Files
cuetools.net/CUETools.FlaCuda/flacuda.cu
2009-09-09 09:46:13 +00:00

152 lines
5.4 KiB
Plaintext

/**
* CUETools.FlaCuda: FLAC audio encoder using CUDA
* Copyright (c) 2009 Gregory S. Chudov
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _FLACUDA_KERNEL_H_
#define _FLACUDA_KERNEL_H_
typedef struct
{
int samplesOffs;
int windowOffs;
} computeAutocorTaskStruct;
extern "C" __global__ void cudaComputeAutocor(
float *output,
const int *samples,
const float *window,
computeAutocorTaskStruct *tasks,
int max_order, // should be <= 32
int frameSize,
int partSize // should be <= blockDim - max_order
)
{
__shared__ struct {
float data[256];
float product[256];
float product2[256];
float sum[33];
computeAutocorTaskStruct task;
} shared;
const int tid = threadIdx.x;
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
__syncthreads();
const int pos = blockIdx.x * partSize;
const int productLen = min(frameSize - pos - max_order, partSize);
const int dataLen = productLen + max_order;
// fetch samples
shared.data[tid] = tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] * window[shared.task.windowOffs + pos + tid]: 0.0f;
__syncthreads();
for (int lag = 0; lag <= max_order; lag++)
{
shared.product[tid] = tid < productLen ? shared.data[tid] * shared.data[tid + lag] : 0.0f;
__syncthreads();
// product sum: reduction in shared mem
//if (tid < 256) shared.product[tid] += shared.product[tid + 256]; __syncthreads();
if (tid < 128) shared.product[tid] += shared.product[tid + 128]; __syncthreads();
if (tid < 64) shared.product[tid] += shared.product[tid + 64]; __syncthreads();
if (tid < 32) shared.product[tid] += shared.product[tid + 32]; __syncthreads();
shared.product[tid] += shared.product[tid + 16];
shared.product[tid] += shared.product[tid + 8];
shared.product[tid] += shared.product[tid + 4];
shared.product[tid] += shared.product[tid + 2];
if (tid == 0) shared.sum[lag] = shared.product[0] + shared.product[1];
}
// return results
if (tid <= max_order)
output[(blockIdx.x + blockIdx.y * gridDim.x) * (max_order + 1) + tid] = shared.sum[tid];
}
typedef struct
{
int residualOrder; // <= 32
int samplesOffs;
int shift;
int reserved;
int coefs[32];
} encodeResidualTaskStruct;
extern "C" __global__ void cudaEncodeResidual(
int*output,
int*samples,
encodeResidualTaskStruct *tasks,
int frameSize,
int partSize // should be <= blockDim - max_order
)
{
__shared__ struct {
int data[256];
int residual[256];
int rice[32];
encodeResidualTaskStruct task;
} shared;
const int tid = threadIdx.x;
// fetch task data
if (tid < sizeof(encodeResidualTaskStruct) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
__syncthreads();
const int pos = blockIdx.x * partSize;
const int residualOrder = shared.task.residualOrder;
const int residualLen = min(frameSize - pos - residualOrder - 1, partSize);
const int dataLen = residualLen + residualOrder + 1;
// fetch samples
shared.data[tid] = (tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] : 0);
// compute residual
__syncthreads();
long sum = 0;
for (int c = 0; c <= residualOrder; c++)
sum += __mul24(shared.data[tid + c], shared.task.coefs[residualOrder - c]);
int res = shared.data[tid + residualOrder + 1] - (sum >> shared.task.shift);
shared.residual[tid] = __mul24(tid < residualLen, (2 * res) ^ (res >> 31));
__syncthreads();
// residual sum: reduction in shared mem
if (tid < 128) shared.residual[tid] += shared.residual[tid + 128]; __syncthreads();
if (tid < 64) shared.residual[tid] += shared.residual[tid + 64]; __syncthreads();
if (tid < 32) shared.residual[tid] += shared.residual[tid + 32]; __syncthreads();
shared.residual[tid] += shared.residual[tid + 16];
shared.residual[tid] += shared.residual[tid + 8];
shared.residual[tid] += shared.residual[tid + 4];
shared.residual[tid] += shared.residual[tid + 2];
shared.residual[tid] += shared.residual[tid + 1];
__syncthreads();
if (tid < 32)
{
// rice parameter search
shared.rice[tid] = __mul24(tid >= 15, 0x7fffff) + residualLen * (tid + 1) + ((shared.residual[0] - (residualLen >> 1)) >> tid);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 8]);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 4]);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 2]);
shared.rice[tid] = min(shared.rice[tid], shared.rice[tid + 1]);
}
if (tid == 0)
output[blockIdx.x + blockIdx.y * gridDim.x] = shared.rice[0];
}
#endif