/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000-2009 Josh Coalson * Copyright (C) 2011-2013 Xiph.Org Foundation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H # include #endif #ifndef FLAC__NO_ASM #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN #include "private/stream_encoder.h" #ifdef FLAC__SSSE3_SUPPORTED #include /* for abs() */ #include /* SSSE3 */ #include "FLAC/assert.h" FLAC__SSE_TARGET("ssse3") void FLAC__precompute_partition_info_sums_intrin_ssse3(const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order, unsigned bps) { const unsigned default_partition_samples = (residual_samples + predictor_order) >> max_partition_order; unsigned partitions = 1u << max_partition_order; FLAC__ASSERT(default_partition_samples > predictor_order); /* first do max_partition_order */ { unsigned partition, residual_sample, end = (unsigned)(-(int)predictor_order); unsigned e1, e3; __m128i mm_res, mm_sum; if(bps <= 16) { for(partition = residual_sample = 0; partition < partitions; partition++) { end += default_partition_samples; mm_sum = _mm_setzero_si128(); e1 = (residual_sample + 3) & ~3; e3 = end & ~3; if(e1 > end) e1 = end; /* try flac -l 1 -b 16 and you'll be here */ /* assumption: residual[] is properly aligned so (residual + e1) is properly aligned too and _mm_loadu_si128() is fast */ for( ; residual_sample < e1; residual_sample++) { mm_res = _mm_cvtsi32_si128(residual[residual_sample]); mm_res = _mm_abs_epi32(mm_res); /* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger problems */ mm_sum = _mm_add_epi32(mm_sum, mm_res); } for( ; residual_sample < e3; residual_sample+=4) { mm_res = _mm_loadu_si128((const __m128i*)(residual+residual_sample)); mm_res = _mm_abs_epi32(mm_res); mm_sum = _mm_add_epi32(mm_sum, mm_res); } for( ; residual_sample < end; residual_sample++) { mm_res = _mm_cvtsi32_si128(residual[residual_sample]); mm_res = _mm_abs_epi32(mm_res); mm_sum = _mm_add_epi32(mm_sum, mm_res); } mm_sum = _mm_hadd_epi32(mm_sum, mm_sum); mm_sum = _mm_hadd_epi32(mm_sum, mm_sum); abs_residual_partition_sums[partition] = _mm_cvtsi128_si32(mm_sum); } } else { /* have to pessimistically use 64 bits for accumulator */ for(partition = residual_sample = 0; partition < partitions; partition++) { end += default_partition_samples; mm_sum = _mm_setzero_si128(); e1 = (residual_sample + 1) & ~1; e3 = end & ~1; FLAC__ASSERT(e1 <= end); for( ; residual_sample < e1; residual_sample++) { mm_res = _mm_cvtsi32_si128(residual[residual_sample]); /* 0 0 0 r0 */ mm_res = _mm_abs_epi32(mm_res); /* 0 0 0 |r0| == 00 |r0_64| */ mm_sum = _mm_add_epi64(mm_sum, mm_res); } for( ; residual_sample < e3; residual_sample+=2) { mm_res = _mm_loadl_epi64((const __m128i*)(residual+residual_sample)); /* 0 0 r1 r0 */ mm_res = _mm_abs_epi32(mm_res); /* 0 0 |r1| |r0| */ mm_res = _mm_shuffle_epi32(mm_res, _MM_SHUFFLE(3,1,2,0)); /* 0 |r1| 0 |r0| == |r1_64| |r0_64| */ mm_sum = _mm_add_epi64(mm_sum, mm_res); } for( ; residual_sample < end; residual_sample++) { mm_res = _mm_cvtsi32_si128(residual[residual_sample]); mm_res = _mm_abs_epi32(mm_res); mm_sum = _mm_add_epi64(mm_sum, mm_res); } mm_sum = _mm_add_epi64(mm_sum, _mm_srli_si128(mm_sum, 8)); _mm_storel_epi64((__m128i*)(abs_residual_partition_sums+partition), mm_sum); } } } /* now merge partitions for lower orders */ { unsigned from_partition = 0, to_partition = partitions; int partition_order; for(partition_order = (int)max_partition_order - 1; partition_order >= (int)min_partition_order; partition_order--) { unsigned i; partitions >>= 1; for(i = 0; i < partitions; i++) { abs_residual_partition_sums[to_partition++] = abs_residual_partition_sums[from_partition ] + abs_residual_partition_sums[from_partition+1]; from_partition += 2; } } } } #endif /* FLAC__SSSE3_SUPPORTED */ #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */ #endif /* FLAC__NO_ASM */