From 94e02cd4a053484db28971d06591c7db96eb947b Mon Sep 17 00:00:00 2001 From: Josh Coalson Date: Thu, 25 Jan 2001 10:41:06 +0000 Subject: [PATCH] speed up mid-side coding --- src/libFLAC/encoder.c | 829 +++++++++++++++++++++++++++--------------- 1 file changed, 538 insertions(+), 291 deletions(-) diff --git a/src/libFLAC/encoder.c b/src/libFLAC/encoder.c index d1206dba..283a708a 100644 --- a/src/libFLAC/encoder.c +++ b/src/libFLAC/encoder.c @@ -44,14 +44,18 @@ typedef struct FLAC__EncoderPrivate { int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */ real *real_signal[FLAC__MAX_CHANNELS]; /* the floating-point version of the input signal */ real *real_signal_mid_side[2]; /* the floating-point version of the mid-side input signal (stereo only) */ - int32 *residual[2]; /* where the candidate and best subframe residual signals will be stored */ + int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */ + int32 *residual_workspace_mid_side[2][2]; + FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2]; + FLAC__Subframe subframe_workspace_mid_side[2][2]; + FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2]; + FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2]; + unsigned best_subframe[FLAC__MAX_CHANNELS]; /* index into the above workspaces */ + unsigned best_subframe_mid_side[2]; + unsigned best_subframe_bits[FLAC__MAX_CHANNELS]; /* size in bits of the best subframe for each channel */ + unsigned best_subframe_bits_mid_side[2]; uint32 *abs_residual; /* workspace where the abs(candidate residual) is stored */ - unsigned best_residual; /* index into the above */ FLAC__BitBuffer frame; /* the current frame being worked on */ - FLAC__BitBuffer frame_mid_side; /* special parallel workspace for the mid-side coded version of the current frame */ - FLAC__BitBuffer frame_left_side; /* special parallel workspace for the left-side coded version of the current frame */ - FLAC__BitBuffer frame_right_side; /* special parallel workspace for the right-side coded version of the current frame */ - FLAC__Subframe best_subframe, candidate_subframe; bool current_frame_can_do_mid_side; /* encoder sets this false when any given sample of a frame's side channel exceeds 16 bits */ FLAC__StreamMetaData metadata; unsigned current_sample_number; @@ -64,13 +68,18 @@ typedef struct FLAC__EncoderPrivate { static bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size); static bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame); -static bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, bool verbatim_only, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *bitbuffer); +static bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame); +static bool encoder_process_subframe_(FLAC__Encoder *encoder, unsigned max_partition_order, bool verbatim_only, const FLAC__FrameHeader *frame_header, const int32 integer_signal[], const real real_signal[], FLAC__Subframe *subframe[2], int32 *residual[2], unsigned *best_subframe, unsigned *best_bits); +static bool encoder_add_subframe_(FLAC__Encoder *encoder, const FLAC__FrameHeader *frame_header, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame); static unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__Subframe *subframe); static unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe); static unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe); -static unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__Subframe *subframe); +static unsigned encoder_evaluate_verbatim_subframe_(const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__Subframe *subframe); static unsigned encoder_find_best_partition_order_(const int32 residual[], uint32 abs_residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[]); -static void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder); +#if 0 +@@@ +static void encoder_promote_candidate_subframe_(FLAC__Subframe *best_subframe, FLAC__Subframe *candidata_subframe, unsigned *best_residual); +#endif static bool encoder_set_partitioned_rice_(const uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits); const char *FLAC__EncoderWriteStatusString[] = { @@ -101,7 +110,7 @@ const char *FLAC__EncoderStateString[] = { bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size) { bool ok; - unsigned i; + unsigned i, channel; int32 *previous_is, *current_is; real *previous_rs, *current_rs; int32 *residual; @@ -173,16 +182,32 @@ bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size) } } if(ok) { - for(i = 0; i < 2; i++) { - residual = (int32*)malloc(sizeof(int32) * new_size); - if(0 == residual) { - encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR; - ok = 0; + for(channel = 0; channel < encoder->channels; channel++) { + for(i = 0; i < 2; i++) { + residual = (int32*)malloc(sizeof(int32) * new_size); + if(0 == residual) { + encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR; + ok = 0; + } + else { + if(encoder->guts->residual_workspace[channel][i] != 0) + free(encoder->guts->residual_workspace[channel][i]); + encoder->guts->residual_workspace[channel][i] = residual; + } } - else { - if(encoder->guts->residual[i] != 0) - free(encoder->guts->residual[i]); - encoder->guts->residual[i] = residual; + } + for(channel = 0; channel < 2; channel++) { + for(i = 0; i < 2; i++) { + residual = (int32*)malloc(sizeof(int32) * new_size); + if(0 == residual) { + encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR; + ok = 0; + } + else { + if(encoder->guts->residual_workspace_mid_side[channel][i] != 0) + free(encoder->guts->residual_workspace_mid_side[channel][i]); + encoder->guts->residual_workspace_mid_side[channel][i] = residual; + } } } abs_residual = (uint32*)malloc(sizeof(uint32) * new_size); @@ -307,10 +332,23 @@ FLAC__EncoderState FLAC__encoder_init(FLAC__Encoder *encoder, FLAC__EncoderWrite encoder->guts->integer_signal_mid_side[i] = 0; encoder->guts->real_signal_mid_side[i] = 0; } - encoder->guts->residual[0] = 0; - encoder->guts->residual[1] = 0; + for(i = 0; i < encoder->channels; i++) { + encoder->guts->residual_workspace[i][0] = encoder->guts->residual_workspace[i][1] = 0; + encoder->guts->best_subframe[i] = 0; + } + for(i = 0; i < 2; i++) { + encoder->guts->residual_workspace_mid_side[i][0] = encoder->guts->residual_workspace_mid_side[i][1] = 0; + encoder->guts->best_subframe_mid_side[i] = 0; + } + for(i = 0; i < encoder->channels; i++) { + encoder->guts->subframe_workspace_ptr[i][0] = &encoder->guts->subframe_workspace[i][0]; + encoder->guts->subframe_workspace_ptr[i][1] = &encoder->guts->subframe_workspace[i][1]; + } + for(i = 0; i < 2; i++) { + encoder->guts->subframe_workspace_ptr_mid_side[i][0] = &encoder->guts->subframe_workspace_mid_side[i][0]; + encoder->guts->subframe_workspace_ptr_mid_side[i][1] = &encoder->guts->subframe_workspace_mid_side[i][1]; + } encoder->guts->abs_residual = 0; - encoder->guts->best_residual = 0; encoder->guts->current_frame_can_do_mid_side = true; encoder->guts->current_sample_number = 0; encoder->guts->current_frame_number = 0; @@ -364,7 +402,7 @@ FLAC__EncoderState FLAC__encoder_init(FLAC__Encoder *encoder, FLAC__EncoderWrite void FLAC__encoder_finish(FLAC__Encoder *encoder) { - unsigned i; + unsigned i, channel; assert(encoder != 0); if(encoder->state == FLAC__ENCODER_UNINITIALIZED) @@ -396,10 +434,20 @@ void FLAC__encoder_finish(FLAC__Encoder *encoder) encoder->guts->real_signal_mid_side[i] = 0; } } - for(i = 0; i < 2; i++) { - if(encoder->guts->residual[i] != 0) { - free(encoder->guts->residual[i]); - encoder->guts->residual[i] = 0; + for(channel = 0; channel < encoder->channels; channel++) { + for(i = 0; i < 2; i++) { + if(encoder->guts->residual_workspace[channel][i] != 0) { + free(encoder->guts->residual_workspace[channel][i]); + encoder->guts->residual_workspace[channel][i] = 0; + } + } + } + for(channel = 0; channel < 2; channel++) { + for(i = 0; i < 2; i++) { + if(encoder->guts->residual_workspace_mid_side[channel][i] != 0) { + free(encoder->guts->residual_workspace_mid_side[channel][i]); + encoder->guts->residual_workspace_mid_side[channel][i] = 0; + } } } if(encoder->guts->abs_residual != 0) { @@ -507,9 +555,6 @@ bool FLAC__encoder_process_interleaved(FLAC__Encoder *encoder, const int32 buf[] bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame) { - FLAC__FrameHeader frame_header; - FLAC__BitBuffer *smallest_frame; - assert(encoder->state == FLAC__ENCODER_OK); /* @@ -521,102 +566,17 @@ bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame) } /* - * First do a normal encoding pass + * Process the frame header and subframes into the frame bitbuffer */ - frame_header.blocksize = encoder->blocksize; - frame_header.sample_rate = encoder->sample_rate; - frame_header.channels = encoder->channels; - frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */ - frame_header.bits_per_sample = encoder->bits_per_sample; - frame_header.number.frame_number = encoder->guts->current_frame_number; - - if(!FLAC__bitbuffer_clear(&encoder->guts->frame)) { - encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR; + if(!encoder_process_subframes_(encoder, is_last_frame)) { + /* the above function sets the state for us in case of an error */ return false; } - if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) { - encoder->state = FLAC__ENCODER_FRAMING_ERROR; - return false; - } - - if(!encoder_process_subframes_(encoder, is_last_frame, encoder->force_mid_side_stereo, &frame_header, encoder->channels, encoder->guts->integer_signal, encoder->guts->real_signal, &encoder->guts->frame)) - return