Files
flac/src/libFLAC/lpc.c

239 lines
6.9 KiB
C
Raw Normal View History

2000-12-10 04:09:52 +00:00
/* libFLAC - Free Lossless Audio Coder library
* Copyright (C) 2000 Josh Coalson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include "FLAC/format.h"
#include "private/lpc.h"
#ifndef M_LN2
/* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
#define M_LN2 0.69314718055994530942
#endif
void FLAC__lpc_compute_autocorrelation(const real data[], unsigned data_len, unsigned lag, real autoc[])
{
real d;
unsigned i;
assert(lag > 0);
assert(lag <= data_len);
while(lag--) {
for(i = lag, d = 0.0; i < data_len; i++)
d += data[i] * data[i - lag];
autoc[lag] = d;
}
}
void FLAC__lpc_compute_lp_coefficients(const real autoc[], unsigned max_order, real lp_coeff[][FLAC__MAX_LPC_ORDER], real error[])
{
unsigned i, j;
real r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER];
assert(0 < max_order);
assert(max_order <= FLAC__MAX_LPC_ORDER);
assert(autoc[0] != 0.0);
err = autoc[0];
for(i = 0; i < max_order; i++) {
/* Sum up this iteration's reflection coefficient. */
r =- autoc[i+1];
for(j = 0; j < i; j++)
r -= lpc[j] * autoc[i-j];
ref[i] = (r/=err);
/* Update LPC coefficients and total error. */
lpc[i]=r;
for(j = 0; j < (i>>1); j++) {
real tmp = lpc[j];
lpc[j] += r * lpc[i-1-j];
lpc[i-1-j] += r * tmp;
}
if(i & 1)
lpc[j] += lpc[j] * r;
err *= (1.0 - r * r);
/* save this order */
for(j = 0; j <= i; j++)
lp_coeff[i][j] = -lpc[j]; /* N.B. why do we have to negate here? */
error[i] = err;
}
}
int FLAC__lpc_quantize_coefficients(const real lp_coeff[], unsigned order, unsigned precision, unsigned bits_per_sample, int32 qlp_coeff[], int *bits)
{
unsigned i;
real d, rprecision = (real)precision, maxlog = -1e99, minlog = 1e99;
assert(bits_per_sample > 0);
assert(bits_per_sample <= sizeof(int32)*8);
assert(precision >= FLAC__MIN_QLP_COEFF_PRECISION);
assert(precision + bits_per_sample < sizeof(int32)*8);
#ifdef NDEBUG
(void)bits_per_sample; /* silence compiler warning about unused parameter */
#endif
for(i = 0; i < order; i++) {
if(lp_coeff[i] == 0.0)
continue;
d = log(fabs(lp_coeff[i])) / M_LN2;
if(d > maxlog)
maxlog = d;
if(d < minlog)
minlog = d;
}
if(maxlog < minlog)
return 2;
else if(maxlog - minlog >= (real)(precision+1))
return 1;
else if((rprecision-1.0) - maxlog >= (real)(precision+1))
rprecision = (real)precision + maxlog + 1.0;
*bits = (int)floor((rprecision-1.0) - maxlog); /* '-1' because bits can be negative and the sign bit costs 1 bit */
if(*bits > (int)precision || *bits <= -(int)precision) {
fprintf(stderr, "@@@ FLAC__lpc_quantize_coefficients(): ERROR: *bits=%d, maxlog=%f, minlog=%f, precision=%u, rprecision=%f\n", *bits, maxlog, minlog, precision, rprecision);
return 1;
}
if(*bits != 0) { /* just to avoid wasting time... */
for(i = 0; i < order; i++)
qlp_coeff[i] = (int32)floor(lp_coeff[i] * (real)(1 << *bits));
}
return 0;
}
void FLAC__lpc_compute_residual_from_qlp_coefficients(const int32 data[], unsigned data_len, const int32 qlp_coeff[], unsigned order, int lp_quantization, int32 residual[])
{
#ifdef FLAC_OVERFLOW_DETECT
int64 sumo;
#endif
unsigned i, j;
int32 sum;
const int32 *history;
#ifdef FLAC_OVERFLOW_DETECT_VERBOSE
fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
for(i=0;i<order;i++)
fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
fprintf(stderr,"\n");
#endif
assert(order > 0);
for(i = 0; i < data_len; i++) {
#ifdef FLAC_OVERFLOW_DETECT
sumo = 0;
#endif
sum = 0;
history = data;
for(j = 0; j < order; j++) {
sum += qlp_coeff[j] * (*(--history));
#ifdef FLAC_OVERFLOW_DETECT
sumo += (int64)qlp_coeff[j] * (int64)(*history);
if(sumo > 2147483647ll || sumo < -2147483648ll)
fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, sumo=%lld\n",sumo);
#endif
}
*(residual++) = *(data++) - (sum >> lp_quantization);
}
/* Here's a slightly slower but clearer version:
for(i = 0; i < data_len; i++) {
sum = 0;
history = &(data[i]);
for(j = 0; j < order; j++)
sum += qlp_coeff[j] * (*(--history));
residual[i] = data[i] - (sum >> lp_quantization);
}
*/
}
void FLAC__lpc_restore_signal(const int32 residual[], unsigned data_len, const int32 qlp_coeff[], unsigned order, int lp_quantization, int32 data[])
{
#ifdef FLAC_OVERFLOW_DETECT
int64 sumo;
#endif
unsigned i, j;
int32 sum, *history;
#ifdef FLAC_OVERFLOW_DETECT_VERBOSE
fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
for(i=0;i<order;i++)
fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
fprintf(stderr,"\n");
#endif
assert(order > 0);
for(i = 0; i < data_len; i++) {
#ifdef FLAC_OVERFLOW_DETECT
sumo = 0;
#endif
sum = 0;
history = data+i;
for(j = 0; j < order; j++) {
sum += qlp_coeff[j] * (*(--history));
#ifdef FLAC_OVERFLOW_DETECT
sumo += (int64)qlp_coeff[j] * (int64)(*history);
if(sumo > 2147483647ll || sumo < -2147483648ll)
fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, sumo=%lld\n",sumo);
#endif
}
data[i] = residual[i] + (sum >> lp_quantization);
}
}
real FLAC__lpc_compute_expected_bits_per_residual_sample(real lpc_error, unsigned total_samples)
{
real escale;
assert(lpc_error >= 0.0); /* the error can never be negative */
assert(total_samples > 0);
escale = 0.5 * M_LN2 * M_LN2 / (real)total_samples;
if(lpc_error > 0.0)
return 0.5 * log(escale * lpc_error) / M_LN2;
else
return 0.0;
}
unsigned FLAC__lpc_compute_best_order(const real lpc_error[], unsigned max_order, unsigned total_samples, unsigned bits_per_signal_sample)
{
unsigned order, best_order;
real best_bits, tmp_bits;
assert(max_order > 0);
best_order = 0;
best_bits = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[0], total_samples) * (real)total_samples;
for(order = 1; order < max_order; order++) {
tmp_bits = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[order], total_samples) * (real)(total_samples - order) + (real)(order * bits_per_signal_sample);
if(tmp_bits < best_bits) {
best_order = order;
best_bits = tmp_bits;
}
}
return best_order+1; /* +1 since index of lpc_error[] is order-1 */
}