mirror of
https://github.com/claunia/flac.git
synced 2025-12-16 18:54:26 +00:00
160 lines
5.3 KiB
C
160 lines
5.3 KiB
C
|
|
/* libFLAC - Free Lossless Audio Coder library
|
||
|
|
* Copyright (C) 2000 Josh Coalson
|
||
|
|
*
|
||
|
|
* This library is free software; you can redistribute it and/or
|
||
|
|
* modify it under the terms of the GNU Library General Public
|
||
|
|
* License as published by the Free Software Foundation; either
|
||
|
|
* version 2 of the License, or (at your option) any later version.
|
||
|
|
*
|
||
|
|
* This library is distributed in the hope that it will be useful,
|
||
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
|
* Library General Public License for more details.
|
||
|
|
*
|
||
|
|
* You should have received a copy of the GNU Library General Public
|
||
|
|
* License along with this library; if not, write to the
|
||
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
|
* Boston, MA 02111-1307, USA.
|
||
|
|
*/
|
||
|
|
|
||
|
|
#include <assert.h>
|
||
|
|
#include <math.h>
|
||
|
|
#include "private/fixed.h"
|
||
|
|
|
||
|
|
#ifndef M_LN2
|
||
|
|
/* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
|
||
|
|
#define M_LN2 0.69314718055994530942
|
||
|
|
#endif
|
||
|
|
|
||
|
|
#ifdef min
|
||
|
|
#undef min
|
||
|
|
#endif
|
||
|
|
#define min(x,y) ((x) < (y)? (x) : (y))
|
||
|
|
|
||
|
|
#ifdef local_abs
|
||
|
|
#undef local_abs
|
||
|
|
#endif
|
||
|
|
#define local_abs(x) ((x)<0? -(x) : (x))
|
||
|
|
|
||
|
|
unsigned FLAC__fixed_compute_best_predictor(const int32 data[], unsigned data_len, real residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
|
||
|
|
{
|
||
|
|
int32 last_error_0 = data[-1];
|
||
|
|
int32 last_error_1 = data[-1] - data[-2];
|
||
|
|
int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
|
||
|
|
int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
|
||
|
|
int32 error_0, error_1, error_2, error_3, error_4;
|
||
|
|
int32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
|
||
|
|
unsigned i, order;
|
||
|
|
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
error_0 = data[i] ; total_error_0 += local_abs(error_0);
|
||
|
|
error_1 = error_0 - last_error_0; total_error_1 += local_abs(error_1);
|
||
|
|
error_2 = error_1 - last_error_1; total_error_2 += local_abs(error_2);
|
||
|
|
error_3 = error_2 - last_error_2; total_error_3 += local_abs(error_3);
|
||
|
|
error_4 = error_3 - last_error_3; total_error_4 += local_abs(error_4);
|
||
|
|
|
||
|
|
last_error_0 = error_0;
|
||
|
|
last_error_1 = error_1;
|
||
|
|
last_error_2 = error_2;
|
||
|
|
last_error_3 = error_3;
|
||
|
|
}
|
||
|
|
|
||
|
|
if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
|
||
|
|
order = 0;
|
||
|
|
else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
|
||
|
|
order = 1;
|
||
|
|
else if(total_error_2 < min(total_error_3, total_error_4))
|
||
|
|
order = 2;
|
||
|
|
else if(total_error_3 < total_error_4)
|
||
|
|
order = 3;
|
||
|
|
else
|
||
|
|
order = 4;
|
||
|
|
|
||
|
|
/* Estimate the expected number of bits per residual signal sample. */
|
||
|
|
/* 'total_error*' is linearly related to the variance of the residual */
|
||
|
|
/* signal, so we use it directly to compute E(|x|) */
|
||
|
|
residual_bits_per_sample[0] = (real)((total_error_0 > 0 && data_len > 0) ? log(M_LN2 * total_error_0 / (real) data_len) / M_LN2 : 0.0);
|
||
|
|
residual_bits_per_sample[1] = (real)((total_error_1 > 0 && data_len > 0) ? log(M_LN2 * total_error_1 / (real) data_len) / M_LN2 : 0.0);
|
||
|
|
residual_bits_per_sample[2] = (real)((total_error_2 > 0 && data_len > 0) ? log(M_LN2 * total_error_2 / (real) data_len) / M_LN2 : 0.0);
|
||
|
|
residual_bits_per_sample[3] = (real)((total_error_3 > 0 && data_len > 0) ? log(M_LN2 * total_error_3 / (real) data_len) / M_LN2 : 0.0);
|
||
|
|
residual_bits_per_sample[4] = (real)((total_error_4 > 0 && data_len > 0) ? log(M_LN2 * total_error_4 / (real) data_len) / M_LN2 : 0.0);
|
||
|
|
|
||
|
|
return order;
|
||
|
|
}
|
||
|
|
|
||
|
|
void FLAC__fixed_compute_residual(const int32 data[], unsigned data_len, unsigned order, int32 residual[])
|
||
|
|
{
|
||
|
|
unsigned i;
|
||
|
|
|
||
|
|
switch(order) {
|
||
|
|
case 0:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
residual[i] = data[i];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
case 1:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
residual[i] = data[i] - data[i-1];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
case 2:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
/* == data[i] - 2*data[i-1] + data[i-2] */
|
||
|
|
residual[i] = data[i] - (data[i-1] << 1) + data[i-2];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
case 3:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
/* == data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3] */
|
||
|
|
residual[i] = data[i] - (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) - data[i-3];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
case 4:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
/* == data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4] */
|
||
|
|
residual[i] = data[i] - ((data[i-1]+data[i-3])<<2) + ((data[i-2]<<2) + (data[i-2]<<1)) + data[i-4];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
default:
|
||
|
|
assert(0);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void FLAC__fixed_restore_signal(const int32 residual[], unsigned data_len, unsigned order, int32 data[])
|
||
|
|
{
|
||
|
|
unsigned i;
|
||
|
|
|
||
|
|
switch(order) {
|
||
|
|
case 0:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
data[i] = residual[i];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
case 1:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
data[i] = residual[i] + data[i-1];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
case 2:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
/* == residual[i] + 2*data[i-1] - data[i-2] */
|
||
|
|
data[i] = residual[i] + (data[i-1]<<1) - data[i-2];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
case 3:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
/* residual[i] + 3*data[i-1] - 3*data[i-2]) + data[i-3] */
|
||
|
|
data[i] = residual[i] + (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) + data[i-3];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
case 4:
|
||
|
|
for(i = 0; i < data_len; i++) {
|
||
|
|
/* == residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4] */
|
||
|
|
data[i] = residual[i] + ((data[i-1]+data[i-3])<<2) - ((data[i-2]<<2) + (data[i-2]<<1)) - data[i-4];
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
default:
|
||
|
|
assert(0);
|
||
|
|
}
|
||
|
|
}
|