false; - - smallest_frame = &encoder->guts->frame; - - /* - * Now try a mid-side version if necessary; otherwise, just use the previous step's frame - */ - if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) { - int32 *integer_signal[2]; - real *real_signal[2]; - - assert(encoder->channels == 2); - - /* mid-side */ - frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE; - if(!FLAC__bitbuffer_clear(&encoder->guts->frame_mid_side)) { - encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR; - return false; - } - if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_mid_side)) { - encoder->state = FLAC__ENCODER_FRAMING_ERROR; - return false; - } - integer_signal[0] = encoder->guts->integer_signal_mid_side[0]; /* mid channel */ - integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */ - real_signal[0] = encoder->guts->real_signal_mid_side[0]; /* mid channel */ - real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */ - if(!encoder_process_subframes_(encoder, is_last_frame, false, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_mid_side)) - return false; - if(encoder->guts->frame_mid_side.total_bits < smallest_frame->total_bits) - smallest_frame = &encoder->guts->frame_mid_side; - - if(!encoder->force_mid_side_stereo) { - /* left-side */ - frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE; - if(!FLAC__bitbuffer_clear(&encoder->guts->frame_left_side)) { - encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR; - return false; - } - if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_left_side)) { - encoder->state = FLAC__ENCODER_FRAMING_ERROR; - return false; - } - integer_signal[0] = encoder->guts->integer_signal[0]; /* left channel */ - integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */ - real_signal[0] = encoder->guts->real_signal[0]; /* left channel */ - real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */ - if(!encoder_process_subframes_(encoder, is_last_frame, false, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_left_side)) - return false; - if(encoder->guts->frame_left_side.total_bits < smallest_frame->total_bits) - smallest_frame = &encoder->guts->frame_left_side; - - /* right-side */ - frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE; - if(!FLAC__bitbuffer_clear(&encoder->guts->frame_right_side)) { - encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR; - return false; - } - if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_right_side)) { - encoder->state = FLAC__ENCODER_FRAMING_ERROR; - return false; - } - integer_signal[0] = encoder->guts->integer_signal_mid_side[1]; /* side channel */ - integer_signal[1] = encoder->guts->integer_signal[1]; /* right channel */ - real_signal[0] = encoder->guts->real_signal_mid_side[1]; /* side channel */ - real_signal[1] = encoder->guts->real_signal[1]; /* right channel */ - if(!encoder_process_subframes_(encoder, is_last_frame, false, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_right_side)) - return false; - if(encoder->guts->frame_right_side.total_bits < smallest_frame->total_bits) - smallest_frame = &encoder->guts->frame_right_side; - } - } /* * Zero-pad the frame to a byte_boundary */ - if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(smallest_frame)) { + if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(&encoder->guts->frame)) { encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR; return false; } @@ -624,9 +584,9 @@ bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame) /* * Write it */ - assert(smallest_frame->bits == 0); /* assert that we're byte-aligned before writing */ - assert(smallest_frame->total_consumed_bits == 0); /* assert that no reading of the buffer was done */ - if(encoder->guts->write_callback(encoder, smallest_frame->buffer, smallest_frame->bytes, encoder->blocksize, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK) { + assert(encoder->guts->frame.bits == 0); /* assert that we're byte-aligned before writing */ + assert(encoder->guts->frame.total_consumed_bits == 0); /* assert that no reading of the buffer was done */ + if(encoder->guts->write_callback(encoder, encoder->guts->frame.buffer, encoder->guts->frame.bytes, encoder->blocksize, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK) { encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING; return false; } @@ -638,12 +598,466 @@ bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame) encoder->guts->current_sample_number = 0; encoder->guts->current_frame_number++; encoder->guts->metadata.data.encoding.total_samples += (uint64)encoder->blocksize; - encoder->guts->metadata.data.encoding.min_framesize = min(smallest_frame->bytes, encoder->guts->metadata.data.encoding.min_framesize); - encoder->guts->metadata.data.encoding.max_framesize = max(smallest_frame->bytes, encoder->guts->metadata.data.encoding.max_framesize); + encoder->guts->metadata.data.encoding.min_framesize = min(encoder->guts->frame.bytes, encoder->guts->metadata.data.encoding.min_framesize); + encoder->guts->metadata.data.encoding.max_framesize = max(encoder->guts->frame.bytes, encoder->guts->metadata.data.encoding.max_framesize); return true; } +bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame) +{ + FLAC__FrameHeader frame_header; + unsigned channel, max_partition_order; + + /* + * Calculate the max Rice partition order + */ + if(is_last_frame) { + max_partition_order = 0; + } + else { + unsigned limit = 0, b = encoder->blocksize; + while(!(b & 1)) { + limit++; + b >>= 1; + } + max_partition_order = min(encoder->rice_optimization_level, limit); + } + + /* + * Setup the frame + */ + if(!FLAC__bitbuffer_clear(&encoder->guts->frame)) { + encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR; + return false; + } + frame_header.blocksize = encoder->blocksize; + frame_header.sample_rate = encoder->sample_rate; + frame_header.channels = encoder->channels; + frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */ + frame_header.bits_per_sample = encoder->bits_per_sample; + frame_header.number.frame_number = encoder->guts->current_frame_number; + + /* + * First do a normal encoding pass of each independent channel + */ + for(channel = 0; channel < encoder->channels; channel++) { + if(!encoder_process_subframe_(encoder, max_partition_order, encoder->force_mid_side_stereo, &frame_header, encoder->guts->integer_signal[channel], encoder->guts->real_signal[channel], encoder->guts->subframe_workspace_ptr[channel], encoder->guts->residual_workspace[channel], encoder->guts->best_subframe+channel, encoder->guts->best_subframe_bits+channel)) + return false; + } + + /* + * Now do mid and side channels if requested + */ + if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) { + assert(encoder->channels == 2); + + for(channel = 0; channel < 2; channel++) { + if(!encoder_process_subframe_(encoder, max_partition_order, false, &frame_header, encoder->guts->integer_signal_mid_side[channel], encoder->guts->real_signal_mid_side[channel], encoder->guts->subframe_workspace_ptr_mid_side[channel], encoder->guts->residual_workspace_mid_side[channel], encoder->guts->best_subframe_mid_side+channel, encoder->guts->best_subframe_bits_mid_side+channel)) + return false; + } + } + + /* + * Compose the frame bitbuffer + */ + if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) { + unsigned bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */ + unsigned min_bits; + FLAC__ChannelAssignment ca, min_assignment; + assert(encoder->channels == 2); + + /* We have to figure out which channel assignent results in the smallest frame */ + bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = encoder->guts->best_subframe_bits [0] + encoder->guts->best_subframe_bits [1]; + bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE ] = encoder->guts->best_subframe_bits [0] + encoder->guts->best_subframe_bits_mid_side[1]; + bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = encoder->guts->best_subframe_bits [1] + encoder->guts->best_subframe_bits_mid_side[1]; + bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE ] = encoder->guts->best_subframe_bits_mid_side[0] + encoder->guts->best_subframe_bits_mid_side[1]; + + for(min_assignment = 0, min_bits = bits[0], ca = 1; ca <= 3; ca++) { + if(bits[ca] < min_bits) { + min_bits = bits[ca]; + min_assignment = ca; + } + } + + frame_header.channel_assignment = min_assignment; + + if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) { + encoder->state = FLAC__ENCODER_FRAMING_ERROR; + return false; + } + + switch(min_assignment) { + /* note that encoder_add_subframe_ sets the state for us in case of an error */ + case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: + if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace [0][encoder->guts->best_subframe [0]], &encoder->guts->frame)) + return false; + if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace [1][encoder->guts->best_subframe [1]], &encoder->guts->frame)) + return false; + break; + case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: + if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace [0][encoder->guts->best_subframe [0]], &encoder->guts->frame)) + return false; + if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace_mid_side[1][encoder->guts->best_subframe_mid_side[1]], &encoder->guts->frame)) + return false; + break; + case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: + if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace_mid_side[1][encoder->guts->best_subframe_mid_side[1]], &encoder->guts->frame)) + return