i<nb_bloc; i++)
{
__builtin_memcpy(destination+i*S, source+i*S, S);
}
tick = clock() - tick;
printf("%f s\t", get_sec(tick));
printf("%f MB/s\n", get_rate(tick, S * nb_bloc * nb_time));
printf("\n");
// ****************************************
// ****************************************
printf("[my memxor]\n");
tick = clock();
for (j=0; j<nb_time; j++)
for (i=0; i<nb_bloc; i++)
{
memxor(destination+i*S, source+i*S, S);
}
tick = clock() - tick;
printf("%f s\t", get_sec(tick));
printf("%f MB/s\n", get_rate(tick, S * nb_bloc * nb_time));
printf("\n");
// ****************************************
// ****************************************
printf("[packet xor/mult]\n\n");
long long memory = S * nb_bloc * nb_time;
double multiplicator;
int test;
for (test=0; test<5; test++) {
switch (test) {
case 0 : use_xor();multiplicator=1;break;
case 1 : use_xor2();multiplicator=1;break;
case 2 : use_special();multiplicator=(double)n_field/16.0;break;
case 3 : use_table();multiplicator=(double)n_field/16.0;break;
case 4 : use_direct();multiplicator=(double)n_field/16.0;break;
}
if (n_field==8) multiplicator=1;
tick = clock();
for (j=0; j<nb_time; j++)
for (i=0; i<nb_bloc; i++)
{
process(coeff[i], destination+i*S, source+i*S, S);
}
tick = clock() - tick;
printf("%f s\t", get_sec(tick));
printf("%f MB/s\n", multiplicator * get_rate(tick, memory));
printf("\n");
}
// end
return 0;
}