false; + if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace [1][encoder->guts->best_subframe [1]], &encoder->guts->frame)) + return false; + break; + case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: + if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace_mid_side[0][encoder->guts->best_subframe_mid_side[0]], &encoder->guts->frame)) + return false; + if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace_mid_side[1][encoder->guts->best_subframe_mid_side[1]], &encoder->guts->frame)) + return false; + break; + default: + assert(0); + } + } + else { + if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) { + encoder->state = FLAC__ENCODER_FRAMING_ERROR; + return false; + } + + for(channel = 0; channel < encoder->channels; channel++) { + if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace[channel][encoder->guts->best_subframe[channel]], &encoder->guts->frame)) { + /* the above function sets the state for us in case of an error */ + return false; + } + } + } + + return true; +} + +bool encoder_process_subframe_(FLAC__Encoder *encoder, unsigned max_partition_order, bool verbatim_only, const FLAC__FrameHeader *frame_header, const int32 integer_signal[], const real real_signal[], FLAC__Subframe *subframe[2], int32 *residual[2], unsigned *best_subframe, unsigned *best_bits) +{ + real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; + real lpc_residual_bits_per_sample; + real autoc[FLAC__MAX_LPC_ORDER+1]; + real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER]; + real lpc_error[FLAC__MAX_LPC_ORDER]; + unsigned min_lpc_order, max_lpc_order, lpc_order; + unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order; + unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision; + unsigned rice_parameter; + unsigned _candidate_bits, _best_bits; + unsigned _best_subframe; + + /* verbatim subframe is the baseline against which we measure other compressed subframes */ + _best_subframe = 0; + _best_bits = encoder_evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, frame_header->bits_per_sample, subframe[_best_subframe]); + + if(!verbatim_only && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) { + /* check for constant subframe */ + guess_fixed_order = FLAC__fixed_compute_best_predictor(integer_signal+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample); + if(fixed_residual_bits_per_sample[1] == 0.0) { + /* the above means integer_signal+FLAC__MAX_FIXED_ORDER is constant, now we just have to check the warmup samples */ + unsigned i, signal_is_constant = true; + for(i = 1; i <= FLAC__MAX_FIXED_ORDER; i++) { + if(integer_signal[0] != integer_signal[i]) { + signal_is_constant = false; + break; + } + } + if(signal_is_constant) { + _candidate_bits = encoder_evaluate_constant_subframe_(integer_signal[0], frame_header->bits_per_sample, subframe[!_best_subframe]); + if(_candidate_bits < _best_bits) { + _best_subframe = !_best_subframe; + _best_bits = _candidate_bits; + } + } + } + else { + /* encode fixed */ + if(encoder->do_exhaustive_model_search) { + min_fixed_order = 0; + max_fixed_order = FLAC__MAX_FIXED_ORDER; + } + else { + min_fixed_order = max_fixed_order = guess_fixed_order; + } + for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) { + if(fixed_residual_bits_per_sample[fixed_order] >= (real)frame_header->bits_per_sample) + continue; /* don't even try */ + /* 0.5 is for rounding, another 1.0 is to account for the signed->unsigned conversion during rice coding */ + rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+1.5) : 0; + if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN)) + rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1; + _candidate_bits = encoder_evaluate_fixed_subframe_(integer_signal, residual[!_best_subframe], encoder->guts->abs_residual, frame_header->blocksize, frame_header->bits_per_sample, fixed_order, rice_parameter, max_partition_order, subframe[!_best_subframe]); + if(_candidate_bits < _best_bits) { + _best_subframe = !_best_subframe; + _best_bits = _candidate_bits; + } + } + + /* encode lpc */ + if(encoder->max_lpc_order > 0) { + if(encoder->max_lpc_order >= frame_header->blocksize) + max_lpc_order = frame_header->blocksize-1; + else + max_lpc_order = encoder->max_lpc_order; + if(max_lpc_order > 0) { + FLAC__lpc_compute_autocorrelation(real_signal, frame_header->blocksize, max_lpc_order+1, autoc); + FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, lp_coeff, lpc_error); + if(encoder->do_exhaustive_model_search) { + min_lpc_order = 1; + } + else { + unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, frame_header->bits_per_sample); + min_lpc_order = max_lpc_order = guess_lpc_order; + } + if(encoder->do_qlp_coeff_prec_search) { + min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION; + max_qlp_coeff_precision = 32 - frame_header->bits_per_sample - 1; + } + else { + min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->qlp_coeff_precision; + } + for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) { + lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize); + if(lpc_residual_bits_per_sample >= (real)frame_header->bits_per_sample) + continue; /* don't even try */ + /* 0.5 is for rounding, another 1.0 is to account for the signed->unsigned conversion during rice coding */ + rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+1.5) : 0; + if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN)) + rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1; + for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) { + _candidate_bits = encoder_evaluate_lpc_subframe_(integer_signal, residual[!_best_subframe], encoder->guts->abs_residual, lp_coeff[lpc_order-1], frame_header->blocksize, frame_header->bits_per_sample, lpc_order, qlp_coeff_precision, rice_parameter, max_partition_order, subframe[!_best_subframe]); + if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */ + if(_candidate_bits < _best_bits) { + _best_subframe = !_best_subframe; + _best_bits = _candidate_bits; + } + } + } + } + } + } + } + } + + *best_subframe = _best_subframe; + *best_bits = _best_bits; + + return true; +} + +bool encoder_add_subframe_(FLAC__Encoder *encoder, const FLAC__FrameHeader *frame_header, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame) +{ + switch(subframe->type) { + case FLAC__SUBFRAME_TYPE_CONSTANT: + if(!FLAC__subframe_add_constant(&(subframe->data.constant), frame_header->bits_per_sample, frame)) { + encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING; + return false; + } + break; + case FLAC__SUBFRAME_TYPE_FIXED: + if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), frame_header->blocksize - subframe->data.fixed.order, frame_header->bits_per_sample, frame)) { + encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING; + return false; + } + break; + case FLAC__SUBFRAME_TYPE_LPC: + if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), frame_header->blocksize - subframe->data.lpc.order, frame_header->bits_per_sample, frame)) { + encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING; + return false; + } + break; + case FLAC__SUBFRAME_TYPE_VERBATIM: + if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), frame_header->blocksize, frame_header->bits_per_sample, frame)) { + encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING; + return false; + } + break; + default: + assert(0); + } + + return true; +} + +unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__Subframe *subframe) +{ + subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT; + subframe->data.constant.value = signal; + + return FLAC__SUBFRAME_TYPE_LEN + bits_per_sample; +} + +unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe) +{ + unsigned i, residual_bits; + const unsigned residual_samples = blocksize - order; + + FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual); + + subframe->type = FLAC__SUBFRAME_TYPE_FIXED; + + subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; + subframe->data.fixed.residual = residual; + + residual_bits = encoder_find_best_partition_order_(residual, abs_residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters); + + subframe->data.fixed.order = order; + for(i = 0; i < order; i++) + subframe->data.fixed.warmup[i] = signal[i]; + + return FLAC__SUBFRAME_TYPE_LEN + (order * bits_per_sample) + residual_bits; +} + +unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe) +{ + int32 qlp_coeff[FLAC__MAX_LPC_ORDER]; + unsigned i, residual_bits; + int quantization, ret; + const unsigned residual_samples = blocksize - order; + + ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, bits_per_sample, qlp_coeff, &quantization); + if(ret != 0) + return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */ + + FLAC__lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual); + + subframe->type = FLAC__SUBFRAME_TYPE_LPC; + + subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; + subframe->data.lpc.residual = residual; + + residual_bits = encoder_find_best_partition_order_(residual, abs_residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters); + + subframe->data.lpc.order = order; + subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision; + subframe->data.lpc.quantization_level = quantization; + memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int32)*FLAC__MAX_LPC_ORDER); + for(i = 0; i < order; i++) + subframe->data.lpc.warmup[i] = signal[i]; + + return FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + bits_per_sample)) + residual_bits; +} + +unsigned encoder_evaluate_verbatim_subframe_(const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__Subframe *subframe) +{ + subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM; + + subframe->data.verbatim.data = signal; + + return FLAC__SUBFRAME_TYPE_LEN + (blocksize * bits_per_sample); +} + +unsigned encoder_find_best_partition_order_(const int32 residual[], uint32 abs_residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[]) +{ + unsigned residual_bits, best_residual_bits = 0; + unsigned i, partition_order; + unsigned best_parameters_index = 0, parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER]; + int32 r; + + /* compute the abs(residual) for use later */ + for(i = 0; i < residual_samples; i++) { + r = residual[i]; + abs_residual[i] = (uint32)(r<0? -r : r); + } + + for(partition_order = 0; partition_order <= max_partition_order; partition_order++) { + if(!encoder_set_partitioned_rice_(abs_residual, residual_samples, predictor_order, rice_parameter, partition_order, parameters[!best_parameters_index], &residual_bits)) { + assert(best_residual_bits != 0); + break; + } + if(best_residual_bits == 0 || residual_bits < best_residual_bits) { + best_residual_bits = residual_bits; + *best_partition_order = partition_order; + best_parameters_index = !best_parameters_index; + } + } + memcpy(best_parameters, parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order))); + + return best_residual_bits; +} + +#if 0 +@@@ +void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder) +{ + assert(encoder->state == FLAC__ENCODER_OK); + encoder->guts->best_subframe = encoder->guts->candidate_subframe; + encoder->guts->best_residual = !encoder->guts->best_residual; +} +#endif + +#ifdef ESTIMATE_RICE_BITS +#undef ESTIMATE_RICE_BITS +#endif +#define ESTIMATE_RICE_BITS(value, parameter) ((value) >> (parameter)) + +bool encoder_set_partitioned_rice_(const uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits) +{ + unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; + + if(partition_order == 0) { + unsigned i; +#ifdef ESTIMATE_RICE_BITS + const unsigned rice_parameter_estimate = rice_parameter-1; + bits_ += (1+rice_parameter) * residual_samples; +#endif + parameters[0] = rice_parameter; + bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; + for(i = 0; i < residual_samples; i++) +#ifdef ESTIMATE_RICE_BITS + bits_ += ESTIMATE_RICE_BITS(abs_residual[i], rice_parameter_estimate); +#else + bits_ += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); +#endif + } + else { + unsigned i, j, k = 0, k_last = 0; + unsigned mean, parameter, partition_samples; + const unsigned max_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1; + for(i = 0; i < (1u<> partition_order; + if(i == 0) { + if(partition_samples <= predictor_order) + return false; + else + partition_samples -= predictor_order; + } + mean = partition_samples >> 1; + for(j = 0; j < partition_samples; j++, k++) + mean += abs_residual[k]; + mean /= partition_samples; + /* calc parameter = floor(log2(mean)) + 1 */ + parameter = 0; + while(mean) { + parameter++; + mean >>= 1; + } + if(parameter > max_parameter) + parameter = max_parameter; + parameters[i] = parameter; + bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; +#ifdef ESTIMATE_RICE_BITS + bits_ += (1+parameter) * partition_samples; + --parameter; +#endif + for(j = k_last; j < k; j++) +#ifdef ESTIMATE_RICE_BITS + bits_ += ESTIMATE_RICE_BITS(abs_residual[j], parameter); +#else + bits_ += FLAC__bitbuffer_rice_bits(residual[j], parameter); +#endif + k_last = k; + } + } + + *bits = bits_; + return true; +} + +#if 0 +@@@ bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, bool verbatim_only, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *frame) { real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; @@ -798,171 +1212,4 @@ bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, bool return true; } - -unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__Subframe *subframe) -{ - subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT; - subframe->data.constant.value = signal; - - return FLAC__SUBFRAME_TYPE_LEN + bits_per_sample; -} - -unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe) -{ - unsigned i, residual_bits; - const unsigned residual_samples = blocksize - order; - - FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual); - - subframe->type = FLAC__SUBFRAME_TYPE_FIXED; - - subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; - - residual_bits = encoder_find_best_partition_order_(residual, abs_residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters); - - subframe->data.fixed.order = order; - for(i = 0; i < order; i++) - subframe->data.fixed.warmup[i] = signal[i]; - - return FLAC__SUBFRAME_TYPE_LEN + (order * bits_per_sample) + residual_bits; -} - -unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe) -{ - int32 qlp_coeff[FLAC__MAX_LPC_ORDER]; - unsigned i, residual_bits; - int quantization, ret; - const unsigned residual_samples = blocksize - order; - - ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, bits_per_sample, qlp_coeff, &quantization); - if(ret != 0) - return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */ - - FLAC__lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual); - - subframe->type = FLAC__SUBFRAME_TYPE_LPC; - - subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; - - residual_bits = encoder_find_best_partition_order_(residual, abs_residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters); - - subframe->data.lpc.order = order; - subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision; - subframe->data.lpc.quantization_level = quantization; - memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int32)*FLAC__MAX_LPC_ORDER); - for(i = 0; i < order; i++) - subframe->data.lpc.warmup[i] = signal[i]; - - return FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + bits_per_sample)) + residual_bits; -} - -unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__Subframe *subframe) -{ - subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM; - - return FLAC__SUBFRAME_TYPE_LEN + (blocksize * bits_per_sample); -} - -unsigned encoder_find_best_partition_order_(const int32 residual[], uint32 abs_residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[]) -{ - unsigned residual_bits, best_residual_bits = 0; - unsigned i, partition_order; - unsigned best_parameters_index = 0, parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER]; - int32 r; - - /* compute the abs(residual) for use later */ - for(i = 0; i < residual_samples; i++) { - r = residual[i]; - abs_residual[i] = (uint32)(r<0? -r : r); - } - - for(partition_order = 0; partition_order <= max_partition_order; partition_order++) { - if(!encoder_set_partitioned_rice_(abs_residual, residual_samples, predictor_order, rice_parameter, partition_order, parameters[!best_parameters_index], &residual_bits)) { - assert(best_residual_bits != 0); - break; - } - if(best_residual_bits == 0 || residual_bits < best_residual_bits) { - best_residual_bits = residual_bits; - *best_partition_order = partition_order; - best_parameters_index = !best_parameters_index; - } - } - memcpy(best_parameters, parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order))); - - return best_residual_bits; -} - -void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder) -{ - assert(encoder->state == FLAC__ENCODER_OK); - encoder->guts->best_subframe = encoder->guts->candidate_subframe; - encoder->guts->best_residual = !encoder->guts->best_residual; -} - -#ifdef ESTIMATE_RICE_BITS -#undef ESTIMATE_RICE_BITS #endif -#define ESTIMATE_RICE_BITS(value, parameter) ((value) >> (parameter)) - -bool encoder_set_partitioned_rice_(const uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits) -{ - unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; - - if(partition_order == 0) { - unsigned i; -#ifdef ESTIMATE_RICE_BITS - const unsigned rice_parameter_estimate = rice_parameter-1; - bits_ += (1+rice_parameter) * residual_samples; -#endif - parameters[0] = rice_parameter; - bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; - for(i = 0; i < residual_samples; i++) -#ifdef ESTIMATE_RICE_BITS - bits_ += ESTIMATE_RICE_BITS(abs_residual[i], rice_parameter_estimate); -#else - bits_ += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); -#endif - } - else { - unsigned i, j, k = 0, k_last = 0; - unsigned mean, parameter, partition_samples; - const unsigned max_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1; - for(i = 0; i < (1u<> partition_order; - if(i == 0) { - if(partition_samples <= predictor_order) - return false; - else - partition_samples -= predictor_order; - } - mean = partition_samples >> 1; - for(j = 0; j < partition_samples; j++, k++) - mean += abs_residual[k]; - mean /= partition_samples; - /* calc parameter = floor(log2(mean)) + 1 */ - parameter = 0; - while(mean) { - parameter++; - mean >>= 1; - } - if(parameter > max_parameter) - parameter = max_parameter; - parameters[i] = parameter; - bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; -#ifdef ESTIMATE_RICE_BITS - bits_ += (1+parameter) * partition_samples; - --parameter; -#endif - for(j = k_last; j < k; j++) -#ifdef ESTIMATE_RICE_BITS - bits_ += ESTIMATE_RICE_BITS(abs_residual[j], parameter); -#else - bits_ += FLAC__bitbuffer_rice_bits(residual[j], parameter); -#endif - k_last = k; - } - } - - *bits = bits_; - return true; -}